Minimum Bounded Degree Spanning Trees Refuting a Conjecture of M. X. Goemans

Stephen Chestnut Martin Nägele Rico Zenklusen

Institute for Operations Research

March 1, 2016

The Minimum Bounded Degree Spanning Tree Problem $(MBDST\ Problem)$

The Minimum Bounded Degree Spanning Tree Problem $(MBDST\ Problem)$

Input:

• graph G = (V, E)

The Minimum Bounded Degree Spanning Tree Problem $_{(MBDST\ Problem)}$

Input:

- ightharpoonup graph G = (V, E)
- ightharpoonup cost vector $c \colon E \to \mathbb{Q}_{>0}$

The Minimum Bounded Degree Spanning Tree Problem $(MBDST\ Problem)$

Input:

- ightharpoonup graph G = (V, E)
- $ightharpoonup \cot \mathbf{c} \colon E \to \mathbb{Q}_{>0}$
- ▶ degree bounds $d: V \to \mathbb{Z}_{>0}$

The Minimum Bounded Degree Spanning Tree Problem $(MBDST\ Problem)$

Input:

- ightharpoonup graph G = (V, E)
- $ightharpoonup \cot \mathbf{c} \colon E \to \mathbb{Q}_{>0}$
- ▶ degree bounds $d: V \to \mathbb{Z}_{>0}$

Output:

minimum cost spanning tree satisfying the degree bounds


```
\begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(E[S]) \ \leqslant \ |S|-1 \quad \forall S \subseteq V, \ S \neq \emptyset \\ x(E) \ = \ |V|-1 \\ x \ \geqslant \ 0 \\ x(\delta(v)) \ \leqslant \ d(v) \\ x \ \in \ \{0,1\}^E \end{array} \quad \forall v \in V
```

```
 \begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(E[S]) & \leqslant |S|-1 \quad \forall S \subseteq V, \ S \neq \emptyset \\ x(E) & = |V|-1 \\ x & \geqslant 0 \\ x(\delta(v)) & \leqslant d(v) \\ x & \in \{0,1\}^E \end{array} \right\} \begin{array}{ll} \text{spanning tree constraints,} \\ \text{polytope } P_{ST}(G) \\ \text{polytope } P_{ST}(G)
```

```
 \begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(E[S]) & \leqslant |S|-1 \quad \forall S \subseteq V, \ S \neq \emptyset \\ x(E) & = |V|-1 \\ x & \geqslant 0 \\ x(\delta(v)) & \leqslant d(v) \\ x & \in \{0,1\}^E \end{array} \right\} \begin{array}{ll} \text{spanning tree constraints,} \\ \text{polytope } P_{ST}(G) \\ \text{polytope } P_{ST}(G)
```



```
\min c^{T} x

s.t. x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset
x(E) = |V| - 1

x \geq 0

x(\delta(v)) \leq d(v)

x \in \{0, 1\}^{E}
spanning tree constraints, polytope <math>P_{ST}(G)
```



```
\min c^{T} x

s.t. x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset

x(E) = |V| - 1

x \geq 0

x(\delta(v)) \leq d(v)

x \in \{0, 1\}^{E}

spanning tree constraints, polytope P_{ST}(G)
```



```
\min c^{T}x
s.t. x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset
x(E) = |V| - 1
x \geq 0
x(\delta(v)) \leq d(v) \quad \forall v \in V
x \in \{0, 1\}^{E}
polytope P_{BDST}(G, d)
```


IP-formulation:

```
\min c^{T} x

s.t. x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset

x(E) = |V| - 1

x \geq 0

x(\delta(v)) \leq d(v) \qquad \forall v \in V

x \in \{0, 1\}^{E}

polytope P_{BDST}(G, d)
```

IP-formulation:

```
\min c^{T} x

s.t. x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset

x(E) = |V| - 1

x \geq 0

x(\delta(v)) \leq d(v) \qquad \forall v \in V

x \in \{0, 1\}^{E}

polytope P_{BDST}(G, d)
```

Main idea: use matroid intersection

ightharpoonup graphic matroid M_1

IP-formulation:

```
 \begin{aligned} & \min \ c^T x \\ & \text{s.t.} \ x(E[S]) \ \leqslant \ |S|-1 \quad \forall S \subseteq V, \ S \neq \emptyset \\ & x(E) \ = \ |V|-1 \\ & x \ \geqslant \ 0 \\ & x(\delta(v)) \ \leqslant \ d(v) \\ & x \ \in \ \{0,1\}^E \end{aligned} \right\} \text{polytope } P_{BDST}(G,d)
```

- ightharpoonup graphic matroid M_1
- "degree constraint matroid" M_2 ?

IP-formulation:

- ightharpoonup graphic matroid M_1
- "degree constraint matroid" M_2 ?

$$\mathcal{I}_2 = \{ F \subseteq E \mid |F \cap \delta(v)| \leqslant d(v) \ \forall v \}$$

IP-formulation:

$$\min c^{T} x$$
s.t. $x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset$

$$x(E) = |V| - 1$$

$$x \geq 0$$

$$x(\delta(v)) \leq d(v)$$

$$x \in \{0, 1\}^{E}$$
polytope $P_{BDST}(G, d)$

- graphic matroid M_1
- "degree constraint matroid" M_2 ?

$$\mathcal{I}_2 = \{ F \subseteq E \mid |F \cap \delta(v)| \leqslant d(v) \ \forall v \}$$

IP-formulation:

$$\min_{S.t.} c^{T}x$$
s.t. $x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset$

$$x(E) = |V| - 1$$

$$x \geq 0$$

$$x(\delta(v)) \leq d(v)$$

$$x \in \{0,1\}^{E}$$

$$polytope P_{BDST}(G, d)$$

- graphic matroid M_1
- "degree constraint matroid" M_2 ?

$$\mathcal{I}_2 = \{ F \subseteq E \mid |F \cap \delta(v)| \leqslant d(v) \ \forall v \}$$

IP-formulation:

$$\min_{S.t.} c^{T}x$$
s.t. $x(E[S]) \leq |S| - 1 \quad \forall S \subseteq V, S \neq \emptyset$

$$x(E) = |V| - 1$$

$$x \geq 0$$

$$x(\delta(v)) \leq d(v)$$

$$x \in \{0,1\}^{E}$$

$$polytope P_{BDST}(G, d)$$

- graphic matroid M_1
- "degree constraint matroid" M_2 ?

$$\mathcal{I}_2 = \{ F \subseteq E \mid |F \cap \delta^+(v)| \leqslant d(v) \ \forall v \}$$

How to get a proper orientation?

How to get a proper orientation?

▶ solve LP-relaxation

$$x^* = \operatorname*{arg\,min}_{x \in P_{BDST}(G,d)} c^{\top} x$$

How to get a proper orientation?

▶ solve LP-relaxation

$$x^* = \operatorname*{arg\,min}_{x \in P_{BDST}(G,d)} c^{\top} x$$

How to get a proper orientation?

▶ solve LP-relaxation

$$x^* = \operatorname*{arg\,min}_{x \in P_{BDST}(G,d)} c^{\top} x$$

• restrict to $E^* := \operatorname{supp} x^*$

How to get a proper orientation?

▶ solve LP-relaxation

$$x^* = \operatorname*{arg\,min}_{x \in P_{BDST}(G,d)} c^{\top} x$$

- ightharpoonup restrict to $E^* := \operatorname{supp} x^*$
- ► sparsity:

$$|E^*[U]|\leqslant 2|U|{-}3 \quad \forall U\,{\subseteq}\, V$$

How to get a proper orientation?

▶ solve LP-relaxation

$$x^* = \underset{x \in P_{BDST}(G,d)}{\arg\min} c^{\top} x$$

- ightharpoonup restrict to $E^* := \operatorname{supp} x^*$
- ► sparsity:

$$|E^*[U]| \leqslant 2|U|-3 \quad \forall U \subseteq V$$

partition into two forests

How to get a proper orientation?

▶ solve LP-relaxation

$$x^* = \underset{x \in P_{BDST}(G,d)}{\arg\min} c^{\top} x$$

- ightharpoonup restrict to $E^* := \operatorname{supp} x^*$
- ► sparsity:

$$|E^*[U]| \leqslant 2|U|-3 \quad \forall U \subseteq V$$

- partition into two forests
- orient towards leaves

Improving the Algorithm

Conjecture

For any extreme point x^* of $P_{BDST}(G, d)$ with support E^* , there exists an orientation A^* of E^* such that

$$\sum_{e \in \delta_{A*}^{-}(v)} \left(1 - x^{*}(e) \right) \leqslant 1 \qquad \forall v \in V.$$

Improving the Algorithm

Conjecture

For any extreme point x^* of $P_{BDST}(G, d)$ with support E^* , there exists an orientation A^* of E^* such that

$$\sum_{e \in \delta_{A^*}^-(v)} \left(1 - x^*(e) \right) \leqslant 1 \qquad \forall v \in V.$$

▶ if true: get degree bound violation +1 using M_2 with

$$\mathcal{I}_2 = \{ F \subseteq E^* \mid |F \cap \delta^+(v)| \leqslant \lceil x^*(\delta^+(v)) \rceil \ \forall v \in V \}$$

Improving the Algorithm

Conjecture

For any extreme point x^* of $P_{BDST}(G, d)$ with support E^* , there exists an orientation A^* of E^* such that

$$\sum_{e \in \delta_{A^*}^-(v)} \left(1 - x^*(e) \right) \leqslant 1 \qquad \forall v \in V.$$

▶ if true: get degree bound violation +1 using M_2 with

$$\mathcal{I}_2 = \{ F \subseteq E^* \mid |F \cap \delta^+(v)| \leqslant \lceil x^*(\delta^+(v)) \rceil \ \forall v \in V \}$$

▶ interpretation: orientation of spare $z^* := 1 - x^*$

- ightharpoonup extreme point x^*
- ightharpoonup restriction to E^*
- ▶ spare $z^* = 1 x^*$
- ightharpoonup orientation A^* such that

$$\sum_{e \in \delta_{A*}^-(v)} z^*(e) \leqslant 1$$

- ightharpoonup extreme point x^*
- ightharpoonup restriction to E^*
- ▶ spare $z^* = 1 x^*$
- ightharpoonup orientation A^* such that

$$\sum_{e \in \delta_{A^*}^-(v)} z^*(e) \leqslant 1$$

- \triangleright extreme point x^*
- ightharpoonup restriction to E^*
- spare $z^* = 1 x^*$
- \triangleright orientation A^* such that

$$\sum_{e \in \delta_{A*}^-(v)} z^*(e) \leqslant 1$$

- ightharpoonup extreme point x^*
- ightharpoonup restriction to E^*
- ▶ spare $z^* = 1 x^*$
- \triangleright orientation A^* such that

$$\sum_{e \in \delta_{A^*}^-(v)} z^*(e) \leqslant 1$$

Spare Orientation: How can it fail?

Spare Orientation: How can it fail?

▶ If there exists $U \subseteq V$ with

 $z^*(E^*[U]) > |U|$, or equivalently, $x^*(E^*[U]) < |E^*[U]| - |U|$, then it fails.

Spare Orientation: How can it fail?

▶ If there exists $U \subseteq V$ with

 $z^*(E^*[U]) > |U|, \ \text{ or equivalently, } \ x^*(E^*[U]) < |E^*[U]| - |U|,$ then it fails.

Constructing a Counterexample

Constructing a Counterexample

▶ non-integral degree bounds

Constructing a Counterexample

▶ non-integral degree bounds

Checking Feasibility in $P_{BDST}(G, d)$

Checking Feasibility in $P_{BDST}(G, d)$

decomposition as convex combination of spanning trees

Checking Feasibility in $P_{BDST}(G, d)$

▶ decomposition as convex combination of spanning trees

How to Impose Fractional Degree Bounds?

Definition

A number $r \in \mathbb{Q}_{\geq 0}$ is a feasible degree bound slack if there exists an integral instance (G, d), an extreme point $x \in P_{BDST}(G, d)$ and a vertex v such that $d(v) - x(\delta(v)) = r$.

Definition

A number $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack if there exists an integral instance (G,d), an extreme point $x \in P_{BDST}(G,d)$ and a vertex v such that $d(v) - x(\delta(v)) = r$.

Definition

A number $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack if there exists an integral instance (G,d), an extreme point $x \in P_{BDST}(G,d)$ and a vertex v such that $d(v) - x(\delta(v)) = r$.

Definition

A number $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack if there exists an integral instance (G,d), an extreme point $x \in P_{BDST}(G,d)$ and a vertex v such that $d(v) - x(\delta(v)) = r$.

Theorem

Every $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack.

Theorem

Every $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack.

Lemma 1

For $q \geqslant 2$, $\frac{q-1}{q}$ is feasible.

Theorem

Every $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack.

Lemma 1

For $q \geqslant 2$, $\frac{q-1}{q}$ is feasible.

Lemma 2

If r is feasible, then so is k r for all $k \in \mathbb{Z}$.

Theorem

Every $r \in \mathbb{Q}_{\geqslant 0}$ is a feasible degree bound slack.

Lemma 1

For $q\geqslant 2$, $\frac{q-1}{q}$ is feasible.

Lemma 2

If r is feasible, then so is k r for all $k \in \mathbb{Z}$.

