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Introduction: Congruency-Constrained Cuts

Problem Setting, Motivation, and Our Results



Problem Setting

Congruency-Constrained Minimum Cut Problem (CCMC)

Input: Graph G = (V, E), edge weights w: £ — R, vertex multiplicities v: V — Z~o,
m e Zso,and r € Zx.
hccgv, }

Goal: Find a minimizer of min {w(&(C)) } e (V) =1 (mod m)
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hccgv, }

Goal: Find a minimizer of min {w(&(C)) } e (V) =1 (mod m)

w(6(C)) = 6.6
~(C) =2 (mod 5)
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Motivation and Prior Results

> Generalization of well-known cut problems:
Ay Global minimum cuts, minimum s-f-cuts, minimum odd cuts.

> Integer Programming with bounded subdeterminants:

[ Can min{c"x | Ax < b, x € Z"} be solved efficiently if A € Z™*" is m-modular? ]

" Bimodular integer programming (m = 2):

Reduction to parity-constrained cut and flow problems. [Artmann, Weismantel, Zenklusen, 2017]
~»» CCMC can be reduced to m-modular ILPs.

» Congruency-constrained submodular minimization:

~» Efficient algorithm for prime power moduli. [Nagele, Sudakov, Zenklusen, 2018]
2> Barriers for composite moduli. [Gopi, 2019]
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Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.
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Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

> Approach inspired by Karger’s contraction algorithm.
> Novel way of sampling vertex pairs to contract.
A Using splitting-off techniques from Graph Theory.

» Combination with approximate reduction steps.
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Our Results

Theorem 1: PRAS for CCMC

CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 2: Exact algorithm for special case

CCMC with modulus m = pq for primes p # g admits an exact polynomial time randomized algorithm.

Theorem 3: Structure for instances with prime moduli

Given a CCMC problem with prime modulus and nonzero optimal value denoted by OPT, there is a
randomized algorithm returning polynomially many s-t cut problems such that w.h.p.,

C is solution of (CCMC) problem C is solution of one of the s-t cut
with value < k - OPT problems with value < « - OPT.
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Karger’s Contraction Algorithm...

...and how to adopt it for CCMC.



Karger’s Contraction Algorithm

while |V| > 2 do:
Contract a random edge.
return Cut corresponding to a remaining vertex.
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Karger’s Contraction Algorithm

while |V| > 2 do:
Contract a random edge.
return Cut corresponding to a remaining vertex.

Analysis: [§ )

> Singletons are feasible solution candidates.
= |4(v)| = OPT .

» Contractions uniformly at random:

F,r{contraction is] _ OPT _ OPT 2

- = <=
bad wrt. Copt |E]| 136 IV

v
no bad 2 1
Pr [contraotion} - ,11 (1 i) @ <|V|2>
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Karger’s Contraction Algorithm

while |V| > 2 do:
Contract a random edge.
return Cut corresponding to a remaining vertex.

Analysis: [§ )

> Singletons are feasible solution candidates.
— |6(v)| > OPT .

» Contractions uniformly at random:

r{contraction is] _ OPT _ OPT 2

= = <= |t 16(v)| > e-|V|-OPT,K il 2/ verti
bad wrt. Copr IE] TS e S V] ;| (v)]=e-|V|-O arger until 2/= vertices

remain succeeds with probability Q(| V| ‘2/5).

4

no bad 2 1
> e = — .
= Pr [contraotion} - H (1 i) @ <|V|2>

= A~ Enumerate remaining options.
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What fails with v(C) = r (mod m)?

G=(V,E)

Problems:
> Singletons are generally not feasible.
> Average degree can be small.

> Edge contractions might not be enough.
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G

(V,E)

Vo = {v € V| 7(v) £ 0 (mod m)}
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What fails with v(C) = r (mod m)?

G=(V,E)
ANNNNNNNNN
Vzo ={v e V|v(v) #0 (mod m)}
Problems: Plan:
> Singletons are generally not feasible. > Reduce to Vo, allow contracting

> Average degree can be small. arbitrary vertex pairs.

> Extendto V '\ Vo solving unconstrained

» Edge contractions might not be enough.
s-t cut problem.
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What fails with v(C) = r (mod m)?

o
G=(V,E) © o0
e o © o
B o
ANNNNNNNN
(e}
o
Vao={veEV|y(v) £0 (mod m)} S
Problems: Plan:
> Singletons are generally not feasible. > Reduce to Vo, allow contracting

> Average degree can be small. arbitrary vertex pairs.

> Extendto V '\ Vo solving unconstrained

» Edge contractions might not be enough.
s-t cut problem.
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Splitting-Off: Auxiliary Graph Construction

» Fundamental technique from Graph Theory [Lovasz, 1976 & 1979] [Mader, 1978]

G=(V,E)
= (Q,F)

oo ()

Il

» Two operations:

>
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G=(V,E) )
=(Q,F

AR Q
> Two operations: A A é @ Ay

Let G Eulerian, then edges can be split from v € V' \ Q in pairs such that

» cut values do not increase, and
pcccv

> v({q}) == min {|6G(C)| crna={q } } is preserved for all g € Q.
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Splitting-Off: Auxiliary Graph Construction

» Fundamental technique from Graph Theory [Lovasz, 1976 & 1979] [Mader, 1978] G=(V,E)

H=(Q,F)
: &) Q
ANNANANAN @
N,

G=(V,E)

Let G Eulerian, then edges can be split from v € V \ Q in pairs such that

» cut values do not increase, and
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Splitting-Off: Auxiliary Graph Construction

» Fundamental technique from Graph Theory [Lovasz, 1976 & 1979] [Mader, 1978] G=(V,E)

G=(V,E)

Let G Eulerian, then edges can be split from v € V \ Q in pairs such that

» cut values do not increase, and
pcccyv,

> v({q}) = min {|5G(C)| cra={q } is preserved for all g € Q.
EN s

> Weighted algorithmic version: Combination with ideas of Frank. [Frank, 1992]
9/13
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A Contraction-Approach to Odd Cuts

» CCMC withm=2and r = 1,i.e., constraint y(C) =1 (mod 2).

G=(V,E)

Vio={ve V|y(v)=1 (mod 2)} H = (Vzo, F)
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A Contraction-Approach to Odd Cuts

» CCMCwithm=2and r =1, i.e., constraint y(C) =1 (mod 2).

C,
G=(V,E)
v
ANNNNANNNN
Vio={ve V|y(v)=1 (mod 2)} H = (Vzo, F)
P Optimal cut value did not increase. P Singletons in H correspond to feasible solutions.
> |5H(COPT N V;_to)| < |5H(Cop-r)| = OPT. AN |§H(V)| = |5g(Cv)| > OPT.

= Karger-type analysis with respect to Vo works!

10/13



CCMC with Prime Modulus p

> Issue: Singletons in H do not necessarily correspond to cuts with y(C) = r (mod p).

Cy
G=(V,E)

Vo H = (Vzo, F)
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CCMC with Prime Modulus p

> Issue: Singletons in H do not necessarily correspond to cuts with y(C) = r (mod p).

7(v) +5(w) = 1 (mod p)

v
w

H = (Vio, F)
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CCMC with Prime Modulus p

> Issue: Singletons in H do not necessarily correspond to cuts with y(C) = r (mod p).

|01 (V)[ + [0u(w)] = [06(Cv)[ + [6a(Cw)]
> |66(Cy U Cw)| = OPT v(v) +~v(w) = r (mod p)

ANNANNNNNNS
. H = (Vzo, F)
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> Issue: Singletons in H do not necessarily correspond to cuts with y(C) = r (mod p).

|01 (V)[ + [0u(w)] = [06(Cv)[ + [6a(Cw)]
> |66(Cy U Cw)| = OPT v(v) +~v(w) = r (mod p)

v
w
ANANANNANNANANS
.H(V;mF)

(Cauchy-Davenport) Among any p nonzero elements | » Combine singletons to 1p| Vi£o| many feasible sets.

= . .
= of Z/pZ, there is a subset summing to r (mod p). S ZVEV%;(,'(SH(V)' > 1; - |Vizo| - OPT.

= Karger-type average-degree analysis with respect to Vo works!
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The General Case: Reduction Steps

> Issue: We might have |0n(v)| < € -|Vzzo| - OPT.

ve Vgo

G=(V,E)

Vzo H= (V$§07F)
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G=(V,E) Example problem:
v(C) = 5 (mod 6)
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The General Case: Reduction Steps

> Issue: We might have |0n(v)| < € -|Vzzo| - OPT.

ve V,=£0

Cy,
G=(V,E) Example problem:
v(C) = 5 (mod 6)
Vi =1
ANNNNANNNN

Vaso 3 H = (Vzo, F)
> Thereis g € [m— 1] and many vertices v; € Vo with > For any cut C, we get

|5H(V,')| < 2 OPT |(5G(CA Cv,.)| < |(5G(C)| + 2¢ OPT

and v(v;))=gq (mod m). and y(CAC,)=~(C)xqg (mod m).
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The General Case: Reduction Steps

> Issue: We might have |0n(v)| < € -|Vzzo| - OPT.

ve V,=£0

Example problem:
v(C) = 5 (mod 6)

Vi =2

> Thereis g € [m— 1] and many vertices v; € Vo with > For any cut C, we get

=3 H = (Vizo, F)

|5H(V,')| < 2 OPT |(5G(CA Cv,.)| < |(5G(C)| + 2¢ OPT

and v(vi)=qg (mod m). and v(CAC,)=~(C)tq

= Cheap residue correction by multiples of g—leaves problem modulo gcd(m, q).

(mod m).

12/13



The Complete Algorithm

CCMC instance
(G7 W? ’Y? m? r)
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Enumeration

return small-
est cut found
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Contraction Enumeration
— Splitting-Off
— sample edge of
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return small-

est cut found
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| Vo] large [ Vo] small
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[ Vol large
Contraction Enumeration
— Splitting-Off :
—» sample edge of Reduction
auxiliary graph
— reduce modulus
— save small cuts to
correct residues return small-

est cut found
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