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Motivation & Background

bounded subdeterminant IPs — successes
in the bimodular case — new results



Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)

GivenAc Z™" be Z" andc € Z", solve
min{c x: Ax< b, x € Z"} .
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Integer Linear Programming (IP)

GivenAc Z™" be Z" andc € Z", solve
min{c x: Ax< b, x € Z"} .

An interesting class of efficiently solvable IPs

Atotally unimodular (TU) == Integral relaxation.

[ What if minors, in absolute value, are still bounded, but not by 1? }
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Bounded subdeterminants

A-modular Integer Programming

Given a constant A € Z-, can integer linear programs
min{c ' x: Ax< b, x € Z"}
with A-modular constraint matrix A be solved efficiently?

> Ac Z™"is A-modular if

— rank(A) = n, and
— absolute values of n X n subdeterminants are
bounded by A

» A-modularity is more general than total A-modularity
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Bounded subdeterminants

A-modular Integer Programming

Given a constant A € Z-, can integer linear programs
min{c ' x: Ax< b, x € Z"}
with A-modular constraint matrix A be solved efficiently?

> A€ Z™"is A-modular if Known results
— rank(A) = n, and v A=1:easy
— absolute values of n x n subdeterminants are v A = 2: Bimodular Integer Programming (BIP)
bounded by A
» A-modularity is more general than total A-modularity v Arbitrary constant A, at most 2 non-zeros per row
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The approach to BIP

X2

BIP can be solved in strongly polynomial time.

L) L) L) L) L)

Xy o o o o

Bimodular Integer Program (BIP) . . . .
min{c"x: Ax < b,x € Z"} A %
A :

A bimodular. ] ° o . .

Conic Parity TU Problem (CPTU)

min{&"y: Ty <0,y € Z", () odd}

T totally unimodular, S C [n].

Seymour’s TU decomposition

Reduction to
base block problems.

Interpretation as parity-constrained
cut and circulation problems.
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Challenge: Generalize!

X2

min{c'x: Ax < b,x € Z"}
A bimodular.

Conic Parity TU Problem (CPTU)

min{é"y: Ty <0,y € Z", y(S) odd}
T totally unimodular, S C [n].

Seymour’s TU decomposition

Reduction to
base block problems.

Interpretation as parity-constrained
cut and circulation problems
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Challenge: Generalize!

X Structural results:
— proximity
— flatness or feasibility

Cut baseblock:
— optim. for prime power m

— feasibility for general m

X1

A-modular integer programming

Circulation baseblock:
— rand. alg. for unary enc. obj.
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Challenge: Generalize!

. Structural results: Strongly polynomial randomized algorithm for
— proximity checking feasibility of strictly 3-modular IPs.
— flatness or feasibility

Cut baseblock:
— optim. for prime power m

— feasibility for general m

X1

Circulation baseblock:
— rand. alg. for unary enc. obj.

A-modular integer programming

min{c"x: Ax < b,x € Z"}

Ais A-modular. O O O
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Challenge: Generalize!

Cut baseblock:
— optim. for prime power m

— feasibility for general m

Circulation baseblock:
— rand. alg. for unary enc. obj.

Interpretation as congruency-con-
strained cut and circulation problems
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Base Block Problems

Seymour’s decomposition — network
matrices — the two cases



Seymour’s decomposition

Theorem: Seymour’s decomposition [Seymour, 1980]

For every TU matrix T € Z**", one of the following applies:

(i) T is, possibly after row/column permutations and a pivot,

of the form
A ef’
gh' B )’

where (hAT ¢) and ( 8 gg) are TU.

T 01

(i) T is essentially equal to one of

1—-1 0 01 11111
-1 1-1 0 0 11100
0—1 1—1 0 and 10110 | .
0 0—1 1—1 10011
-1 0 0—1 1 11001

(i) Tor T is a network matrix.
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Network matrices
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Network matrices

Tree T = (V, E), extra arcs A.

€1
€
€3
€4
€5
€6

—_

—_ O = a4 O O

9/19



Network matrices

Tree T = (V, E), extra arcs A.

€1
€
€3
€4
€5
€6

— O O —=

—_

—_ O = a4 O O

9/19



Network matrices

€6 )

& €1 1
e € 0
€ as 63 4 0
€y 1

€2 €5 —1

e 66 \ 0

ay

Tree T = (V, E), extra arcs A.
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Network matrices

Tree T = (V, E), extra arcs A.

€1
€
€3
€4
€5
€6

—_

—_ O = a4 O O
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CCTU with transposed network matrices

“the cut baseblock”



CCTU with transposed network constraint matrices

CCTU with transp. netw. matrix Congruency-constrained min (di-)cut

min{¢"y: Ty <b,v y =r (mod m)} &) rcncn‘}{|6+(C)| 67 (C)=0,7(C)=r (mod m)}
with transposed network matrix T ~ ondigraph G = (V, A) with : V — Z.

~7(C) =1 (mod 3)
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Prime power moduli

» Guess m—1 elements in- and outside OPT
Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

» Solve corresp. unconstrained min cut problem

» Return best cong-constraint feasible solution

~7(C) =1 (mod 3)
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Prime power moduli

» Guess m—1 elements in- and outside OPT
Congruency-constrained min-cut is poly-
time solvable for constant prime power m.

» Solve corresp. unconstrained min cut problem

» Return best cong-constraint feasible solution

Proof idea:
> Failing guesses give structured set system.

P Such systems cannot exist for prime power m.
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The feasibility problem

Congruency-constrained lattice feasibility

In G = (V,A) with v: V — Z, find Congruency-constr. lattice feasibility can
CCV:6 (C)=0,v(C)=r (mod m). be decided in poly time for constant m.
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CCTU with network matrices

“the circulation baseblock”



CCTU with network constraint matrices: Circulations

CCTU with transp. netw. matrix

Congruency-constrained circulation

min{¢"y: Ty < b,y "y =r (mod m)} &~y | Indigraph G = (V, A), find shortest circulation
with network matrix T C C Awith |C| = r (mod m).

|C] =2 (mod 3)
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Circulations vs. cycles

[ Finding congruency-constrained cycles is hard for m > 2! ]

16/19



Circulations vs. cycles

[ Finding congruency-constrained cycles is hard for m > 2! ]

» Reduction to arc-disjoint paths:

S t

S2
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Circulations vs. cycles

[ Finding congruency-constrained cycles is hard for m > 2! ]

» Reduction to arc-disjoint paths:

t

[ |C| =2 (mod 3) <= paths existJ
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A reduction

3 strongly poly. randomized alg. for congruency-constrained cir-
culations with unary encoded edge lengths and constant m.

» Our approach:

[ Cong.-constrained ]

circulations
Cong.-constrained
perfect matchings
\_/)[ Exact-cost ]
. . . . _— erfect matchings
integrating residues into objective P £

\/_)[ Polynomial identity ]
in
via determinants/ testing

pfaffian polynomials
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A reduction

3 strongly poly. randomized alg. for congruency-constrained cir-
culations with unary encoded edge lengths and constant m.

» Our approach:

red/blue matching

[ Cong.-constrained

circulations
Cong.-constrained
perfect matchings
\_/)[ Exact-cost ]
rfect matchin
integrating residues into objective perfect a\tc_i-)

via determinants/
pfaffian polynomials

] Congruency-constrained

Polynomial identity
testing
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Open questions




Open questions

x Structural results?
/ Do we need to go through

Seymour’s decomposition?
- Beyond m = p“® for
cut optimization?

» Deterministic approach

X1
for circulations?

A-modular integer programming

min{c'x: Ax < b,x € Z"}
Ais A-modular.

Congruency-Constr. TU Prb. (CCTU)

LT, Y<b yeZ,
mln{c v 4Ty =r (mod m)

T totally unimodular, modulus m. Seymour’s TU decomposition

Reduction to
9 base block problems.

|
Interpretation as parity-constrained

+ What problem should we reduce to? o cut and circulation problems.
+ Optimization?

* How to deal with several differing subdets?
« General m?

19/19



