
1 / 19

Congruency-Constrained Optimization
— at the interface of Integer Programming & Combinatorial Optimization —

Martin Nägele

Research Institute for Discrete Mathematics & HCM

University of Bonn

Based on joint past and ongoing work with
Ch. Nöbel, R. Santiago, B. Sudakov, and R. Zenklusen.

2 / 19

Motivation & Background

bounded subdeterminant IPs — successes
in the bimodular case — new results

3 / 19

Towards general classes of efficiently solvable IPs

c

Integer Linear Programming (IP)

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Zn, solve

min{c>x : Ax 6 b, x ∈ Zn} .

An interesting class of efficiently solvable IPs

A totally unimodular (TU) =⇒ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?

3 / 19

Towards general classes of efficiently solvable IPs

c

Integer Linear Programming (IP)

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Zn, solve

min{c>x : Ax 6 b, x ∈ Zn} .

An interesting class of efficiently solvable IPs

A totally unimodular (TU) =⇒ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?

3 / 19

Towards general classes of efficiently solvable IPs

c

Integer Linear Programming (IP)

Given A ∈ Zm×n, b ∈ Zm, and c ∈ Zn, solve

min{c>x : Ax 6 b, x ∈ Zn} .

An interesting class of efficiently solvable IPs

A totally unimodular (TU) =⇒ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?

4 / 19

Bounded subdeterminants

∆-modular Integer Programming

Given a constant ∆ ∈ Z>0, can integer linear programs

min{c>x : Ax ≤ b, x ∈ Zn}
with ∆-modular constraint matrix A be solved efficiently?

I A ∈ Zm×n is ∆-modular if

→ rank(A) = n, and
→ absolute values of n × n subdeterminants are

bounded by ∆

I ∆-modularity is more general than total ∆-modularity

Known results

3 ∆ = 1: easy

3 ∆ = 2: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]

3 Arbitrary constant ∆, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

4 / 19

Bounded subdeterminants

∆-modular Integer Programming

Given a constant ∆ ∈ Z>0, can integer linear programs

min{c>x : Ax ≤ b, x ∈ Zn}
with ∆-modular constraint matrix A be solved efficiently?

I A ∈ Zm×n is ∆-modular if

→ rank(A) = n, and
→ absolute values of n × n subdeterminants are

bounded by ∆

I ∆-modularity is more general than total ∆-modularity

Known results

3 ∆ = 1: easy

3 ∆ = 2: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]

3 Arbitrary constant ∆, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

5 / 19

The approach to BIP

Theorem

BIP can be solved in strongly polynomial time.

[Artmann, Weismantel, and Zenklusen, STOC 2017]

x1

x2

v

Bimodular Integer Program (BIP)

min{c>x : Ax 6 b, x ∈ Zn}
A bimodular.

y1

y2

Conic Parity TU Problem (CPTU)

min{c̃>y : Ty 6 0, y ∈ Zn, y(S) odd}
T totally unimodular, S ⊆ [n].

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems.

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

Bimodular Integer Program (BIP)

min{c>x : Ax 6 b, x ∈ Zn}
A bimodular.

y1

y2

Conic Parity TU Problem (CPTU)

min{c̃>y : Ty 6 0, y ∈ Zn, y(S) odd}
T totally unimodular, S ⊆ [n].

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Conic Parity TU Problem (CPTU)

min{c̃>y : Ty 6 0, y ∈ Zn, y(S) odd}
T totally unimodular, S ⊆ [n].

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X

?
Equivalence:

strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction gets much more
involved!

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!

Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction gets much more
involved!

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as congruency-con-
strained cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!
Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction gets much more
involved!

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as congruency-con-
strained cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

6 / 19

Challenge: Generalize!
Corollary

Strongly polynomial randomized algorithm for
checking feasibility of strictly 3-modular IPs.

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction gets much more
involved!

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as congruency-con-
strained cut and circulation problems

X
?

Equivalence:
strictly ∆-modular IP
(subdets in {0,±∆})

if ∆ prime

Structural results:
→ proximity
→ flatness or feasibility

[NSaZ, SODA 2022]

Generalization: m = 3, feasibility
→ hierarchy of problems
→ powerful tools, e.g., Cauchy-Davenport

[NSaZ, SODA 2022]

Cut baseblock:
→ optim. for prime power m

[NSuZ, SODA 2018]

→ feasibility for general m
[NNSaZ, 2022+]

Circulation baseblock:
→ rand. alg. for unary enc. obj.

[NSaZ, SODA 2022]

7 / 19

Base Block Problems

Seymour’s decomposition — network
matrices — the two cases

8 / 19

Seymour’s decomposition

Theorem: Seymour’s decomposition [Seymour, 1980]

For every TU matrix T ∈ Zk×n, one of the following applies:

(i) T is, possibly after row/column permutations and a pivot,
of the form (

A ef>

gh> B

)
,

where
(A e e

h> 0 1

)
and

(
B g g

f> 0 1

)
are TU.

(ii) T is essentially equal to one of(1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

)
and

(
1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

)
.

(iii) T or T> is a network matrix.

T

+

A

+

T3

+

T1 T2

T4

B

pivot

T8

+

T6 T7

9 / 19

Network matrices

Tree T = (V ,E), extra arcs A.

e1

e2

e3

e4

e5

e6

a1

a2

a3

1 0 0

0 0 −1

0 1 0

1 1 1

−1 0 0

0 1 0

9 / 19

Network matrices

Tree T = (V ,E), extra arcs A.

e1

e2

e3

e4

e5

e6

a1

a2

a3

a1 a2 a3

e1 1 0 0

e2 0 0 −1

e3 0 1 0

e4 1 1 1

e5 −1 0 0

e6 0 1 0

9 / 19

Network matrices

Tree T = (V ,E), extra arcs A.

e1

e2

e3

e4

e5

e6

a1

a2

a3

a1 a2 a3

e1 1 0 0

e2 0 0 −1

e3 0 1 0

e4 1 1 1

e5 −1 0 0

e6 0 1 0

9 / 19

Network matrices

Tree T = (V ,E), extra arcs A.

e1

e2

e3

e4

e5

e6

a1

a2

a3

a1 a2 a3

e1 1 0 0

e2 0 0 −1

e3 0 1 0

e4 1 1 1

e5 −1 0 0

e6 0 1 0

9 / 19

Network matrices

Tree T = (V ,E), extra arcs A.

e1

e2

e3

e4

e5

e6

a1

a2

a3

a1 a2 a3

e1 1 0 0

e2 0 0 −1

e3 0 1 0

e4 1 1 1

e5 −1 0 0

e6 0 1 0

10 / 19

CCTU with transposed network matrices

“the cut baseblock”

11 / 19

CCTU with transposed network constraint matrices

CCTU with transp. netw. matrix

min{c̃>y : Ty 6 b, γ>y ≡ r (mod m)}
with transposed network matrix T

Congruency-constrained min (di-)cut

min
C(V
{|δ+(C)| : δ−(C) = ∅, γ(C) ≡ r (mod m)}
on digraph G = (V ,A) with γ : V → Z.

1

3

4

3

2

1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1γ(C) ≡ 1 (mod 3)

12 / 19

Prime power moduli

Theorem

Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

[NSuZ, SODA 2018]

Algorithm

I Guess m−1 elements in- and outside OPT

I Solve corresp. unconstrained min cut problem

I Return best cong-constraint feasible solution

1

3

4

3

2

1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1γ(C) ≡ 1 (mod 3)

12 / 19

Prime power moduli

Theorem

Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

[NSuZ, SODA 2018]

Algorithm

I Guess m−1 elements in- and outside OPT

I Solve corresp. unconstrained min cut problem

I Return best cong-constraint feasible solution

1

3

4

3

2

1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

X
X

γ(C) 6≡ 1 (mod 3)

12 / 19

Prime power moduli

Theorem

Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

[NSuZ, SODA 2018]

Algorithm

I Guess m−1 elements in- and outside OPT

I Solve corresp. unconstrained min cut problem

I Return best cong-constraint feasible solution

1

3

4

3

2

1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

X

Xγ(C) ≡ 1 (mod 3)

12 / 19

Prime power moduli

Theorem

Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

[NSuZ, SODA 2018]

Algorithm

I Guess m−1 elements in- and outside OPT

I Solve corresp. unconstrained min cut problem

I Return best cong-constraint feasible solution

1

3

4

3

2

1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

X

X
γ(C) ≡ 1 (mod 3)

12 / 19

Prime power moduli

Theorem

Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

[NSuZ, SODA 2018]

Algorithm

I Guess m−1 elements in- and outside OPT

I Solve corresp. unconstrained min cut problem

I Return best cong-constraint feasible solution

1

3

4

3

2

1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

X

X
γ(C) ≡ 1 (mod 3)

Proof idea:

I Failing guesses give structured set system.

I Such systems cannot exist for prime power m.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice L

∈ L

γ(X) ≡ 2
(mod 3)

/∈ L

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice L

∈ L

γ(X) ≡ 2
(mod 3)

/∈ L

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice Lγ(X) ≡ 2
(mod 3)

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice Lγ(X) ≡ 2
(mod 3)

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice Lγ(X) ≡ 2
(mod 3)

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice Lγ(X) ≡ 2
(mod 3)

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

13 / 19

The feasibility problem

Congruency-constrained lattice feasibility

In G = (V ,A) with γ : V → Z, find

C (V : δ−(C) = ∅, γ(C) ≡ r (mod m).

Theorem

Congruency-constr. lattice feasibility can
be decided in poly time for constant m.

[NNSaZ, 2022+]

1

4

0

2

1

3

1

2

5

2

1

2

5

1

1
1

3

2

1

3

0
0

2

1

lattice Lγ(X) ≡ 2
(mod 3)

minimal elements CX

Among any ≥ m numbers, there is a
subset with sum ≡ 0 (mod m).

There is a feasible X ∈ L with
|CX | ≤ m − 1.

14 / 19

CCTU with network matrices

“the circulation baseblock”

15 / 19

CCTU with network constraint matrices: Circulations

CCTU with transp. netw. matrix

min{c̃>y : Ty 6 b, γ>y ≡ r (mod m)}
with network matrix T

Congruency-constrained circulation

In digraph G = (V ,A), find shortest circulation
C ⊆ A with |C| ≡ r (mod m).

|C| ≡ 2 (mod 3)

15 / 19

CCTU with network constraint matrices: Circulations

CCTU with transp. netw. matrix

min{c̃>y : Ty 6 b, γ>y ≡ r (mod m)}
with network matrix T

Congruency-constrained circulation

In digraph G = (V ,A), find shortest circulation
C ⊆ A with |C| ≡ r (mod m).

|C| ≡ 2 (mod 3)

16 / 19

Circulations vs. cycles

Finding congruency-constrained cycles is hard for m > 2!

I Reduction to arc-disjoint paths:

s2

s1 t1

t2

|C| ≡ 2 (mod 3) ⇐⇒ paths exist

16 / 19

Circulations vs. cycles

Finding congruency-constrained cycles is hard for m > 2!

I Reduction to arc-disjoint paths:

s2

s1 t1

t2

|C| ≡ 2 (mod 3) ⇐⇒ paths exist

16 / 19

Circulations vs. cycles

Finding congruency-constrained cycles is hard for m > 2!

I Reduction to arc-disjoint paths:

s2

s1 t1

t2

|C| ≡ 2 (mod 3) ⇐⇒ paths exist

16 / 19

Circulations vs. cycles

Finding congruency-constrained cycles is hard for m > 2!

I Reduction to arc-disjoint paths:

s2

s1 t1

t2

|C| ≡ 2 (mod 3) ⇐⇒ paths exist

17 / 19

A reduction

Theorem

∃ strongly poly. randomized alg. for congruency-constrained cir-
culations with unary encoded edge lengths and constant m.

I Our approach:

Cong.-constrained
circulations

Cong.-constrained
perfect matchings

Exact-cost
perfect matchings

Polynomial identity
testing

integrating residues into objective

via determinants/
pfaffian polynomials

[Camerini, Galbiati, Maffioli, 1992]

Congruency-constrained
red/blue matching

17 / 19

A reduction

Theorem

∃ strongly poly. randomized alg. for congruency-constrained cir-
culations with unary encoded edge lengths and constant m.

I Our approach:

Cong.-constrained
circulations

Cong.-constrained
perfect matchings

Exact-cost
perfect matchings

Polynomial identity
testing

integrating residues into objective

via determinants/
pfaffian polynomials

[Camerini, Galbiati, Maffioli, 1992]

Congruency-constrained
red/blue matching

18 / 19

Open questions

19 / 19

Open questions

x1

x2

v

∆-modular integer programming

min{c>x : Ax 6 b, x ∈ Zn}
A is ∆-modular.

y1

y2

Congruency-Constr. TU Prb. (CCTU)

min

{
c̃>y :

Ty 6 b, y ∈ Zn,
γ>y ≡ r (mod m)

}
T totally unimodular, modulus m.

T

+
3

T1

+
2

T3

+
1

T6 T7

T4

T2

pivot

T5

+
3

T8 T9

Seymour’s TU decomposition

Reduction to
base block problems.

1

3

5

3

2
1

7

6

31
4

4
.6

4.2

1.8
.8

3

1.5

2

6

2
2.3

.5

6.1

1.9

4
4.3

6.2

1

Base block problems

Interpretation as parity-constrained
cut and circulation problems.

?
• What problem should we reduce to?

• How to deal with several differing subdets?

Structural results?

• Optimization?

• General m?

• Beyond m = pα for
cut optimization?

• Deterministic approach
for circulations?

Do we need to go through
Seymour’s decomposition?

