
1 / 13

A New Contraction Technique with
Applications to Congruency-Constrained Cuts

Martin Nägele Rico Zenklusen

ETH Zürich

2 / 13

Introduction: Congruency-Constrained Cuts

Problem Setting, Motivation, and Our Results

3 / 13

Problem Setting

Congruency-Constrained Minimum Cut Problem (CCMC)

Input: Graph G = (V ,E), edge weights w : E → R>0, vertex multiplicities γ : V → Z>0,
m ∈ Z>0, and r ∈ Z>0.

Goal: Find a minimizer of min

{
w(δ(C))

∣∣∣∣ ∅ (C (V ,∑
v∈C γ(v) ≡ r (mod m)

}
.

1

3

5

3

2

1

7

6

3
1

2

4

.6

4.2

1.7
.8

3

1.5

2

5

2

2.3

.5

6.1

1.7

4
4.3

6.2

1

m = 5

r = 2

w(δ(C)) = 6.6

γ(C) ≡ 2 (mod 5)C

3 / 13

Problem Setting

Congruency-Constrained Minimum Cut Problem (CCMC)

Input: Graph G = (V ,E), edge weights w : E → R>0, vertex multiplicities γ : V → Z>0,
m ∈ Z>0, and r ∈ Z>0.

Goal: Find a minimizer of min

{
w(δ(C))

∣∣∣∣ ∅ (C (V ,∑
v∈C γ(v) ≡ r (mod m)

}
.

1

3

5

3

2

1

7

6

3
1

2

4

.6

4.2

1.7
.8

3

1.5

2

5

2

2.3

.5

6.1

1.7

4
4.3

6.2

1

m = 5

r = 2

w(δ(C)) = 6.6

γ(C) ≡ 2 (mod 5)C

4 / 13

Motivation and Prior Results

I Generalization of well-known cut problems:

Global minimum cuts, minimum s-t-cuts, minimum odd cuts.

I Integer Programming with bounded subdeterminants:

Can min{c>x | Ax 6 b, x ∈ Zn} be solved efficiently if A ∈ Zm×n is m-modular?

Bimodular integer programming (m = 2):
Reduction to parity-constrained cut and flow problems. [Artmann, Weismantel, Zenklusen, 2017]

CCMC can be reduced to m-modular ILPs.

I Congruency-constrained submodular minimization:

Efficient algorithm for prime power moduli. [Nägele, Sudakov, Zenklusen, 2018]

Barriers for composite moduli. [Gopi, 2019]

5 / 13

Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 2: Exact algorithm for special case

CCMC with modulus m = pq for primes p 6= q admits an exact polynomial time randomized algorithm.

Theorem 3: Structure for instances with prime moduli

Given a CCMC problem with prime modulus and nonzero optimal value denoted by OPT, there is a
randomized algorithm returning polynomially many s-t cut problems such that w.h.p.,

C is solution of (CCMC) problem
with value 6 κ · OPT

⇐⇒ C is solution of one of the s-t cut
problems with value 6 κ · OPT.

5 / 13

Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

I Approach inspired by Karger’s contraction algorithm.

I Novel way of sampling vertex pairs to contract.

Using splitting-off techniques from Graph Theory.

I Combination with approximate reduction steps.

Theorem 2: Exact algorithm for special case

CCMC with modulus m = pq for primes p 6= q admits an exact polynomial time randomized algorithm.

Theorem 3: Structure for instances with prime moduli

Given a CCMC problem with prime modulus and nonzero optimal value denoted by OPT, there is a
randomized algorithm returning polynomially many s-t cut problems such that w.h.p.,

C is solution of (CCMC) problem
with value 6 κ · OPT

⇐⇒ C is solution of one of the s-t cut
problems with value 6 κ · OPT.

5 / 13

Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 2: Exact algorithm for special case

CCMC with modulus m = pq for primes p 6= q admits an exact polynomial time randomized algorithm.

Theorem 3: Structure for instances with prime moduli

Given a CCMC problem with prime modulus and nonzero optimal value denoted by OPT, there is a
randomized algorithm returning polynomially many s-t cut problems such that w.h.p.,

C is solution of (CCMC) problem
with value 6 κ · OPT

⇐⇒ C is solution of one of the s-t cut
problems with value 6 κ · OPT.

5 / 13

Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 2: Exact algorithm for special case

CCMC with modulus m = pq for primes p 6= q admits an exact polynomial time randomized algorithm.

Theorem 3: Structure for instances with prime moduli

Given a CCMC problem with prime modulus and nonzero optimal value denoted by OPT, there is a
randomized algorithm returning polynomially many s-t cut problems such that w.h.p.,

C is solution of (CCMC) problem
with value 6 κ · OPT

⇐⇒ C is solution of one of the s-t cut
problems with value 6 κ · OPT.

6 / 13

Karger’s Contraction Algorithm...

. . . and how to adopt it for CCMC.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

7 / 13

Karger’s Contraction Algorithm

Algorithm

while |V | > 2 do:
Contract a random edge.

return Cut corresponding to a remaining vertex.

Analysis:

I Singletons are feasible solution candidates.

=⇒ |δ(v)| > OPT .

I Contractions uniformly at random:

Pr

[
contraction is
bad wrt. COPT

]
=

OPT
|E| =

OPT
1
2

∑
v∈V |δ(v)|

6
2
|V |

=⇒ Pr

[
no bad

contraction

]
>
|V |∏
i=3

(
1− 2

i

)
= Ω

(
1
|V |2

)
.

If
∑
v∈V

|δ(v)| > ε · |V | ·OPT, Karger until 2/ε vertices

remain succeeds with probability Ω(|V |−2/ε).

Enumerate remaining options.

8 / 13

What fails with γ(C) ≡ r (mod m)?

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) 6≡ 0 (mod m)}

Problems:

I Singletons are generally not feasible.

I Average degree can be small.

I Edge contractions might not be enough.

Plan:

I Reduce to V6≡0, allow contracting
arbitrary vertex pairs.

I Extend to V \ V 6≡0 solving unconstrained
s-t cut problem.

8 / 13

What fails with γ(C) ≡ r (mod m)?

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) 6≡ 0 (mod m)}

Problems:

I Singletons are generally not feasible.

I Average degree can be small.

I Edge contractions might not be enough.

Plan:

I Reduce to V6≡0, allow contracting
arbitrary vertex pairs.

I Extend to V \ V 6≡0 solving unconstrained
s-t cut problem.

8 / 13

What fails with γ(C) ≡ r (mod m)?

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) 6≡ 0 (mod m)}

Problems:

I Singletons are generally not feasible.

I Average degree can be small.

I Edge contractions might not be enough.

Plan:

I Reduce to V6≡0, allow contracting
arbitrary vertex pairs.

I Extend to V \ V6≡0 solving unconstrained
s-t cut problem.

8 / 13

What fails with γ(C) ≡ r (mod m)?

s
t

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) 6≡ 0 (mod m)}

Problems:

I Singletons are generally not feasible.

I Average degree can be small.

I Edge contractions might not be enough.

Plan:

I Reduce to V6≡0, allow contracting
arbitrary vertex pairs.

I Extend to V \ V6≡0 solving unconstrained
s-t cut problem.

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

H = (Q, F)

9 / 13

Splitting-Off: Auxiliary Graph Construction

I Fundamental technique from Graph Theory [Lovász, 1976 & 1979] [Mader, 1978]

G = (V ,E)

Q
H = (Q, F)

qq

I Two operations: and

Th
eo

re
m

[L
ov

.’
76

]

Let G Eulerian, then edges can be split from v ∈ V \ Q in pairs such that

I cut values do not increase, and

I ν({q}) := min

{
|δG(C)|

∣∣∣∣ ∅ (C (V ,
C ∩ Q = {q}

}
is preserved for all q ∈ Q.

I Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]

Q

G = (V ,E)

H = (Q, F)

10 / 13

A Contraction-Approach to Odd Cuts

I CCMC with m = 2 and r = 1, i.e., constraint γ(C) ≡ 1 (mod 2).

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) ≡ 1 (mod 2)} H = (V6≡0, F)

I Optimal cut value did not increase.

|δH(COPT ∩ V 6≡0)| 6 |δH(COPT)| = OPT.

I Singletons in H correspond to feasible solutions.

|δH(v)| = |δG(Cv)| > OPT.

=⇒ Karger-type analysis with respect to V6≡0 works!

10 / 13

A Contraction-Approach to Odd Cuts

I CCMC with m = 2 and r = 1, i.e., constraint γ(C) ≡ 1 (mod 2).

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) ≡ 1 (mod 2)} H = (V6≡0, F)

I Optimal cut value did not increase.

|δH(COPT ∩ V 6≡0)| 6 |δH(COPT)| = OPT.

I Singletons in H correspond to feasible solutions.

|δH(v)| = |δG(Cv)| > OPT.

=⇒ Karger-type analysis with respect to V6≡0 works!

10 / 13

A Contraction-Approach to Odd Cuts

I CCMC with m = 2 and r = 1, i.e., constraint γ(C) ≡ 1 (mod 2).

Cv

v

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) ≡ 1 (mod 2)} H = (V6≡0, F)

I Optimal cut value did not increase.

|δH(COPT ∩ V 6≡0)| 6 |δH(COPT)| = OPT.

I Singletons in H correspond to feasible solutions.

|δH(v)| = |δG(Cv)| > OPT.

=⇒ Karger-type analysis with respect to V6≡0 works!

10 / 13

A Contraction-Approach to Odd Cuts

I CCMC with m = 2 and r = 1, i.e., constraint γ(C) ≡ 1 (mod 2).

Cv

v

G = (V ,E)

V6≡0 = {v ∈ V | γ(v) ≡ 1 (mod 2)} H = (V6≡0, F)

I Optimal cut value did not increase.

|δH(COPT ∩ V 6≡0)| 6 |δH(COPT)| = OPT.

I Singletons in H correspond to feasible solutions.

|δH(v)| = |δG(Cv)| > OPT.

=⇒ Karger-type analysis with respect to V6≡0 works!

11 / 13

CCMC with Prime Modulus p

I Issue: Singletons in H do not necessarily correspond to cuts with γ(C) ≡ r (mod p).

Cv

v

G = (V ,E)

V6≡0 H = (V6≡0, F)

γ(v) + γ(w) ≡ r (mod p)

|δH(v)|+ |δH(w)| = |δG(Cv)|+ |δG(Cw)|
> |δG(Cv ∪ Cw)| > OPT

Th
m

. (Cauchy-Davenport) Among any p nonzero elements
of Z/pZ, there is a subset summing to r (mod p).

I Combine singletons to 1
p |V 6≡0| many feasible sets.∑

v∈V6≡0
|δH(v)| > 1

p · |V 6≡0| · OPT.

=⇒ Karger-type average-degree analysis with respect to V6≡0 works!

11 / 13

CCMC with Prime Modulus p

I Issue: Singletons in H do not necessarily correspond to cuts with γ(C) ≡ r (mod p).

Cv

Cw

v
w

G = (V ,E)

V6≡0 H = (V6≡0, F)

γ(v) + γ(w) ≡ r (mod p)

|δH(v)|+ |δH(w)| = |δG(Cv)|+ |δG(Cw)|
> |δG(Cv ∪ Cw)| > OPT

Th
m

. (Cauchy-Davenport) Among any p nonzero elements
of Z/pZ, there is a subset summing to r (mod p).

I Combine singletons to 1
p |V 6≡0| many feasible sets.∑

v∈V6≡0
|δH(v)| > 1

p · |V 6≡0| · OPT.

=⇒ Karger-type average-degree analysis with respect to V6≡0 works!

11 / 13

CCMC with Prime Modulus p

I Issue: Singletons in H do not necessarily correspond to cuts with γ(C) ≡ r (mod p).

Cv

Cw

v
w

G = (V ,E)

V6≡0 H = (V6≡0, F)

γ(v) + γ(w) ≡ r (mod p)

|δH(v)|+ |δH(w)| = |δG(Cv)|+ |δG(Cw)|
> |δG(Cv ∪ Cw)| > OPT

Th
m

. (Cauchy-Davenport) Among any p nonzero elements
of Z/pZ, there is a subset summing to r (mod p).

I Combine singletons to 1
p |V 6≡0| many feasible sets.∑

v∈V6≡0
|δH(v)| > 1

p · |V 6≡0| · OPT.

=⇒ Karger-type average-degree analysis with respect to V6≡0 works!

11 / 13

CCMC with Prime Modulus p

I Issue: Singletons in H do not necessarily correspond to cuts with γ(C) ≡ r (mod p).

Cv

Cw

v
w

G = (V ,E)

V6≡0 H = (V6≡0, F)

γ(v) + γ(w) ≡ r (mod p)

|δH(v)|+ |δH(w)| = |δG(Cv)|+ |δG(Cw)|
> |δG(Cv ∪ Cw)| > OPT

Th
m

. (Cauchy-Davenport) Among any p nonzero elements
of Z/pZ, there is a subset summing to r (mod p).

I Combine singletons to 1
p |V 6≡0| many feasible sets.∑

v∈V6≡0
|δH(v)| > 1

p · |V 6≡0| · OPT.

=⇒ Karger-type average-degree analysis with respect to V6≡0 works!

11 / 13

CCMC with Prime Modulus p

I Issue: Singletons in H do not necessarily correspond to cuts with γ(C) ≡ r (mod p).

Cv

Cw

v
w

G = (V ,E)

V6≡0 H = (V6≡0, F)

γ(v) + γ(w) ≡ r (mod p)

|δH(v)|+ |δH(w)| = |δG(Cv)|+ |δG(Cw)|
> |δG(Cv ∪ Cw)| > OPT

Th
m

. (Cauchy-Davenport) Among any p nonzero elements
of Z/pZ, there is a subset summing to r (mod p).

I Combine singletons to 1
p |V 6≡0| many feasible sets.∑

v∈V6≡0
|δH(v)| > 1

p · |V 6≡0| · OPT.

=⇒ Karger-type average-degree analysis with respect to V6≡0 works!

12 / 13

The General Case: Reduction Steps

I Issue: We might have
∑

v∈V6≡0
|δH(v)| < ε · |V6≡0| · OPT.

G = (V ,E)

V6≡0 H = (V6≡0, F)

Example problem:
γ(C) ≡ 5 (mod 6)

≡ 3

≡ 2

I There is q ∈ [m− 1] and many vertices vi ∈ V6≡0 with

|δH(vi)| < 2εOPT

and γ(vi) ≡ q (mod m).

I For any cut C, we get

|δG(C ∆ Cvi)| < |δG(C)|+ 2εOPT

and γ(C ∆ Cvi) ≡ γ(C)± q (mod m).

=⇒ Cheap residue correction by multiples of q—leaves problem modulo gcd(m, q).

12 / 13

The General Case: Reduction Steps

I Issue: We might have
∑

v∈V6≡0
|δH(v)| < ε · |V6≡0| · OPT.

G = (V ,E)

V6≡0 H = (V6≡0, F)

Example problem:
γ(C) ≡ 5 (mod 6)

≡ 3

≡ 2

I There is q ∈ [m− 1] and many vertices vi ∈ V6≡0 with

|δH(vi)| < 2εOPT

and γ(vi) ≡ q (mod m).

I For any cut C, we get

|δG(C ∆ Cvi)| < |δG(C)|+ 2εOPT

and γ(C ∆ Cvi) ≡ γ(C)± q (mod m).

=⇒ Cheap residue correction by multiples of q—leaves problem modulo gcd(m, q).

12 / 13

The General Case: Reduction Steps

I Issue: We might have
∑

v∈V6≡0
|δH(v)| < ε · |V6≡0| · OPT.

Cvi

vi

G = (V ,E)

V6≡0 H = (V6≡0, F)

Example problem:
γ(C) ≡ 5 (mod 6)

≡ 3

≡ 2

I There is q ∈ [m− 1] and many vertices vi ∈ V6≡0 with

|δH(vi)| < 2εOPT

and γ(vi) ≡ q (mod m).

I For any cut C, we get

|δG(C ∆ Cvi)| < |δG(C)|+ 2εOPT

and γ(C ∆ Cvi) ≡ γ(C)± q (mod m).

=⇒ Cheap residue correction by multiples of q—leaves problem modulo gcd(m, q).

12 / 13

The General Case: Reduction Steps

I Issue: We might have
∑

v∈V6≡0
|δH(v)| < ε · |V6≡0| · OPT.

Cvi

C
vi

G = (V ,E)

V6≡0 H = (V6≡0, F)

Example problem:
γ(C) ≡ 5 (mod 6)

≡ 3

≡ 2

I There is q ∈ [m− 1] and many vertices vi ∈ V6≡0 with

|δH(vi)| < 2εOPT

and γ(vi) ≡ q (mod m).

I For any cut C, we get

|δG(C ∆ Cvi)| < |δG(C)|+ 2εOPT

and γ(C ∆ Cvi) ≡ γ(C)± q (mod m).

=⇒ Cheap residue correction by multiples of q—leaves problem modulo gcd(m, q).

13 / 13

The Complete Algorithm

CCMC instance
(G,w , γ,m, r)

Contraction

∑
v∈V6≡0

ν({v}) large,

|V6≡0| large

→ Splitting-Off
→ sample edge of

auxiliary graph

Reduction

∑
v∈V6≡0

ν({v}) small,

|V6≡0| large

→ reduce modulus
→ save small cuts to

correct residues

Enumeration

|V6≡0| small

correct wrong
residues γ(v)

return small-
est cut found

13 / 13

The Complete Algorithm

CCMC instance
(G,w , γ,m, r)

Contraction

∑
v∈V6≡0

ν({v}) large,

|V6≡0| large

→ Splitting-Off
→ sample edge of

auxiliary graph

Reduction

∑
v∈V6≡0

ν({v}) small,

|V6≡0| large

→ reduce modulus
→ save small cuts to

correct residues

Enumeration

|V6≡0| small

correct wrong
residues γ(v)

return small-
est cut found

13 / 13

The Complete Algorithm

CCMC instance
(G,w , γ,m, r)

Contraction

∑
v∈V6≡0

ν({v}) large,

|V6≡0| large

→ Splitting-Off
→ sample edge of

auxiliary graph

Reduction

∑
v∈V6≡0

ν({v}) small,

|V6≡0| large

→ reduce modulus
→ save small cuts to

correct residues

Enumeration

|V6≡0| small

correct wrong
residues γ(v)

return small-
est cut found

13 / 13

The Complete Algorithm

CCMC instance
(G,w , γ,m, r)

Contraction

∑
v∈V6≡0

ν({v}) large,

|V6≡0| large

→ Splitting-Off
→ sample edge of

auxiliary graph

Reduction

∑
v∈V6≡0

ν({v}) small,

|V6≡0| large

→ reduce modulus
→ save small cuts to

correct residues

Enumeration

|V6≡0| small

correct wrong
residues γ(v)

return small-
est cut found

13 / 13

The Complete Algorithm

CCMC instance
(G,w , γ,m, r)

Contraction

∑
v∈V6≡0

ν({v}) large,

|V6≡0| large

→ Splitting-Off
→ sample edge of

auxiliary graph

Reduction

∑
v∈V6≡0

ν({v}) small,

|V6≡0| large

→ reduce modulus
→ save small cuts to

correct residues

Enumeration

|V6≡0| small

correct wrong
residues γ(v)

return small-
est cut found

