Submodular Function Minimization under Congruency Constraints

Martin Nägele
ETH Zurich
Benny Sudakov
ETH Zurich
Rico Zenklusen
ETH Zurich

Submodular functions

- Submodular function: Set function $f: 2^{N} \rightarrow \mathbb{R}$ on finite set N such that

$$
\forall A, B \subseteq N: \quad f(A)+f(B) \geqslant f(A \cup B)+f(A \cap B)
$$

Submodular functions

- Submodular function: Set function $f: 2^{N} \rightarrow \mathbb{R}$ on finite set N such that

$$
\forall A, B \subseteq N: \quad f(A)+f(B) \geqslant f(A \cup B)+f(A \cap B) .
$$

- Examples: coverage functions, cut functions, rank functions for matroids.

$$
\text { Find } S^{*} \in \underset{S \subseteq N}{\operatorname{argmin}} f(S)
$$

Submodular function minimization

$$
\text { Find } S^{*} \in \underset{S \subseteq N}{\operatorname{argmin}} f(S) \text {. }
$$

- History of SFM algorithms:

1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [Iwata, Fleischer, Fujishige] and [Schrijver].
2009 - : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017], [Dadush, Végh, Zambelli 2018].

Submodular function minimization

$$
\text { Find } S^{*} \in \underset{S \subseteq N}{\operatorname{argmin}} f(S)
$$

- History of SFM algorithms:

1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [lwata, Fleischer, Fujishige] and [Schrijver].
2009 - : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017], [Dadush, Végh, Zambelli 2018].

- Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor $O(\sqrt{|N| / \log |N|})$ [Svitkina, Fleischer 2011].

Submodular function minimization

$$
\text { Find } S^{*} \in \underset{S \subseteq N}{\operatorname{argmin}} f(S)
$$

- History of SFM algorithms:

1981: Weakly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1985: Combinatorial pseudo-polynomial [Cunningham].
1988: Strongly polynomial (ellipsoid-based) [Grötschel, Lovász, Schrijver].
1999: Combinatorial strongly polynomial [lwata, Fleischer, Fujishige] and [Schrijver].
2009 - : Speedups [Orlin 2009], [Lee, Sidford, Wong 2015], [Chakraborty, Lee, Sidford, Wong 2017], [Dadush, Végh, Zambelli 2018].

- Constrained submodular minimization becomes hard quickly.

With cardinality lower bound: Inapproximable within factor $O(\sqrt{|N| / \log |N|})$ [Svitkina, Fleischer 2011].

Under what constraints is efficient submodular function minimization possible?

Constrained submodular minimization: Prior results

- Parity-constrained SFM:

$$
\text { Find } S^{*} \in \underset{S \subseteq N,|S| \text { odd }}{\operatorname{argmin}} f(S) .
$$

Constrained submodular minimization: Prior results

- Parity-constrained SFM:

$$
\text { Find } S^{*} \in \underset{S \subseteq N,|S| \text { odd }}{\operatorname{argmin}} f(S)
$$

- Motivation: Separation over perfect matching polytope.
- Recent application: Key ingredient for solving bimodular integer programs [Artmann, Weismantel, Zenklusen 2017].

Constrained submodular minimization: Prior results

- Parity-constrained SFM:

$$
\text { Find } S^{*} \in \underset{S \subseteq N,|S| \text { odd }}{\operatorname{argmin}} f(S)
$$

- Motivation: Separation over perfect matching polytope.
- Recent application: Key ingredient for solving bimodular integer programs [Artmann, Weismantel, Zenklusen 2017].
- Captured by more general constraint families over which SFM can be done efficiently:
- Triple families [Grötschel, Lovasz, Schrijver 1984].
- Parity families [Goemans, Ramakrishnan 1995].
- Long-standing open problem:

Can p-modular ILPs be solved efficiently?

- Well-known for unimodular systems.
- True for bimodular systems [Artmann, Weismantel, Zenklusen 2017].
- Captures finding minimum cuts of size $\equiv r(\bmod p)$.
- Long-standing open problem:

Can p-modular ILPs be solved efficiently?

- Well-known for unimodular systems.
- True for bimodular systems [Artmann, Weismantel, Zenklusen 2017].
- Captures finding minimum cuts of size $\equiv r(\bmod p)$.
- Open questions [Geelen, Kapaida 2017]:

t-Set Even-Cut Problem

t-Set Odd-Cut Problem
Let $G=(V, E)$ a graph and $T_{1}, \ldots, T_{t} \subseteq V$. Find a non-empty $S \subsetneq V$ s.t. $\left|S \cap T_{i}\right|$ are all even

Our results

- Congruency-Constrained Submodular Minimization (CCSM):

Let $f: 2^{N} \rightarrow \mathbb{Z}$ be submodular, let $m \in \mathbb{Z}_{>0}$, and let $r \in\{0, \ldots, m-1\}$.

$$
\min f(S)
$$

s.t. $S \subseteq N$,

$$
|S| \equiv r(\bmod m)
$$

Theorem 1: Solving CCSM

For any $m \in \mathbb{Z}_{>0}$ that is a prime power, (CCSM) can be solved in time $|N|^{2 m+\mathcal{O}(1)}$.

Our results

- Generalised Congruency-Constrained Submodular Minimization (GCCSM):

Let $f: 2^{N} \rightarrow \mathbb{Z}$ submodular, $m \in \mathbb{Z}_{>0}, k \in \mathbb{Z}_{>0}, r_{1}, \ldots, r_{k} \in\{0, \ldots, m-1\}$, and $S_{1}, \ldots, S_{k} \subseteq N$.

$$
\begin{aligned}
& \min f(S) \\
& \text { s.t. } \quad S \subseteq N, \\
&\left|S \cap S_{i}\right| \equiv r_{i}(\bmod m) \quad \forall i \in[k] .
\end{aligned}
$$

(GCCSM)

Theorem 2: Solving GCCSM

For any $m \in \mathbb{Z}_{>0}$ that is a prime power, (GCCSM) can be solved in time $|N|^{2 k m+\mathcal{O}(1)}$.

Our results

- Generalised Congruency-Constrained Submodular Minimization (GCCSM):

Let $f: 2^{N} \rightarrow \mathbb{Z}$ submodular, $m \in \mathbb{Z}_{>0}, k \in \mathbb{Z}_{>0}, r_{1}, \ldots, r_{k} \in\{0, \ldots, m-1\}$, and $S_{1}, \ldots, S_{k} \subseteq N$.

$$
\begin{aligned}
& \min f(S) \\
& \text { s.t. } \quad S \subseteq N, \\
&\left|S \cap S_{i}\right| \equiv r_{i}(\bmod m) \forall i \in[k] .
\end{aligned}
$$

(GCCSM)

Theorem 2: Solving GCCSM

For any $m \in \mathbb{Z}_{>0}$ that is a prime power, (GCCSM) can be solved in time $|N|^{2 k m+\mathcal{O}(1)}$.

- Captures both the t-Set Even-Cut Problem and the t-Set Odd-Cut Problem.

Algorithm

- Focus on CCSM: Minimize f over sets $S \subseteq N$ with $|S| \equiv r(\bmod m)$.

Algorithm

- Focus on CCSM: Minimize f over sets $S \subseteq N$ with $|S| \equiv r(\bmod m)$.

Enum (d) : Enumeration algorithm of depth d for CCSM

1. For all disjoint $A, B \subseteq N$ with $|A|,|B| \leqslant d$, find a minimal minimizer of f over

$$
\mathcal{L}_{A B}:=\{S \subseteq N \mid A \subseteq S \subseteq N \backslash B\}
$$

Let \mathcal{S} contain one minimal minimizer for each pair (A, B).
2. Among all $S \in \mathcal{S}$ with $|S| \equiv r(\bmod m)$, return best one.

Algorithm

- Focus on CCSM: Minimize f over sets $S \subseteq N$ with $|S| \equiv r(\bmod m)$.

Enum (d) : Enumeration algorithm of depth d for CCSM

1. For all disjoint $A, B \subseteq N$ with $|A|,|B| \leqslant d$, find a minimal minimizer of f over

$$
\mathcal{L}_{A B}:=\{S \subseteq N \mid A \subseteq S \subseteq N \backslash B\}
$$

Let \mathcal{S} contain one minimal minimizer for each pair (A, B).
2. Among all $S \in \mathcal{S}$ with $|S| \equiv r(\bmod m)$, return best one.

- Enum (d) is extension of algorithm in [Goemans, Ramakrishnan 1995].

Proof plan

- Reduction to a purely combinatorial question about set systems.
- Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a family $\mathcal{H} \subseteq 2^{N}$ is called (m, d)-system on N if
(i) \mathcal{H} is closed under intersection,
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$, and
(iii) for any $S \subseteq N$ with $|S| \leq d$, there is a set $H \in \mathcal{H}$ with $S \subseteq H$.

- Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a family $\mathcal{H} \subseteq 2^{N}$ is called (m, d)-system on N if
(i) \mathcal{H} is closed under intersection,
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$, and
(iii) for any $S \subseteq N$ with $|S| \leq d$, there is a set $H \in \mathcal{H}$ with $S \subseteq H$.

Theorem 3: Reduction

If no (m, d)-system exists, then Enum (d) solves any CCSM problem with modulus m.

- Reduction to a purely combinatorial question about set systems.

Definition: (m, d)-system

For a finite set N, a family $\mathcal{H} \subseteq 2^{N}$ is called (m, d)-system on N if
(i) \mathcal{H} is closed under intersection,
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$, and
(iii) for any $S \subseteq N$ with $|S| \leq d$, there is a set $H \in \mathcal{H}$ with $S \subseteq H$.

Theorem 3: Reduction

If no (m, d)-system exists, then Enum (d) solves any CCSM problem with modulus m.

Theorem 4: Inexistence of systems

For $m \in \mathbb{Z}_{>0}$ being a prime power, there is no ($m, m-1$)-system.

Reduction in a much simplified case

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- Enum (d) does not return N.

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- Enum (d) does not return N.

Reduction in a much simplified case

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- Enum (d) does not return N.

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Proof.
(i) closed under intersections
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$
(iii) covering property

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Proof.
(i) closed under intersections
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$
(iii) covering property

$$
\begin{aligned}
& f(N)>f\left(S_{A_{1}}\right) \\
\text { ad (ii): } & \\
\Longrightarrow & \left|S_{A_{1}}\right| \not \equiv|N|(\bmod m)
\end{aligned}
$$

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Proof.
(i) closed under intersections
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$
(iii) covering property
ad (ii):

$$
\begin{aligned}
& f(N)>f\left(S_{A_{1}}\right) \\
& \Longrightarrow\left|S_{A_{1}}\right| \not \equiv|N|\left(S_{A_{1}}\right)+f\left(S_{A_{2}}\right) \geqslant f\left(S_{A_{1}} \cup S_{A_{2}}\right)+f\left(S_{A_{1}} \cap S_{A_{2}}\right) \\
&
\end{aligned}
$$

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Proof.
(i) closed under intersections
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$
(iii) covering property
ad (ii):

$$
\begin{aligned}
& f(N)>f\left(S_{A_{1}}\right) \\
\Longrightarrow & \left|S_{A_{1}}\right| \not \equiv|N|(\bmod m)
\end{aligned}
$$

$$
f\left(S_{A_{1}}\right)+\underbrace{f\left(S_{A_{2}}\right)}_{<f(N)} \geqslant \underbrace{f\left(S_{A_{1}} \cup S_{A_{2}}\right)}_{\geqslant f\left(S_{A_{1}}\right)}+f\left(S_{A_{1}} \cap S_{A_{2}}\right)
$$

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Proof.
(i) closed under intersections
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$
(iii) covering property
ad (ii):

$$
\begin{aligned}
& f(N)>f\left(S_{A_{1}}\right) \\
& \Longrightarrow \quad\left|S_{A_{1}}\right| \not \equiv|N|(\bmod m)
\end{aligned}
$$

$$
\begin{aligned}
& f\left(S_{A_{1}}\right)+\underbrace{f\left(S_{A_{2}}\right)}_{<f(N)} \geqslant \underbrace{f\left(S_{A_{1}} \cup S_{A_{2}}\right)}_{\geqslant f\left(S_{A_{1}}\right)} \cdots f\left(S_{A_{1}} \cap S_{A_{2}}\right) \\
& \Longrightarrow f(N)>f\left(S_{A_{1}} \cap S_{A_{2}}\right)
\end{aligned}
$$

Assumptions:

- No ties, i.e., $f\left(S_{1}\right) \neq f\left(S_{2}\right)$ for all $S_{1} \neq S_{2}$.
- N is an optimizer of the problem.
- $\operatorname{Enum}(d)$ does not return N.

Claim

The following family \mathcal{H} is an (m, d)-system:

$$
\mathcal{H}:=\left\{\bigcap_{i=1}^{k} S_{A_{i}}\left|k \geqslant 1, A_{i} \subseteq N,\left|A_{i}\right| \leqslant d\right\}\right.
$$

Proof.
(i) closed under intersections
(ii) $|H| \not \equiv|N|(\bmod m) \forall H \in \mathcal{H}$
(iii) covering property
ad (ii):

$$
\begin{aligned}
f(N)>f\left(S_{A_{1}}\right) \\
\Longrightarrow \quad\left|S_{A_{1}}\right| \not \equiv|N|(\bmod m)
\end{aligned}
$$

$$
\begin{aligned}
f\left(S_{A_{1}}\right)+\underbrace{f\left(S_{A_{2}}\right)}_{<f(N)} \geqslant \underbrace{f\left(S_{A_{1}} \cup S_{A_{2}}\right)}_{\geqslant f\left(S_{A_{1}}\right)} & +f\left(S_{A_{1}} \cap S_{A_{2}}\right) \\
& \Longrightarrow f(N)>f\left(S_{A_{1}} \cap S_{A_{2}}\right)
\end{aligned}
$$

First steps: No (2, 1)-system exists

Properties of a $(2,1)$-system \mathcal{H}

- Closed under intersections.
- $|H| \not \equiv|N|(\bmod 2)$ for all $H \in \mathcal{H}$.
- Any single element is covered by a set in \mathcal{H}.

First steps: No (2, 1)-system exists

Step 1: We can assume $|N| \equiv 1(\bmod 2)$.

- By adding a new element to all sets.
- Implies $|H| \equiv 0(\bmod 2)$ for all $H \in \mathcal{H}$.

Properties of a $(2,1)$-system \mathcal{H}

- Closed under intersections.
- $|H| \not \equiv|N|(\bmod 2)$ for all $H \in \mathcal{H}$.
- Any single element is covered by a set in \mathcal{H}.

First steps: No (2,1)-system exists

Step 1: We can assume $|N| \equiv 1(\bmod 2)$.

- By adding a new element to all sets.
- Implies $|H| \equiv 0(\bmod 2)$ for all $H \in \mathcal{H}$.

Properties of a $(2,1)$-system \mathcal{H}

- Closed under intersections.
- $|H| \not \equiv|N|(\bmod 2)$ for all $H \in \mathcal{H}$.
- Any single element is covered by a set in \mathcal{H}.

Step 2: Contradiction by inclusion-exclusion principle:

$$
\begin{aligned}
& \quad \text { inclusion-exclusion } \\
& |N|=\left|\bigcup_{\uparrow} H\right| \stackrel{\downarrow}{H} \sum_{\ell \in \mathcal{H}}^{|\mathcal{H}|}(-1)^{\ell+1} \sum_{\substack{H_{1}, \ldots, H_{\ell} \in \mathcal{H}, \forall i \neq j: H_{i} \neq H_{j}}}\left|\bigcap_{i=1}^{\ell} H_{i}\right| \equiv{\underset{\uparrow}{\text { Step } 1}} 0(\bmod 2) .
\end{aligned}
$$

Proof plan to show that no $(p, p-1)$-system exists

Properties of an (m, d)-system \mathcal{H}

- Closed under intersections.
- $|H| \not \equiv|N|(\bmod m)$ for all $H \in \mathcal{H}$.
- Any d elements are covered by a set in \mathcal{H}.

Proof plan to show that no $(p, p-1)$-system exists

Problem:

- $H \in \mathcal{H}$ can have different cardinalities $\bmod p$.

Properties of an (m, d)-system \mathcal{H}

- Closed under intersections.
- $|H| \not \equiv|N|(\bmod m)$ for all $H \in \mathcal{H}$.
- Any d elements are covered by a set in \mathcal{H}.

Proof plan to show that no $(p, p-1)$-system exists

Problem:

- $H \in \mathcal{H}$ can have different cardinalities $\bmod p$.

Lemma

If there exists a $(p, p-1)$-system, then there exists a $(p, 1)$-system such that

$$
|H| \equiv 0 \quad(\bmod p) \quad \forall H \in \mathcal{H}
$$

Properties of an (m, d)-system \mathcal{H}

- Closed under intersections.
- $|H| \not \equiv|N|(\bmod m)$ for all $H \in \mathcal{H}$.
- Any d elements are covered by a set in \mathcal{H}.

Proof plan to show that no $(p, p-1)$-system exists

Problem:

- $H \in \mathcal{H}$ can have different cardinalities $\bmod p$.

Lemma

If there exists a $(p, p-1)$-system, then there exists a $(p, 1)$-system such that

$$
|H| \equiv 0 \quad(\bmod p) \quad \forall H \in \mathcal{H}
$$

- Exploit inclusion-exclusion again for contradiction:

$$
|N|=\left|\bigcup_{H \in \mathcal{H}} H\right|=\sum_{\ell=1}^{|\mathcal{H}|}(-1)^{\ell+1} \sum_{\substack{H_{1}, \ldots, H_{\ell} \in \mathcal{H}, \forall i \neq j: H_{i} \neq H_{j}}}\left|\bigcap_{i=1}^{\ell} H_{i}\right| \equiv 0 \quad(\bmod p) .
$$

Step 1: Assume $(p, p-1)$-system \mathcal{H} with $|N| \equiv 0(\bmod p)$.

- $|H| \equiv \equiv 0(\bmod p)$ for all $H \in \mathcal{H}$.

Set system transformation

Step 1: Assume $(p, p-1)$-system \mathcal{H} with $|N| \equiv 0(\bmod p)$.

- $|H| \not \equiv 0(\bmod p)$ for all $H \in \mathcal{H}$.

Step 2: Transform sets to $(p-1)$-fold cartesian product

- Ground set cardinality: $|N|^{p-1} \equiv 0(\bmod p)$.
- Set cardinalities: $|H|^{p-1} \equiv 1(\bmod p)$.
(Fermat's Little Theorem)
- Obtain ($p, 1$)-system.

Example: 2-fold product for $p=3$

Set system transformation

Step 1: Assume $(p, p-1)$-system \mathcal{H} with $|N| \equiv 0(\bmod p)$.

- $|H| \equiv \equiv 0(\bmod p)$ for all $H \in \mathcal{H}$.

Step 2: Transform sets to ($p-1$)-fold cartesian product

- Ground set cardinality: $|N|^{p-1} \equiv 0(\bmod p)$.
- Set cardinalities: $\mid H^{\mid p-1} \equiv 1(\bmod p)$. (Fermat's Little Theorem)
- Obtain ($p, 1$)-system.

Step 3: Shift to obtain $|H| \equiv 0(\bmod p)$ for all $H \in \mathcal{H}$.

Example: 2 -fold product for $p=3$

- By adding $p-1$ elements.

Beyond primes

- Key ingredient: Set system transformation function F.
- Crucial properties:
- Cardinality transformation:

$$
|F(S)| \equiv \begin{cases}0(\bmod m) & \text { if }|S| \equiv 0(\bmod m), \\ 1(\bmod m) & \text { if }|S| \not \equiv 0(\bmod m) .\end{cases}
$$

- Preserving intersections:

$$
F(S) \cap F(T)=F(S \cap T)
$$

- Preserving coverage.
- Feasible functions:

$$
\text { polynomial: }|F(S)|=|S|^{k}, \quad \text { binomial: }|F(S)|=\binom{|S|}{k}, \quad \text { conic combinations thereof }
$$

- Function used for moduli m that are prime powers:

$$
|F(S)|=\sum_{\substack{1 \leq k<m, k \text { odd }}}\binom{|S|}{k}+(p-1) \cdot \sum_{\substack{1 \leq k<m, k \text { even }}}\binom{|S|}{k} .
$$

Conclusions

- Main results: Polynomial-time algorithms for

CCSM	
$\min f(S)$	
s.t. $\quad S \subseteq N$,	
$\|S\|$	$\equiv r(\bmod m)$.

and \quad| GCCSM |
| :---: |
| $\min f(S)$ |
| s.t. $S \subseteq N$, |
| $\left\|S \cap S_{i}\right\| \equiv r_{i}(\bmod m) \quad \forall i \in[k]$. |

for constant prime powers m and constant k.

Conclusions

- Main results: Polynomial-time algorithms for

CCSM	
$\min f(S)$	
s.t. $\quad S \subseteq N$,	
$\|S\|$	$\equiv r(\bmod m)$.

for constant prime powers m and constant k.

Extension to any $m=O(1)$?

Conclusions

- Main results: Polynomial-time algorithms for

CCSM	
$\min f(S)$	
s.t. $\quad S \subseteq N$,	
$\|S\| \equiv r(\bmod m)$.	and $\quad \min f(S)$
s.t. $S \subseteq N$,	
$\left\|S \cap S_{i}\right\| \equiv r_{i}(\bmod m) \forall i \in[k]$.	

for constant prime powers m and constant k.

$$
\text { Extension to any } m=O(1) ?
$$

- Barrier: (m,m-1)-systems do exist for composite m [Gopi 2017].

