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kSubmoduIar functions

» Submodular function: Set function f: 2¥ — R on finite set N such that

VA BC N: f(A)+1(B)>f(AUB)+f(ANB) .
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» Examples: coverage functions, cut functions, rank functions for matroids.
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kSubmoduIar function minimization

[ Find S* € argmin f(S) . ]
SCN
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[ Find S* € argmin f(S) . ]
SCN

» History of SFM algorithms:
1981: Weakly polynomial (ellipsoid-based) [Grotschel, Lovasz, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grotschel, Lovasz, Schrijver].
1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].
2009 — : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017],
[Dadush, Végh, Zambelli 2018].
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1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].
2009 — : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017],
[Dadush, Végh, Zambelli 2018].

» Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor o<1 [N/ 1og ‘N‘) [Svitkina, Fleischer 2011].

Under what constraints is efficient submodular function minimization possible?
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kConstrained submodular minimization: Prior results

» Parity-constrained SFM:

Find S* € argmin f(S) .
SCN, || odd

» Motivation: Separation over perfect matching polytope.
» Recent application: Key ingredient for solving bimodular integer programs
[Artmann, Weismantel, Zenklusen 2017].

» Captured by more general constraint families over which SFM can be done efficiently:

» Triple families [Grétschel, Lovasz, Schrijver 1984].
» Parity families [Goemans, Ramakrishnan 1995].
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LQuestions motivating our work

» Long-standing open problem:

Can p-modular ILPs be solved efficiently?

» Well-known for unimodular systems.
» True for bimodular systems [Artmann, Weismantel, Zenklusen 2017].
» Captures finding minimum cuts of size = r (mod p).
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kQuestions motivating our work

» Long-standing open problem:

Can p-modular ILPs be solved efficiently?

» Well-known for unimodular systems.
» True for bimodular systems [Artmann, Weismantel, Zenklusen 2017].
» Captures finding minimum cuts of size = r (mod p).

» Open questions [Geelen, Kapaida 2017]:

Let G=(V,E)agraphand Ty,..., T; C V. Find anon-empty S C V s.t. |[SN T;| are all
even odd

and |§(S)| is minimized.
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L Our results

» Congruency-Constrained Submodular Minimization (CCSM):

Let f: 2N — Z be submodular, let m € Z~q, and let r € {0,...,m—1}.
min f(S)

st. SCN, (CCSM)
|S| = r (mod m).

Theorem 1: Solving CCSM

For any m € Z- that is a prime power, (CCSM) can be solved in time |N|2™+O(1).
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6/13



L Our results

» Generalised Congruency-Constrained Submodular Minimization (GCCSM):

Let f: 2N — Z submodular, m € Z~o, k € Zg, 1, ..., €{0,...,m—1},and Sy, ..., Sk C N.
min f(S)
st. SCN, (GCCSM)

SN S| =r (mod m) Vi€ [k].

Theorem 2: Solving GCCSM

For any m € Z- that is a prime power, (GCCSM) can be solved in time | N|2<m+O(1),

» Captures both the t-Set Even-Cut Problem and the t-Set Odd-Cut Problem.
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\ Algorithm

» Focus on CCSM: Minimize f over sets S C N with |S| = r (mod m).
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Enum(d): Enumeration algorithm of depth d for CCSM
1. For all disjoint A, B C N with |A|, |B| < d, find a minimal minimizer of f over

Lis={SCN|ACSCN\B}.

Let S contain one minimal minimizer for each pair (A, B).

2. Among all S € S with |S| = r (mod m), return best one.
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» Focus on : Minimize f over sets S C N with |S| = r (mod m).

Enum(d): Enumeration algorithm of depth d for CCSM
1. For all disjoint A, B C N with |A|, |B| < d, find a minimal minimizer of f over

Lis={SCN|ACSCN\B}.

Let S contain one minimal minimizer for each pair (A, B).

2. Among all S € S with |S| = r (mod m), return best one.

» Enum(d) is extension of algorithm in [Goemans, Ramakrishnan 1995].
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L Proof plan

» Reduction to a purely combinatorial question about set systems.
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L Proof plan

» Reduction to a purely combinatorial question about set systems.

For a finite set N, a family # C 2" is called (m, d)-system on N if

(i) H is closed under intersection,
(i) |H| # [N| (mod m) VH € H, and
(iii) forany S C N with |S| < d, thereis aset H € H with S C H.

Theorem 3: Reduction Theorem 4: Inexistence of systems
If no (m,d)-system exists, then Enum(d) For m € Z~ being a prime power, there is no
solves any CCSM problem with modulus m. (m, m — 1)-system.
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» Enum(d) does not return N.

KReduction in a much simplified case

[N| = r (mod m)

f(N) = STT&I/U f(S)
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Al < d

Sp: ACSACN,

1(50) = R (S)
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LFirst steps: No (2, 1)-system exists

» Closed under intersections.
» |H| # |N| (mod 2) forall H € H.

> Any single element is covered by a set in H.
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LFirst steps: No (2, 1)-system exists

Step 1: We can assume |N| =1 (mod 2).

» Closed under intersections.
» |H| # |N| (mod 2) forall H € H.

» Any single element is covered by a set in .

» By adding a new element to all sets.

» Implies |[H| =0 (mod 2) forall H € H.

Step 2: Contradiction by inclusion-exclusion principle:

inclusion-exclusion

J [H]

)
IN=| U H =D =0 > |H|=0 (mod2).
HEH £=1 Hi,.oo,He €M, |i=1
Vidj: HiH
covering property Step 1

10/13



L Proof plan to show that no (p, p — 1)-system exists

» Closed under intersections.
» |H| # |N| (mod m) forall H € H.

» Any d elements are covered by a set in H.
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L Proof plan to show that no (p, p — 1)-system exists

Problem:
» H € H can have different cardinalities mod p. » Closed under intersections.

» |H| # |N| (mod m) forall H € H.

» Any d elements are covered by a set in H.

If there exists a (p, p — 1)-system, then there
exists a (p, 1)-system such that

|[H =0 (modp) VHeH .

» Exploit inclusion-exclusion again for contradiction:

||

_ 2(71)€+1 Z

= Hy,. o Ho €M,
Vi#j: Hi#H;

IN| = =0 (modp) .

4
N

i=i

U H

HeH
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LSet system transformation

Step 1: Assume (p, p — 1)-system H with |[N| = 0 (mod p).

G @@ o

» |H| £ 0 (mod p) forall H € H.
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LSet system transformation

Step 1: Assume (p, p — 1)-system H with |[N| = 0 (mod p).

G @@ o

€ s ®) o

» |H| #0 (mod p) forall H € H.

Step 2: Transform sets to (p — 1)-fold cartesian product
» Ground set cardinality: [N|°~" =0 (mod p).

» Set cardinalities: |H|°~" =1 (mod p).
(Fermat’s Little Theorem)

» Obtain (p, 1)-system.

c@® >
(l (5]

Example: 2-fold product for p = 3

12/13



LSet system transformation

Step 1: Assume (p, p — 1)-system H with |[N| = 0 (mod p).

G @@ o

[ (=] I\ =]

» |H| £ 0 (mod p) forall H € H.

Step 2: Transform sets to (p — 1)-fold cartesian product
» Ground set cardinality: [N|P~" =0 (mod p).

> Set cardinalities: |H|°~' =1 (mod p).
(Fermat’s Little Theorem)

» Obtain (p, 1)-system.

c@® >
(l (5]

Step 3: Shift to obtain |[H| = 0 (mod p) forall H € H. Example: 2-fold product for p = 3

» By adding p — 1 elements.
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LBeyond primes

» Key ingredient: Set system transformation function F.

» Crucial properties:
» Cardinality transformation:
F(8)| = {O (mod m) ?f |S| =0 (mod m),
1 (mod m) if|S] #0 (mod m).
» Preserving intersections:
F(S)NF(T)=F(SNT).
» Preserving coverage.

» Feasible functions:

polynomial: |F(S)| = |S|¥,  binomial: |F(S)| = (‘f'), conic combinations thereof

» Function used for moduli m that are prime powers:

Foi= 3 (F)+e-n-3 (7))

1<k<m, 1<k<m,
k odd k even



kConcIusions

» Main results: Polynomial-time algorithms for

min f(S) min f(S)
st. SCN, and st. SCN,
|S| = r (mod m). SN S| =r (mod m) Vi€ [K].

for constant prime powers m and constant k.
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kConcIusions

» Main results: Polynomial-time algorithms for

min f(S) min f(S)
st. SCN, and st. SCN,
|S| = r (mod m). SN S| =r (mod m) Vi€ [K].

for constant prime powers m and constant k.

Extension to any m = O(1)?

» Barrier: (m, m — 1)-systems do exist for composite m [Gopi 2017].
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