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The Minimum Bounded Degree Spanning Tree Problem
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Input:
» graph G = (V, E)
» cost vector ¢: E — Qg
» degree bounds d: V — Z~g

Output:
minimum cost spanning tree
satisfying the degree bounds
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Goemans’ Approximation Approach

IP-formulation:

min Lz
st. z(E[S]) < |S|—-1 VSCV, S#0
FE) =1V|-1
o ; S ‘0 | polytope Pppsr(G,d)
z(d(v)) < d(v) YveV
r € {0,1}F

Main idea: use matroid intersection

» graphic matroid M;
> “degree constraint matroid” Msy?

Iy, ={F CE||FN"(v)| < d(v) Y}
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How to get a proper orientation?

» solve LP-relaxation

¥ = argmin c¢'z

z€Pppsr(G,d)
> restrict to £* := supp z*
> sparsity:
|E*[U]| < 2|U|-3 YUCV

» partition into two forests

» orient towards leaves
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Improving the Algorithm

Conjecture

For any extreme point x* of Pppsr(G,d) with support E*, there
exists an orientation A* of E* such that

Z (l—m*(e))gl YveV.

e€d 44 (v)

> if true: get degree bound violation +1 using Ms with
Ly={FCE" | |[FN& (v)] < [z*(0F(v))] Yo eV}

» interpretation: orientation of spare z* =1 — z*
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» If there exists U C V with
Z*(E*[U])>|U|, or equivalently, =*(E*[U])<|E*[U]|—|U],

then it fails.
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Feasible Degree Bound Slacks

Definition

A number r € Q> is a feasible degree bound slack if there exists
an integral instance (G, d), an extreme point = € Pgpsr(G, d)
and a vertex v such that d(v) — z(d(v)) =r.

% is a feasible
degree bound slack
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