# **Congruency-Constrained Optimization**

- at the interface of Integer Programming & Combinatorial Optimization -

Martin Nägele

Research Institute for Discrete Mathematics & HCM

University of Bonn

Based on joint past and ongoing work with Ch. Nöbel, R. Santiago, B. Sudakov, and R. Zenklusen.





# Motivation & Background

bounded subdeterminant IPs — successes in the bimodular case — new results

## Towards general classes of efficiently solvable IPs



### Integer Linear Programming (IP)

Given  $A \in \mathbb{Z}^{m \times n}$ ,  $b \in \mathbb{Z}^m$ , and  $c \in \mathbb{Z}^n$ , solve  $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$ .

## Towards general classes of efficiently solvable IPs



| Integer | Linear F | Programming | (IP) |
|---------|----------|-------------|------|
|---------|----------|-------------|------|

Given  $A \in \mathbb{Z}^{m \times n}$ ,  $b \in \mathbb{Z}^m$ , and  $c \in \mathbb{Z}^n$ , solve  $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$ .

An interesting class of efficiently solvable IPs

A totally unimodular (TU)  $\implies$ 

 $\Rightarrow$  Integral relaxation.

## Towards general classes of efficiently solvable IPs



An interesting class of efficiently solvable IPs

Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?

### $\Delta$ -modular Integer Programming

Given a constant  $\Delta \in \mathbb{Z}_{>0}$ , can integer linear programs  $\min\{c^\top x \colon Ax \le b, x \in \mathbb{Z}^n\}$ 

with  $\Delta$ -modular constraint matrix *A* be solved efficiently?

- $A \in \mathbb{Z}^{m \times n}$  is  $\Delta$ -modular if
  - $\rightarrow$  rank(A) = n, and
  - $\rightarrow~$  absolute values of  $n\times n$  subdeterminants are bounded by  $\Delta$
- $\Delta$ -modularity is more general than *total*  $\Delta$ -modularity

### $\Delta$ -modular Integer Programming

Given a constant  $\Delta \in \mathbb{Z}_{>0},$  can integer linear programs

 $\min\{c^{\top}x\colon Ax\leq b,\ x\in\mathbb{Z}^n\}$ 

with  $\Delta$ -modular constraint matrix *A* be solved efficiently?

- $A \in \mathbb{Z}^{m \times n}$  is  $\Delta$ -modular if
  - $\rightarrow$  rank(A) = n, and
  - ightarrow absolute values of  $n \times n$  subdeterminants are bounded by  $\Delta$
- $\Delta$ -modularity is more general than *total*  $\Delta$ -modularity

### **Known results**

- $\checkmark \Delta = 1: easy$
- ✓  $\Delta = 2$ : Bimodular Integer Programming (BIP)

[Artmann, Weismantel, and Zenklusen, STOC 2017]

✓ Arbitrary constant  $\Delta$ , at most 2 non-zeros per row

[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

# The approach to BIP



#### **Base block problems**



Reduction to base block problems.



#### **Base block problems**



Reduction to base block problems.



#### **Base block problems**



Base block problems.



#### **Base block problems**



Reduction to base block problems.



#### **Base block problems**



#### Base block problems



if  $\Delta$  prime

if  $\Delta$  prime









Corollary



# **Base Block Problems**

Seymour's decomposition — network matrices — the two cases

# Seymour's decomposition

### Theorem: Seymour's decomposition

[Seymour, 1980

For every TU matrix  $T \in \mathbb{Z}^{k \times n}$ , one of the following applies:

(i) *T* is, possibly after row/column permutations and a pivot, of the form

$$\begin{pmatrix} A & ef'\\ gh^\top & B \end{pmatrix}$$

where 
$$\begin{pmatrix} A & e & e \\ h^{\top} & 0 & 1 \end{pmatrix}$$
 and  $\begin{pmatrix} B & g & g \\ f^{\top} & 0 & 1 \end{pmatrix}$  are TU.

(ii) T is essentially equal to one of

$$\begin{pmatrix} 1 & -1 & 0 & 0 & -1 \\ -1 & 1 & -1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & -1 \\ -1 & 0 & 0 & -1 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix} \ .$$

(iii) T or  $T^{\top}$  is a network matrix.





| ſ | <b>1</b> | 0 | 0  |   |
|---|----------|---|----|---|
|   | 0        | 0 | -1 |   |
| J | 0        | 1 | 0  |   |
| ١ | 1        | 1 | 1  | ſ |
|   | -1       | 0 | 0  |   |
| l | 0        | 1 | 0  | J |



Tree T = (V, E), extra arcs **A**.

|                       | $a_1$ | $a_2$ | $a_3$ |   |
|-----------------------|-------|-------|-------|---|
| <i>e</i> <sub>1</sub> | 1     | 0     | 0     | ١ |
| <b>e</b> <sub>2</sub> | 0     | 0     | -1    |   |
| <i>e</i> <sub>3</sub> | 0     | 1     | 0     |   |
| $e_4$                 | 1     | 1     | 1     | ſ |
| <b>e</b> 5            | -1    | 0     | 0     |   |
| $e_6$                 | 0     | 1     | 0     | J |



|                       | $a_1$ | $a_2$ | <b>a</b> 3 |   |
|-----------------------|-------|-------|------------|---|
| <i>e</i> <sub>1</sub> | 1     | 0     | 0          | ١ |
| <i>e</i> <sub>2</sub> | 0     | 0     | -1         |   |
| <i>e</i> <sub>3</sub> | 0     | 1     | 0          | l |
| <i>e</i> <sub>4</sub> | 1     | 1     | 1          | ſ |
| <b>e</b> 5            | -1    | 0     | 0          |   |
| $e_6$                 | 0     | 1     | 0          | J |

Tree T = (V, E), extra arcs **A**.



Tree T = (V, E), extra arcs A.

|                       | <i>a</i> 1 | $a_2$ | $a_3$ |   |
|-----------------------|------------|-------|-------|---|
| $e_1$                 | 1          | 0     | 0     | ) |
| <b>e</b> <sub>2</sub> | 0          | 0     | -1    |   |
| <b>e</b> <sub>3</sub> | 0          | 1     | 0     |   |
| $e_4$                 | 1          | 1     | 1     | ſ |
| <b>e</b> 5            | -1         | 0     | 0     |   |
| <i>e</i> <sub>6</sub> | 0          | 1     | 0     | J |



|                       | $a_1$ | $a_2$ | $a_3$ |   |
|-----------------------|-------|-------|-------|---|
| <i>e</i> <sub>1</sub> | 1     | 0     | 0     | ١ |
| <i>e</i> <sub>2</sub> | 0     | 0     | -1    |   |
| <i>e</i> <sub>3</sub> | 0     | 1     | 0     | l |
| $e_4$                 | 1     | 1     | 1     | ſ |
| <b>e</b> 5            | -1    | 0     | 0     |   |
| <i>e</i> <sub>6</sub> | 0     | 1     | 0     | J |

Tree T = (V, E), extra arcs **A**.

# CCTU with transposed network matrices

"the cut baseblock"

# CCTU with transposed network constraint matrices

CCTU with transp. netw. matrixCongruency-constrained min (di-)cut
$$\min\{\tilde{c}^{\top}y: Ty \leq b, \gamma^{\top}y \equiv r \pmod{m}\}$$
  
with transposed network matrix T $\min_{C \subseteq V} \{|\delta^+(C)|: \delta^-(C) = \emptyset, \gamma(C) \equiv r \pmod{m}\}$   
on digraph  $G = (V, A)$  with  $\gamma: V \to \mathbb{Z}$ .



Congruency-constrained min-cut is polytime solvable for constant prime power *m*.

[NSuZ, SODA 2018]

- ▶ Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution



Congruency-constrained min-cut is polytime solvable for constant prime power *m*.

[NSuZ, SODA 2018]

- ▶ Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution



Congruency-constrained min-cut is polytime solvable for constant prime power *m*.

[NSuZ, SODA 2018]

- ▶ Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution



Congruency-constrained min-cut is polytime solvable for constant prime power *m*.

[NSuZ, SODA 2018]

- ▶ Guess m-1 elements in- and outside OPT
- Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution



Congruency-constrained min-cut is polytime solvable for constant prime power *m*.

[NSuZ, SODA 2018]

### Algorithm

- ▶ Guess m-1 elements in- and outside OPT
- ► Solve corresp. unconstrained min cut problem
- Return best cong-constraint feasible solution

### Proof idea:

- Failing guesses give structured set system.
- Such systems cannot exist for prime power *m*.

# Congruency-constrained lattice feasibility

In G = (V, A) with  $\gamma \colon V \to \mathbb{Z}$ , find  $C \subsetneq V \colon \delta^{-}(C) = \emptyset, \gamma(C) \equiv r \pmod{m}.$ 

### Theorem

Congruency-constr. lattice feasibility can be decided in poly time for constant *m*.

[NNSaZ, 2022+]









 $|C_X| \leq m-1.$ 



subset with sum  $\equiv 0 \pmod{m}$ .



 $|C_X| \leq m-1.$ 

subset with sum  $\equiv 0 \pmod{m}$ .



# CCTU with network matrices

"the circulation baseblock"

# CCTU with network constraint matrices: Circulations





# CCTU with network constraint matrices: Circulations





Reduction to arc-disjoint paths:



Reduction to arc-disjoint paths:



Reduction to arc-disjoint paths:



 $\exists$  strongly poly. randomized alg. for congruency-constrained circulations with unary encoded edge lengths and constant *m*.

Our approach:



 $\exists$  strongly poly. randomized alg. for congruency-constrained circulations with unary encoded edge lengths and constant *m*.

Our approach:



# **Open questions**

# **Open questions**

