
Submodular Function Minimization under Congruency Constraints

Martin Nägele Benny Sudakov Rico Zenklusen

ETH Zurich ETH Zurich ETH Zurich

Submodular functions

Submodular function: Set function f : 2N → R on finite set N such that

∀A,B ⊆ N : f (A) + f (B) > f (A ∪ B) + f (A ∩ B) .

Examples: coverage functions, cut functions, rank functions for matroids.

f
()

= area

()

3

1

2

4

3

7
2

6

1

6

2

3

f
()

= 4 + 6 + 2

1 / 13

Submodular functions

Submodular function: Set function f : 2N → R on finite set N such that

∀A,B ⊆ N : f (A) + f (B) > f (A ∪ B) + f (A ∩ B) .

Examples: coverage functions, cut functions, rank functions for matroids.

f
()

= area

()
3

1

2

4

3

7
2

6

1

6

2

3

f
()

= 4 + 6 + 2

1 / 13

Submodular function minimization

Find S∗ ∈ argmin
S⊆N

f (S) .

History of SFM algorithms:
1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].

2009 – : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017],

[Dadush, Végh, Zambelli 2018].

Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor o
(√

|N|/log |N|

)
[Svitkina, Fleischer 2011].

Under what constraints is efficient submodular function minimization possible?

2 / 13

Submodular function minimization

Find S∗ ∈ argmin
S⊆N

f (S) .

History of SFM algorithms:
1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].

2009 – : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017],

[Dadush, Végh, Zambelli 2018].

Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor o
(√

|N|/log |N|

)
[Svitkina, Fleischer 2011].

Under what constraints is efficient submodular function minimization possible?

2 / 13

Submodular function minimization

Find S∗ ∈ argmin
S⊆N

f (S) .

History of SFM algorithms:
1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].

2009 – : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017],

[Dadush, Végh, Zambelli 2018].

Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor o
(√

|N|/log |N|

)
[Svitkina, Fleischer 2011].

Under what constraints is efficient submodular function minimization possible?

2 / 13

Submodular function minimization

Find S∗ ∈ argmin
S⊆N

f (S) .

History of SFM algorithms:
1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].

2009 – : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017],

[Dadush, Végh, Zambelli 2018].

Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor o
(√

|N|/log |N|

)
[Svitkina, Fleischer 2011].

Under what constraints is efficient submodular function minimization possible?

2 / 13

Constrained submodular minimization: Prior results

Parity-constrained SFM:

Find S∗ ∈ argmin
S⊆N, |S| odd

f (S) .

Motivation: Separation over perfect matching polytope.
Recent application: Key ingredient for solving bimodular integer programs
[Artmann, Weismantel, Zenklusen 2017].

Captured by more general constraint families over which SFM can be done efficiently:

Triple families [Grötschel, Lovasz, Schrijver 1984].
Parity families [Goemans, Ramakrishnan 1995].

3 / 13

Constrained submodular minimization: Prior results

Parity-constrained SFM:

Find S∗ ∈ argmin
S⊆N, |S| odd

f (S) .

Motivation: Separation over perfect matching polytope.
Recent application: Key ingredient for solving bimodular integer programs
[Artmann, Weismantel, Zenklusen 2017].

Captured by more general constraint families over which SFM can be done efficiently:

Triple families [Grötschel, Lovasz, Schrijver 1984].
Parity families [Goemans, Ramakrishnan 1995].

3 / 13

Constrained submodular minimization: Prior results

Parity-constrained SFM:

Find S∗ ∈ argmin
S⊆N, |S| odd

f (S) .

Motivation: Separation over perfect matching polytope.
Recent application: Key ingredient for solving bimodular integer programs
[Artmann, Weismantel, Zenklusen 2017].

Captured by more general constraint families over which SFM can be done efficiently:

Triple families [Grötschel, Lovasz, Schrijver 1984].
Parity families [Goemans, Ramakrishnan 1995].

3 / 13

Questions motivating our work

Long-standing open problem:

Can p-modular ILPs be solved efficiently?

Well-known for unimodular systems.
True for bimodular systems [Artmann, Weismantel, Zenklusen 2017].
Captures finding minimum cuts of size ≡ r (mod p).

Open questions [Geelen, Kapaida 2017]:

t-Set Even-Cut Problem | t-Set Odd-Cut Problem

Let G = (V ,E) a graph and T1, . . . , Tt ⊆ V . Find a non-empty S (V s.t. |S ∩ Ti | are all

even
∣∣∣ odd

and |δ(S)| is minimized.

4 / 13

Questions motivating our work

Long-standing open problem:

Can p-modular ILPs be solved efficiently?

Well-known for unimodular systems.
True for bimodular systems [Artmann, Weismantel, Zenklusen 2017].
Captures finding minimum cuts of size ≡ r (mod p).

Open questions [Geelen, Kapaida 2017]:

t-Set Even-Cut Problem | t-Set Odd-Cut Problem

Let G = (V ,E) a graph and T1, . . . , Tt ⊆ V . Find a non-empty S (V s.t. |S ∩ Ti | are all

even
∣∣∣ odd

and |δ(S)| is minimized.

4 / 13

Our results

Congruency-Constrained Submodular Minimization (CCSM):

Let f : 2N → Z be submodular, let m ∈ Z>0, and let r ∈ {0, . . . ,m − 1}.

min f (S)

s.t. S ⊆ N,

|S| ≡ r (mod m).

(CCSM)

Theorem 1: Solving CCSM

For any m ∈ Z>0 that is a prime power, (CCSM) can be solved in time |N|2m+O(1).

5 / 13

Our results

Generalised Congruency-Constrained Submodular Minimization (GCCSM):

Let f : 2N → Z submodular, m ∈ Z>0, k ∈ Z>0, r1, . . . , rk ∈ {0, . . . ,m − 1}, and S1, . . . ,Sk ⊆ N.

min f (S)

s.t. S ⊆ N,

|S ∩ Si | ≡ ri (mod m) ∀i ∈ [k].

(GCCSM)

Theorem 2: Solving GCCSM

For any m ∈ Z>0 that is a prime power, (GCCSM) can be solved in time |N|2km+O(1).

Captures both the t-Set Even-Cut Problem and the t-Set Odd-Cut Problem.

6 / 13

Our results

Generalised Congruency-Constrained Submodular Minimization (GCCSM):

Let f : 2N → Z submodular, m ∈ Z>0, k ∈ Z>0, r1, . . . , rk ∈ {0, . . . ,m − 1}, and S1, . . . ,Sk ⊆ N.

min f (S)

s.t. S ⊆ N,

|S ∩ Si | ≡ ri (mod m) ∀i ∈ [k].

(GCCSM)

Theorem 2: Solving GCCSM

For any m ∈ Z>0 that is a prime power, (GCCSM) can be solved in time |N|2km+O(1).

Captures both the t-Set Even-Cut Problem and the t-Set Odd-Cut Problem.

6 / 13

Algorithm

Focus on CCSM: Minimize f over sets S ⊆ N with |S| ≡ r (mod m).

Enum(d): Enumeration algorithm of depth d for CCSM

1. For all disjoint A,B ⊆ N with |A|, |B| 6 d , find a minimal minimizer of f over

LAB := {S ⊆ N | A ⊆ S ⊆ N \ B} .

Let S contain one minimal minimizer for each pair (A,B).

2. Among all S ∈ S with |S| ≡ r (mod m), return best one.

Enum(d) is extension of algorithm in [Goemans, Ramakrishnan 1995].

7 / 13

Algorithm

Focus on CCSM: Minimize f over sets S ⊆ N with |S| ≡ r (mod m).

Enum(d): Enumeration algorithm of depth d for CCSM

1. For all disjoint A,B ⊆ N with |A|, |B| 6 d , find a minimal minimizer of f over

LAB := {S ⊆ N | A ⊆ S ⊆ N \ B} .

Let S contain one minimal minimizer for each pair (A,B).

2. Among all S ∈ S with |S| ≡ r (mod m), return best one.

Enum(d) is extension of algorithm in [Goemans, Ramakrishnan 1995].

7 / 13

Algorithm

Focus on CCSM: Minimize f over sets S ⊆ N with |S| ≡ r (mod m).

Enum(d): Enumeration algorithm of depth d for CCSM

1. For all disjoint A,B ⊆ N with |A|, |B| 6 d , find a minimal minimizer of f over

LAB := {S ⊆ N | A ⊆ S ⊆ N \ B} .

Let S contain one minimal minimizer for each pair (A,B).

2. Among all S ∈ S with |S| ≡ r (mod m), return best one.

Enum(d) is extension of algorithm in [Goemans, Ramakrishnan 1995].

7 / 13

Proof plan

Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a familyH ⊆ 2N is called (m, d)-system on N if

(i) H is closed under intersection,

(ii) |H| 6≡ |N| (mod m) ∀H ∈ H, and

(iii) for any S ⊆ N with |S| ≤ d , there is a set H ∈ H with S ⊆ H.

Theorem 3: Reduction

If no (m, d)-system exists, then Enum(d)
solves any CCSM problem with modulus m.

Theorem 4: Inexistence of systems

For m ∈ Z>0 being a prime power, there is no
(m,m − 1)-system.

8 / 13

Proof plan

Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a familyH ⊆ 2N is called (m, d)-system on N if

(i) H is closed under intersection,

(ii) |H| 6≡ |N| (mod m) ∀H ∈ H, and

(iii) for any S ⊆ N with |S| ≤ d , there is a set H ∈ H with S ⊆ H.

Theorem 3: Reduction

If no (m, d)-system exists, then Enum(d)
solves any CCSM problem with modulus m.

Theorem 4: Inexistence of systems

For m ∈ Z>0 being a prime power, there is no
(m,m − 1)-system.

8 / 13

Proof plan

Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a familyH ⊆ 2N is called (m, d)-system on N if

(i) H is closed under intersection,

(ii) |H| 6≡ |N| (mod m) ∀H ∈ H, and

(iii) for any S ⊆ N with |S| ≤ d , there is a set H ∈ H with S ⊆ H.

Theorem 3: Reduction

If no (m, d)-system exists, then Enum(d)
solves any CCSM problem with modulus m.

Theorem 4: Inexistence of systems

For m ∈ Z>0 being a prime power, there is no
(m,m − 1)-system.

8 / 13

Proof plan

Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a familyH ⊆ 2N is called (m, d)-system on N if

(i) H is closed under intersection,

(ii) |H| 6≡ |N| (mod m) ∀H ∈ H, and

(iii) for any S ⊆ N with |S| ≤ d , there is a set H ∈ H with S ⊆ H.

Theorem 3: Reduction

If no (m, d)-system exists, then Enum(d)
solves any CCSM problem with modulus m.

Theorem 4: Inexistence of systems

For m ∈ Z>0 being a prime power, there is no
(m,m − 1)-system.

8 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) +

f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) + f (SA2)

︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)

︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) + f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) + f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

Reduction in a much simplified case

Assumptions:

No ties, i.e., f (S1) 6= f (S2) for all S1 6= S2.

N is an optimizer of the problem.

Enum(d) does not return N.

Claim

The following familyH is an (m, d)-system:

H :=

{
k⋂

i=1

SAi

∣∣∣∣∣ k > 1,Ai ⊆ N, |Ai | 6 d

}
.

N
|N| ≡ r (mod m)

f (N) = min
S⊆N,

|S|≡r (mod m)

f (S)
SA

A |A| 6 d

SA : A ⊆ SA (N,

f (SA) = min
S: A⊆S⊆N

f (S)

Proof. (i) closed under intersections (ii) |H| 6≡ |N| (mod m) ∀H ∈ H (iii) covering property

ad (ii):
f (N) > f (SA1)

=⇒ |SA1 | 6≡ |N| (mod m)

f (SA1) + f (SA2)︸ ︷︷ ︸
<f (N)

> f (SA1 ∪ SA2)︸ ︷︷ ︸
>f (SA1)

+ f (SA1 ∩ SA2)

=⇒ f (N) > f (SA1 ∩ SA2)

9 / 13

First steps: No (2, 1)-system exists

Step 1: We can assume |N| ≡ 1 (mod 2).

By adding a new element to all sets.

Implies |H| ≡ 0 (mod 2) for all H ∈ H.

Step 2: Contradiction by inclusion-exclusion principle:

|N| =

covering property

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣
inclusion-exclusion

=

|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡
Step 1

0 (mod 2) .

Properties of a (2, 1)-systemH

Closed under intersections.

|H| 6≡ |N| (mod 2) for all H ∈ H.

Any single element is covered by a set inH.

10 / 13

First steps: No (2, 1)-system exists

Step 1: We can assume |N| ≡ 1 (mod 2).

By adding a new element to all sets.

Implies |H| ≡ 0 (mod 2) for all H ∈ H.

Step 2: Contradiction by inclusion-exclusion principle:

|N| =

covering property

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣
inclusion-exclusion

=

|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡
Step 1

0 (mod 2) .

Properties of a (2, 1)-systemH

Closed under intersections.

|H| 6≡ |N| (mod 2) for all H ∈ H.

Any single element is covered by a set inH.

10 / 13

First steps: No (2, 1)-system exists

Step 1: We can assume |N| ≡ 1 (mod 2).

By adding a new element to all sets.

Implies |H| ≡ 0 (mod 2) for all H ∈ H.

Step 2: Contradiction by inclusion-exclusion principle:

|N| =

covering property

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣
inclusion-exclusion

=

|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡
Step 1

0 (mod 2) .

Properties of a (2, 1)-systemH

Closed under intersections.

|H| 6≡ |N| (mod 2) for all H ∈ H.

Any single element is covered by a set inH.

10 / 13

Proof plan to show that no (p, p − 1)-system exists

Problem:

H ∈ H can have different cardinalities mod p.

Lemma

If there exists a (p, p − 1)-system, then there
exists a (p, 1)-system such that

|H| ≡ 0 (mod p) ∀H ∈ H .

Exploit inclusion-exclusion again for contradiction:

|N| =

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣ =
|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡ 0 (mod p) .

Properties of an (m, d)-systemH

Closed under intersections.

|H| 6≡ |N| (mod m) for all H ∈ H.

Any d elements are covered by a set inH.

11 / 13

Proof plan to show that no (p, p − 1)-system exists

Problem:

H ∈ H can have different cardinalities mod p.

Lemma

If there exists a (p, p − 1)-system, then there
exists a (p, 1)-system such that

|H| ≡ 0 (mod p) ∀H ∈ H .

Exploit inclusion-exclusion again for contradiction:

|N| =

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣ =
|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡ 0 (mod p) .

Properties of an (m, d)-systemH

Closed under intersections.

|H| 6≡ |N| (mod m) for all H ∈ H.

Any d elements are covered by a set inH.

11 / 13

Proof plan to show that no (p, p − 1)-system exists

Problem:

H ∈ H can have different cardinalities mod p.

Lemma

If there exists a (p, p − 1)-system, then there
exists a (p, 1)-system such that

|H| ≡ 0 (mod p) ∀H ∈ H .

Exploit inclusion-exclusion again for contradiction:

|N| =

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣ =
|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡ 0 (mod p) .

Properties of an (m, d)-systemH

Closed under intersections.

|H| 6≡ |N| (mod m) for all H ∈ H.

Any d elements are covered by a set inH.

11 / 13

Proof plan to show that no (p, p − 1)-system exists

Problem:

H ∈ H can have different cardinalities mod p.

Lemma

If there exists a (p, p − 1)-system, then there
exists a (p, 1)-system such that

|H| ≡ 0 (mod p) ∀H ∈ H .

Exploit inclusion-exclusion again for contradiction:

|N| =

∣∣∣∣∣ ⋃
H∈H

H

∣∣∣∣∣ =
|H|∑
`=1

(−1)`+1
∑

H1,...,H`∈H,
∀i 6=j : Hi 6=Hj

∣∣∣∣∣⋂̀
i=1

Hi

∣∣∣∣∣ ≡ 0 (mod p) .

Properties of an (m, d)-systemH

Closed under intersections.

|H| 6≡ |N| (mod m) for all H ∈ H.

Any d elements are covered by a set inH.

11 / 13

Set system transformation

Step 1: Assume (p, p − 1)-systemH with |N| ≡ 0 (mod p).

|H| 6≡ 0 (mod p) for all H ∈ H.

Step 2: Transform sets to (p − 1)-fold cartesian product

Ground set cardinality: |N|p−1 ≡ 0 (mod p).

Set cardinalities: |H|p−1 ≡ 1 (mod p).
(Fermat’s Little Theorem)

Obtain (p, 1)-system.

Step 3: Shift to obtain |H| ≡ 0 (mod p) for all H ∈ H.

By adding p − 1 elements.

Example: 2-fold product for p = 3

12 / 13

Set system transformation

Step 1: Assume (p, p − 1)-systemH with |N| ≡ 0 (mod p).

|H| 6≡ 0 (mod p) for all H ∈ H.

Step 2: Transform sets to (p − 1)-fold cartesian product

Ground set cardinality: |N|p−1 ≡ 0 (mod p).

Set cardinalities: |H|p−1 ≡ 1 (mod p).
(Fermat’s Little Theorem)

Obtain (p, 1)-system.

Step 3: Shift to obtain |H| ≡ 0 (mod p) for all H ∈ H.

By adding p − 1 elements.

Example: 2-fold product for p = 3

12 / 13

Set system transformation

Step 1: Assume (p, p − 1)-systemH with |N| ≡ 0 (mod p).

|H| 6≡ 0 (mod p) for all H ∈ H.

Step 2: Transform sets to (p − 1)-fold cartesian product

Ground set cardinality: |N|p−1 ≡ 0 (mod p).

Set cardinalities: |H|p−1 ≡ 1 (mod p).
(Fermat’s Little Theorem)

Obtain (p, 1)-system.

Step 3: Shift to obtain |H| ≡ 0 (mod p) for all H ∈ H.

By adding p − 1 elements.

Example: 2-fold product for p = 3

12 / 13

Beyond primes

Key ingredient: Set system transformation function F .

Crucial properties:

Cardinality transformation:

|F(S)| ≡

{
0 (mod m) if |S| ≡ 0 (mod m),

1 (mod m) if |S| 6≡ 0 (mod m).

Preserving intersections:
F(S) ∩ F(T) = F(S ∩ T).

Preserving coverage.

Feasible functions:

polynomial: |F(S)| = |S|k , binomial: |F(S)| =
(|S|

k

)
, conic combinations thereof

Function used for moduli m that are prime powers:

|F(S)| =
∑

1≤k<m,
k odd

(
|S|
k

)
+ (p − 1) ·

∑
1≤k<m,

k even

(
|S|
k

)
.

F

Conclusions

Main results: Polynomial-time algorithms for

CCSM

min f (S)

s.t. S ⊆ N,

|S| ≡ r (mod m).

and

GCCSM

min f (S)

s.t. S ⊆ N,

|S ∩ Si | ≡ ri (mod m) ∀i ∈ [k].

for constant prime powers m and constant k .

Extension to any m = O(1)?

Barrier: (m,m − 1)-systems do exist for composite m [Gopi 2017].

13 / 13

Conclusions

Main results: Polynomial-time algorithms for

CCSM

min f (S)

s.t. S ⊆ N,

|S| ≡ r (mod m).

and

GCCSM

min f (S)

s.t. S ⊆ N,

|S ∩ Si | ≡ ri (mod m) ∀i ∈ [k].

for constant prime powers m and constant k .

Extension to any m = O(1)?

Barrier: (m,m − 1)-systems do exist for composite m [Gopi 2017].

13 / 13

Conclusions

Main results: Polynomial-time algorithms for

CCSM

min f (S)

s.t. S ⊆ N,

|S| ≡ r (mod m).

and

GCCSM

min f (S)

s.t. S ⊆ N,

|S ∩ Si | ≡ ri (mod m) ∀i ∈ [k].

for constant prime powers m and constant k .

Extension to any m = O(1)?

Barrier: (m,m − 1)-systems do exist for composite m [Gopi 2017].

13 / 13

