A New Contraction Technique with Applications to Congruency-Constrained Cuts

Martin Nägele Rico Zenklusen

ETH Zürich

Introduction: Congruency-Constrained Cuts

Problem Setting, Motivation, and Our Results

Congruency-Constrained Minimum Cut Problem (CCMC)

Input: Graph $G=(V, E)$, edge weights $w: E \rightarrow \mathbb{R} \geqslant 0$, vertex multiplicities $\gamma: V \rightarrow \mathbb{Z} \geqslant 0$, $m \in \mathbb{Z}_{>0}$, and $r \in \mathbb{Z}_{\geqslant 0}$.
Goal: Find a minimizer of $\min \left\{w(\delta(C)) \left\lvert\, \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ \sum_{v \in C} \gamma(v) \equiv r(\bmod m)\end{array}\right.\right\}$.

Congruency-Constrained Minimum Cut Problem (CCMC)

Input: Graph $G=(V, E)$, edge weights $w: E \rightarrow \mathbb{R} \geqslant 0$, vertex multiplicities $\gamma: V \rightarrow \mathbb{Z} \geqslant 0$, $m \in \mathbb{Z}_{>0}$, and $r \in \mathbb{Z}_{\geqslant 0}$.
Goal: Find a minimizer of $\min \left\{w(\delta(C)) \left\lvert\, \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ \sum_{v \in C} \gamma(v) \equiv r(\bmod m)\end{array}\right.\right\}$.
$m=5$
$r=2$

Motivation and Prior Results

- Generalization of well-known cut problems:
\leadsto Global minimum cuts, minimum s-t-cuts, minimum odd cuts.
- Integer Programming with bounded subdeterminants:

Can $\min \left\{c^{\top} x \mid A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ be solved efficiently if $A \in \mathbb{Z}^{m \times n}$ is m-modular?
\leadsto Bimodular integer programming $(m=2)$:
Reduction to parity-constrained cut and flow problems. [Artmann, Weismantel, Zenklusen, 2017]
\leadsto CCMC can be reduced to m-modular ILPs.

- Congruency-constrained submodular minimization:
\leadsto Efficient algorithm for prime power moduli. [Nägele, Sudakov, Zenklusen, 2018]
\leadsto Barriers for composite moduli. [Gopi, 2019]

Theorem 1: PRAS for CCMC
CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 1: PRAS for CCMC
CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

- Approach inspired by Karger's contraction algorithm.
- Novel way of sampling vertex pairs to contract.
\leadsto Using splitting-off techniques from Graph Theory.
- Combination with approximate reduction steps.

> Theorem 1: PRAS for CCMC
> CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 2: Exact algorithm for special case

CCMC with modulus $m=p q$ for primes $p \neq q$ admits an exact polynomial time randomized algorithm.

Theorem 1: PRAS for CCMC
CCMC with constant modulus m admits a polynomial time randomized approximation scheme.

Theorem 2: Exact algorithm for special case

CCMC with modulus $m=p q$ for primes $p \neq q$ admits an exact polynomial time randomized algorithm.

Theorem 3: Structure for instances with prime moduli

Given a CCMC problem with prime modulus and nonzero optimal value denoted by OPT, there is a randomized algorithm returning polynomially many s-t cut problems such that w.h.p.,
C is solution of (CCMC) problem with value $\leqslant \kappa \cdot$ OPT
C is solution of one of the $s-t$ cut problems with value $\leqslant \kappa \cdot$ OPT.

Karger's Contraction Algorithm...

... and how to adopt it for CCMC.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm
while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Karger's Contraction Algorithm

Algorithm

while $|V|>2$ do:

Contract a random edge.
return Cut corresponding to a remaining vertex.

Analysis:

- Singletons are feasible solution candidates.

$$
\Longrightarrow|\delta(v)| \geqslant \mathrm{OPT}
$$

- Contractions uniformly at random:
$\operatorname{Pr}\left[\begin{array}{c}\text { contraction is } \\ \text { bad wrt. } C_{\text {OPT }}\end{array}\right]=\frac{\text { OPT }}{|E|}=\frac{\text { OPT }}{\frac{1}{2} \sum_{v \in V}|\delta(v)|} \leqslant \frac{2}{|V|}$
$\Longrightarrow \operatorname{Pr}\left[\begin{array}{c}\text { no bad } \\ \text { contraction }\end{array}\right] \geqslant \prod_{i=3}^{|V|}\left(1-\frac{2}{i}\right)=\Omega\left(\frac{1}{|V|^{2}}\right)$.

Karger's Contraction Algorithm

Algorithm

while $|V|>2$ do:
Contract a random edge. return Cut corresponding to a remaining vertex.

Analysis:

- Singletons are feasible solution candidates.

$$
\Longrightarrow|\delta(v)| \geqslant \mathrm{OPT}
$$

- Contractions uniformly at random:
$\operatorname{Pr}\left[\begin{array}{c}\text { contraction is } \\ \text { bad wrt. } C_{\text {OPT }}\end{array}\right]=\frac{\text { OPT }}{|E|}=\frac{\text { OPT }}{\frac{1}{2} \sum_{v \in V}|\delta(v)|} \leqslant \frac{2}{|V|}$
$\Longrightarrow \operatorname{Pr}\left[\begin{array}{c}\text { no bad } \\ \text { contraction }\end{array}\right] \geqslant \prod_{i=3}^{|V|}\left(1-\frac{2}{i}\right)=\Omega\left(\frac{1}{|V|^{2}}\right)$.

If $\sum_{v \in V}|\delta(v)| \geqslant \varepsilon \cdot|V| \cdot$ OPT, Karger until $2 / \varepsilon$ vertices remain succeeds with probability $\Omega\left(|V|^{-2 / \varepsilon}\right)$.
\leadsto Enumerate remaining options.
$G=(V, E)$

Problems:

- Singletons are generally not feasible.
- Average degree can be small.
- Edge contractions might not be enough.
$G=(V, E)$

Problems:

- Singletons are generally not feasible.
- Average degree can be small.
- Edge contractions might not be enough.
$G=(V, E)$

Problems:

- Singletons are generally not feasible.
- Average degree can be small.
- Edge contractions might not be enough.

Plan:

- Reduce to $V_{\not \equiv 0}$, allow contracting arbitrary vertex pairs.
- Extend to $V \backslash V_{\not \equiv 0}$ solving unconstrained s - t cut problem.

Problems:

- Singletons are generally not feasible.
- Average degree can be small.
- Edge contractions might not be enough.

Plan:

- Reduce to $V_{\not \equiv 0}$, allow contracting arbitrary vertex pairs.
- Extend to $V \backslash V_{\not \equiv 0}$ solving unconstrained s - t cut problem.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]

- Two operations:

 and $0_{-0}^{0} \leadsto 0_{-0}^{0}$

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

- Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{l}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
$\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$
$G=(V, E)$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]

$$
G=(V, E)
$$

$G=(V, E)$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{l}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]

$$
G=(V, E)
$$

$G=(V, E)$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

- Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
$\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\left|\delta_{G}(C)\right| \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

$G=(V, E)$

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\left|\delta_{G}(C)\right| \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting－Off：Auxiliary Graph Construction

－Fundamental technique from Graph Theory［Lovász， 1976 \＆1979］［Mader，1978］
$G=(V, E)$

$$
H=(Q, F)
$$

いいいい

Two operations：

Let G Eulerian，then edges can be split from $v \in V \backslash Q$ in pairs such that
－cut values do not increase，and
－$\nu(\{q\}):=\min \left\{\left|\delta_{G}(C)\right| \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\right\}$ is preserved for all $q \in Q$ ．

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

$$
H=(Q, F)
$$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting－Off：Auxiliary Graph Construction

－Fundamental technique from Graph Theory［Lovász， 1976 \＆1979］［Mader，1978］
$G=(V, E)$

$$
H=(Q, F)
$$

いいいい

Two operations：

Let G Eulerian，then edges can be split from $v \in V \backslash Q$ in pairs such that
－cut values do not increase，and
$\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$ ．

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

$G=(V, E)$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
- $\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

Two operations:

$G=(V, E)$

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
$\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

Splitting-Off: Auxiliary Graph Construction

- Fundamental technique from Graph Theory [Lovász, 1976 \& 1979] [Mader, 1978]
$G=(V, E)$

Two operations:

Let G Eulerian, then edges can be split from $v \in V \backslash Q$ in pairs such that

- cut values do not increase, and
$\nu(\{q\}):=\min \left\{\begin{array}{l|l}\left|\delta_{G}(C)\right| & \begin{array}{c}\emptyset \subsetneq C \subsetneq V, \\ C \cap Q=\{q\}\end{array}\end{array}\right\}$ is preserved for all $q \in Q$.

A Contraction-Approach to Odd Cuts

- CCMC with $m=2$ and $r=1$, i.e., constraint $\gamma(C) \equiv 1(\bmod 2)$.
$G=(V, E)$

A Contraction-Approach to Odd Cuts

- CCMC with $m=2$ and $r=1$, i.e., constraint $\gamma(C) \equiv 1(\bmod 2)$.

$$
G=(V, E)
$$

- Optimal cut value did not increase.
$\leadsto\left|\delta_{H}\left(C_{\text {OPT }} \cap V_{\not \equiv 0}\right)\right| \leqslant\left|\delta_{H}\left(C_{\text {OPT }}\right)\right|=$ OPT.
- Singletons in H correspond to feasible solutions. $\leadsto\left|\delta_{H}(v)\right|=\left|\delta_{G}\left(C_{v}\right)\right| \geqslant$ OPT.

A Contraction-Approach to Odd Cuts

- CCMC with $m=2$ and $r=1$, i.e., constraint $\gamma(C) \equiv 1(\bmod 2)$.

$$
G=(V, E)
$$

- Optimal cut value did not increase.
$\leadsto\left|\delta_{H}\left(C_{\text {OPT }} \cap V_{\not \equiv 0}\right)\right| \leqslant\left|\delta_{H}\left(C_{\text {OPT }}\right)\right|=$ OPT.
- Singletons in H correspond to feasible solutions. $\leadsto\left|\delta_{H}(v)\right|=\left|\delta_{G}\left(C_{v}\right)\right| \geqslant$ OPT.

A Contraction-Approach to Odd Cuts

- CCMC with $m=2$ and $r=1$, i.e., constraint $\gamma(C) \equiv 1(\bmod 2)$.

$$
G=(V, E)
$$

- Optimal cut value did not increase.
$\leadsto\left|\delta_{H}\left(C_{\text {OPT }} \cap V_{\not \equiv 0}\right)\right| \leqslant\left|\delta_{H}\left(C_{\text {OPT }}\right)\right|=$ OPT.
- Singletons in H correspond to feasible solutions.

$$
\leadsto\left|\delta_{H}(v)\right|=\left|\delta_{G}\left(C_{v}\right)\right| \geqslant \mathrm{OPT}
$$

$$
\Longrightarrow \text { Karger-type analysis with respect to } V_{\not \equiv 0} \text { works! }
$$

- Issue: Singletons in H do not necessarily correspond to cuts with $\gamma(C) \equiv r(\bmod p)$.

$$
G=(V, E)
$$

- Issue: Singletons in H do not necessarily correspond to cuts with $\gamma(C) \equiv r(\bmod p)$.

－Issue：Singletons in H do not necessarily correspond to cuts with $\gamma(C) \equiv r(\bmod p)$ ．

$$
G=(V, E)
$$

$$
\begin{array}{rlr}
\left|\delta_{H}(v)\right| & +\left|\delta_{H}(w)\right|=\left|\delta_{G}\left(C_{v}\right)\right|+\left|\delta_{G}\left(C_{w}\right)\right| \\
& \geqslant\left|\delta_{G}\left(C_{v} \cup C_{w}\right)\right| \geqslant \text { OPT } \quad \gamma(v)+\gamma(w) \equiv r(\bmod p)
\end{array}
$$

いいいいNいい

$$
H=\left(V_{\not \equiv 0}, F\right)
$$

- Issue: Singletons in H do not necessarily correspond to cuts with $\gamma(C) \equiv r(\bmod p)$.

$$
G=(V, E)
$$

$$
\begin{array}{rlr}
\left|\delta_{H}(v)\right| & +\left|\delta_{H}(w)\right|=\left|\delta_{G}\left(C_{v}\right)\right|+\left|\delta_{G}\left(C_{w}\right)\right| \\
& \geqslant\left|\delta_{G}\left(C_{v} \cup C_{w}\right)\right| \geqslant \text { OPT } \quad \gamma(v)+\gamma(w) \equiv r(\bmod p)
\end{array}
$$

(Cauchy-Davenport) Among any p nonzero elements of $\mathbb{Z} / p \mathbb{Z}$, there is a subset summing to $r(\bmod p)$.

- Combine singletons to $\frac{1}{p}\left|V_{\not \equiv 0}\right|$ many feasible sets.

$$
\leadsto \sum_{v \in V_{\not \equiv 0}}\left|\delta_{H}(v)\right| \geqslant \frac{1}{p} \cdot\left|V_{\not \equiv 0}\right| \cdot \text { OPT. }
$$

- Issue: Singletons in H do not necessarily correspond to cuts with $\gamma(C) \equiv r(\bmod p)$.

$$
G=(V, E)
$$

$$
\begin{aligned}
\left|\delta_{H}(v)\right| & +\left|\delta_{H}(w)\right|=\left|\delta_{G}\left(C_{v}\right)\right|+\left|\delta_{G}\left(C_{w}\right)\right| \\
& \geqslant\left|\delta_{G}\left(C_{v} \cup C_{w}\right)\right| \geqslant \text { OPT } \quad \gamma(v)+\gamma(w) \equiv r(\bmod p)
\end{aligned}
$$

(Cauchy-Davenport) Among any p nonzero elements of $\mathbb{Z} / p \mathbb{Z}$, there is a subset summing to $r(\bmod p)$.

- Combine singletons to $\frac{1}{p}\left|V_{\not \equiv 0}\right|$ many feasible sets.

$$
\leadsto \sum_{v \in v_{\not \equiv 0}}\left|\delta_{H}(v)\right| \geqslant \frac{1}{p} \cdot\left|V_{\not \equiv 0}\right| \cdot \text { OPT. }
$$

\Longrightarrow Karger-type average-degree analysis with respect to $V_{\not \equiv 0}$ works!

The General Case：Reduction Steps

－Issue：We might have $\sum_{v \in v_{\neq 0}}\left|\delta_{H}(v)\right|<\varepsilon \cdot\left|V_{\not \equiv 0}\right| \cdot$ OPT．
$G=(V, E)$

いいいいいい

The General Case：Reduction Steps

－Issue：We might have $\sum_{v \in v_{\neq 0}}\left|\delta_{H}(v)\right|<\varepsilon \cdot\left|V_{\not \equiv 0}\right| \cdot$ OPT．

$$
G=(V, E)
$$

Example problem：
$\gamma(C) \equiv 5(\bmod 6)$

いいNのnNon

The General Case：Reduction Steps

－Issue：We might have $\sum_{v \in v_{\neq 0}}\left|\delta_{H}(v)\right|<\varepsilon \cdot\left|V_{\not \equiv 0}\right| \cdot$ OPT．

$$
G=(V, E)
$$

－There is $q \in[m-1]$ and many vertices $v_{i} \in V_{\not \equiv 0}$ with

$$
\begin{aligned}
\left|\delta_{H}\left(v_{i}\right)\right| & <2 \varepsilon \text { OPT } \\
\text { and } \quad \gamma\left(v_{i}\right) & \equiv q \quad(\bmod m) .
\end{aligned}
$$

Example problem：
$\gamma(C) \equiv 5(\bmod 6)$

いいいいいいい

－For any cut C ，we get

$$
\begin{aligned}
\left|\delta_{G}\left(C \Delta C_{v_{i}}\right)\right| & <\left|\delta_{G}(C)\right|+2 \varepsilon \mathrm{OPT} \\
\text { and } \quad \gamma\left(C \Delta C_{v_{i}}\right) & \equiv \gamma(C) \pm q \quad(\bmod m) .
\end{aligned}
$$

The General Case：Reduction Steps

－Issue：We might have $\sum_{v \in v_{\neq 0}}\left|\delta_{H}(v)\right|<\varepsilon \cdot\left|V_{\not \equiv 0}\right| \cdot$ OPT．

$$
G=(V, E)
$$

－There is $q \in[m-1]$ and many vertices $v_{i} \in V_{\not \equiv 0}$ with

$$
\begin{aligned}
\left|\delta_{H}\left(v_{i}\right)\right| & <2 \varepsilon \text { OPT } \\
\text { and } \quad \gamma\left(v_{i}\right) & \equiv q \quad(\bmod m) .
\end{aligned}
$$

Example problem：
$\gamma(C) \equiv 5(\bmod 6)$

いいいいいいい

－For any cut C ，we get

$$
\begin{aligned}
\left|\delta_{G}\left(C \Delta C_{v_{i}}\right)\right| & <\left|\delta_{G}(C)\right|+2 \varepsilon \mathrm{OPT} \\
\text { and } \quad \gamma\left(C \Delta C_{v_{i}}\right) & \equiv \gamma(C) \pm q \quad(\bmod m) .
\end{aligned}
$$

\Longrightarrow Cheap residue correction by multiples of q－leaves problem modulo $\operatorname{gcd}(m, q)$ ．

The Complete Algorithm

CCMC instance (G, w, γ, m, r)

The Complete Algorithm

