Congruency-Constrained Optimization

— at the interface of Integer Programming \& Combinatorial Optimization -

Martin Nägele
Research Institute for Discrete Mathematics \& HCM
University of Bonn

Motivation \& Background

bounded subdeterminant IPs - successes
in the bimodular case - new results

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

An interesting class of efficiently solvable IPs
A totally unimodular (TU) $\quad \Longrightarrow \quad$ Integral relaxation.

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

An interesting class of efficiently solvable IPs
A totally unimodular (TU) $\quad \Longrightarrow \quad$ Integral relaxation.

What if minors, in absolute value, are still bounded, but not by $1 ?$

Bounded subdeterminants

\square

Δ-modular Integer Programming

Given a constant $\Delta \in \mathbb{Z}_{>0}$, can integer linear programs
$\min \left\{c^{\top} x: A x \leq b, x \in \mathbb{Z}^{n}\right\}$
with Δ-modular constraint matrix A be solved efficiently?

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$, and
\rightarrow absolute values of $n \times n$ subdeterminants are bounded by Δ
- Δ-modularity is more general than total Δ-modularity

Δ-modular Integer Programming

Given a constant $\Delta \in \mathbb{Z}_{>0}$, can integer linear programs

$$
\min \left\{c^{\top} x: A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$

with Δ-modular constraint matrix A be solved efficiently?

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$, and
\rightarrow absolute values of $n \times n$ subdeterminants are bounded by Δ
- Δ-modularity is more general than total Δ-modularity

Known results
$\checkmark \Delta=1$: easy
$\checkmark \Delta=2$: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]
\checkmark Arbitrary constant Δ, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

Challenge: Generalize!

Bimodular Integer Program (BIP)
$\min \left\{c^{\top} x: \Delta x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A bimodular.

Base block problems
Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Seymour's TU decomposition
Reduction to
base block problems.

Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming
$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Seymour's TU decomposition
Reduction to
base block problems

Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\begin{array}{cc}\tilde{c}^{\top} y: & \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\end{array}\right\}$ T totally unimodular, modulus m.

Reduction to
base block problems

Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Congruency-Constr. TU Prb. (CCTU) $\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$ T totally unimodular, modulus m.

Equivalence:
strictly Δ-modular IP (subdets in $\{0, \pm \Delta\}$) if Δ prime

Reduction to
base block problems

Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence:
strictly Δ-modular IP (subdets in $\{0, \pm \Delta\}$) if Δ prime

Congruency-Constr. TU Prb. (CCTU) $\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$ T totally unimodular, modulus m.

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Seymour's TU decomposition
Reduction to
base block problems.

Interpretation as parity-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence: strictly Δ-modular IP (subdets in $\{0, \pm \Delta\}$) if Δ prime

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n}, \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Generalization: $m=3$, feasibility
\rightarrow hierarchy of problems
Interpretation as parity-constrained cut and circulation problems
\rightarrow powerful tools, e.g., Cauchy-Davenport

Challenge: Generalize!

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence: strictly Δ-modular IP (subdets in $\{0, \pm \Delta\}$) if Δ prime

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Cut baseblock:
\rightarrow optim. for prime power m
[NSuZ, SODA 2018]
\rightarrow feasibility for general m
[NNSaZ, 2022+] Circulation baseblock:
\rightarrow rand. alg. for unary enc. obj.
[NSaZ, SODA 2022

Base block problems
Generalization: $m=3$, feasibility
\rightarrow hierarchy of problems
Interpretation as congruency-constrained cut and circulation problems
\rightarrow powerful tools, e.g., Cauchy-Davenport

Challenge: Generalize!

Δ-modular integer programming $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ A is Δ-modular.

Equivalence: strictly Δ-modular IP (subdets in $\{0, \pm \Delta\}$) if Δ prime

Structural results:
\rightarrow proximity
\rightarrow flatness or feasibility

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{c}^{\top} y: \begin{array}{c}T y \leqslant b, y \in \mathbb{Z}^{n} \\ \\ \gamma^{\top} y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Corollary

Strongly polynomial randomized algorithm for checking feasibility of strictly 3-modular IPs.

Cut baseblock:

\rightarrow optim. for prime power m
[NSuZ, SODA 2018]
\rightarrow feasibility for general m
[NNSaZ, 2022+ Circulation baseblock:
\rightarrow rand. alg. for unary enc. obj. [NSaZ, SODA 2022

Base block problems
Generalization: $m=3$, feasibility
\rightarrow hierarchy of problems
\rightarrow powerful tools, e.g., Cauchy-Davenport

Interpretation as congruency-constrained cut and circulation problems

Challenge: Generalize!

Δ-modular integer programming
$\min \left\{c \quad x: A x \leqslant b x \in \mathbb{Z}^{n}\right\}$
A is Δ-modular.

Equivalence: strictly Δ-modular IP (subdets in $\{0, \pm \Delta\}$) if Δ prime

Congruency-Constr. TU Prb. (CCTU)
$\min \left\{\tilde{C}^{-} y: \quad \begin{array}{l}T_{y}<b, y \in \mathbb{Z}^{n} \\ \gamma^{T} \\ y \equiv r(\bmod m)\end{array}\right\}$
T totally unimodular, modulus m.

Corollary

Strongly polynomial randomized algorithm for checking feasibility of strictly 3-modular IPs.

Cut baseblock:
\rightarrow optim. for prime power m
[NSuZ, SODA 2018]
$\rightarrow \rightarrow$ feasibility for general m
[NNSaZ, 2022+
Circulation baseblock:
\rightarrow rand. alg. for unary enc. obj.

Base block problems
Interpretation as congruency-constrained cut and circulation problems

Base Block Problems

Seymour's decomposition - network matrices - the two cases

For every TU matrix $T \in \mathbb{Z}^{k \times n}$, one of the following applies:
(i) T is, possibly after row/column permutations and a pivot, of the form

$$
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)
$$

where $\left(\begin{array}{ccc}A & e & e \\ h^{\top} & 0 & 1\end{array}\right)$ and $\left(\begin{array}{ccc}B & g & g \\ f^{\top} & 0 & 1\end{array}\right)$ are TU.
(ii) T is essentially equal to one of

$$
\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & -1 \\
-1 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & -1 \\
-1 & 0 & 0 & -1 & 1
\end{array}\right) \text { and }\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right) \text {. }
$$

(iii) T or T^{\top} is a network matrix.

Network matrices

$$
\left\{\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
-1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right\}
$$

Network matrices

e_{1}
e_{2}
e_{3}
e_{4}
e_{5}
$e_{6}$$\left\{\begin{array}{rrr}a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\}$

Tree $T=(V, E)$, extra arcs A.

e_{1}
e_{2}
e_{3}
e_{4}
e_{5}
$e_{6}$$\left\{\begin{array}{rrr}a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\}$

Tree $T=(V, E)$, extra arcs A.

Network matrices

e_{1}
e_{2}
e_{3}
e_{4}
e_{5}
$e_{6}$$\left\{\begin{array}{rrr}a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\}$

Tree $T=(V, E)$, extra arcs A.

e_{1}
e_{2}
e_{3}
e_{4}
e_{5}
$e_{6}$$\left\{\begin{array}{rrr}a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right\}$

Tree $T=(V, E)$, extra arcs A.

CCTU with transposed network matrices

"the cut baseblock"

| CCTU with transp. netw. matrix |
| :---: | :---: |
| $\min \left\{\tilde{c}^{\top} y: T y \leqslant b, \gamma^{\top} y \equiv r(\bmod m)\right\}$
 with transposed network matrix T |\rightarrow| Congruency-constrained min (di-)cut |
| :---: |
| $\min _{C \subseteq V}\left\{\left\|\delta^{+}(C)\right\|: \delta^{-}(C)=\emptyset, \gamma(C) \equiv r(\bmod m)\right\}$
 on digraph $G=(V, A)$ with $\gamma: V \rightarrow \mathbb{Z}$. |

Algorithm

Theorem

Congruency-constrained min-cut is polytime solvable for constant prime power m.

- Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution

Algorithm

Theorem

Congruency-constrained min-cut is polytime solvable for constant prime power m.
\checkmark Guess $m-1$ elements in- and outside OPT

- Solve corresp. unconstrained min cut problem

Return best cong-constraint feasible solution

Algorithm

Theorem

Congruency-constrained min-cut is polytime solvable for constant prime power m.

- Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem

Return best cong-constraint feasible solution

$$
\gamma(C) \equiv 1(\bmod 3)
$$

Algorithm

Theorem

Congruency-constrained min-cut is polytime solvable for constant prime power m.

- Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution

Algorithm

Theorem

Congruency-constrained min-cut is polytime solvable for constant prime power m.
\checkmark Guess $m-1$ elements in- and outside OPT

- Solve corresp. unconstrained min cut problem

Return best cong-constraint feasible solution

Proof idea:

- Failing guesses give structured set system.
- Such systems cannot exist for prime power m.

Congruency-constrained lattice feasibility
In $G=(V, A)$ with $\gamma: V \rightarrow \mathbb{Z}$, find
$C \subsetneq V: \delta^{-}(C)=\emptyset, \gamma(C) \equiv r(\bmod m)$.

Theorem

Congruency-constr. lattice feasibility can be decided in poly time for constant m.

CCTU with network matrices

"the circulation baseblock"

Circulations vs. cycles

Finding congruency-constrained cycles is hard for $m>2$!

Finding congruency-constrained cycles is hard for $m>2$!

- Reduction to arc-disjoint paths:

Finding congruency-constrained cycles is hard for $m>2$!

- Reduction to arc-disjoint paths:

Finding congruency-constrained cycles is hard for $m>2$!

- Reduction to arc-disjoint paths:

Theorem
\exists strongly poly. randomized alg. for congruency-constrained circulations with unary encoded edge lengths and constant m.

- Our approach:

Theorem

\exists strongly poly. randomized alg. for congruency-constrained circulations with unary encoded edge lengths and constant m.

- Our approach:

Open questions

Open questions

Do we need to go through Seymour's decomposition?

Δ-modular integer programming

$$
\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}
$$

- Beyond $m=p^{\alpha}$ for cut optimization?
- Deterministic approach for circulations?

$$
A \text { is } \Delta \text {-modular. }
$$

Congruency-Constr. TU Prb. (CCTU)

