Advances on Strictly Δ-Modular IPs

Martin Nägele* Christian Nöbel** Richard Santiago** Rico Zenklusen**
*University of Bonn \& HCM
**ETH Zürich

Integer Programming

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

An interesting class of efficiently solvable IPs
A totally unimodular (TU) $\quad \Longrightarrow \quad$ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by $1 ?$

Bounded subdeterminants

Δ-modular Integer Programming
Can IPs with Δ-modular constraint matrix
be solved efficiently for constant $\Delta \in \mathbb{Z}_{>0}$?

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$
$\rightarrow n \times n$ subdets bounded by Δ
- less general:
\rightarrow total Δ-modularity: bounds on all subdets
\rightarrow strict Δ-modularity: subdets in $\{0, \pm \Delta\}$ only

Bounded subdeterminants

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$
$\rightarrow n \times n$ subdets bounded by Δ
- less general:
\rightarrow total Δ-modularity: bounds on all subdets
\rightarrow strict Δ-modularity: subdets in $\{0, \pm \Delta\}$ only

Poly-time solvable special cases

$\checkmark \Delta=1$: Immediate
$\checkmark \Delta=2$: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]
\checkmark Totally Δ-modular IPs, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]
\checkmark Feasibility for strictly 3-modular IPs (randomized)

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$
$\rightarrow n \times n$ subdets bounded by Δ
- less general:
\rightarrow total Δ-modularity: bounds on all subdets
\rightarrow strict Δ-modularity: subdets in $\{0, \pm \Delta\}$ only

Poly-time solvable special cases

$\checkmark \Delta=1$: Immediate
$\checkmark \Delta=2$: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]
\checkmark Totally Δ-modular IPs, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]
\checkmark Feasibility for strictly 3-modular IPs (randomized)
[Nägele, Santiago, and Zenklusen, SODA 2022]

Our main result

Strongly polynomial randomized alg. for feasibility of strictly 4-modular IPs.

High-level view: BIP and strictly 3-modular feasibility

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence:

$$
\Delta=2
$$

or
A strictly Δ-modular for prime Δ

Base block problems

Interpretation as congruency-constrained cut and circulation problems

High-level view: BIP and strictly 3-modular feasibility

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence:

$$
\Delta=2
$$

or
A strictly Δ-modular for prime Δ

Base block problems

Interpretation as congruency-constrained cut and circulation problems

High-level view: BIP and strictly 3-modular feasibility

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence:

$$
\Delta=2
$$

or
A strictly Δ-modular for prime Δ

Base block problems

Interpretation as congruency-constrained cut and circulation problems

High-level view: BIP and strictly 3-modular feasibility

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence:

$$
\Delta=2
$$

or
A strictly Δ-modular for prime Δ

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility Cut baseblock:
optimization for prime power m
Circulation baseblock:
rand. alg. for unary enc. obj.
(ad hoc for $m=2$)

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Our Contributions

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Equivalence:

$$
\Delta=2
$$

or
A strictly Δ-modular for prime Δ

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Our Contributions

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n} \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility Cut baseblock:
optimization for prime power m
Circulation baseblock:
rand. alg. for unary enc. obj.
(ad hoc for $m=2$)

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Our Contributions

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Cut baseblock:
optimization for prime power m
Circulation baseblock:
rand. alg. for unary enc. obj. (ad hoc for $m=2$)

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Our Contributions

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Cut baseblock: feasibility obtimmer... forping -oower m

Circulation baseblock:
rand. alg. for unary enc. obj. (ad hoc for $m=2$)

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Δ-modular integer programming

$$
\begin{gathered}
\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\} \\
A \text { is } \Delta \text {-modular. }
\end{gathered}
$$

Equivalence:
$\Delta=2$
or
A strictly Δ-modular for $-\Delta^{*}$
*changing to multiple congruency constraints

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Cut baseblock: feasibility ODtimisan on - \& maver m

Circulation baseblock: rand. alg. for unary enc. obj. (ad hoc for $m=2$)

Base block problems

Interpretation as congruency-constrained cut and circulation problems

A hierarchy of congruency-constrained TU problems

increasing difficulty

A hierarchy of congruency-constrained TU problems

increasing difficulty

Old results

\checkmark Optimization for depth one
\checkmark Feasibility for depth two if m is prime

New result

\checkmark Feasibility for depth three and general m

\[

\]

Exploiting the hierarchy with Cauchy-Davenport

$$
x=\binom{x_{A}}{x_{B}}
$$

combined solution

Exploiting the hierarchy with Cauchy-Davenport

Exploiting the hierarchy with Cauchy-Davenport

$$
x=\binom{x_{A}}{x_{B}}
$$

combined solution

Exploiting the hierarchy with Cauchy-Davenport

Non-prime modulus

Non-prime modulus

Conclusions \& Open Questions

- Removed prime modulus requirement in propagation

More generally: Extension to arbitrary groups

- Barrier at depth four in hierarchy remains
- Removed prime modulus requirement in propagation

More generally: Extension to arbitrary groups

- Barrier at depth four in hierarchy remains
- Base blocks:

Randomization remains necessary for congruency-constrained circulations (even feasibility) equivalent problem: congruency-constrained bipartite red-blue matching

- Optimization:
completely open beyond depth 1
- Removed prime modulus requirement in propagation

More generally: Extension to arbitrary groups

- Barrier at depth four in hierarchy remains
- Base blocks:

Randomization remains necessary for congruency-constrained circulations (even feasibility) equivalent problem: congruency-constrained bipartite red-blue matching

- Optimization:
completely open beyond depth 1

