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Problem Setting and Motivation

Constrained Spanning Tree Problem

Input: Graph G = (V ,E), edge costs c : E → R.

Goal: Find a minimum cost spanning tree T ⊆ E
satisfying a set of given constraints.

Constraint types:
I Degree constraints:

degT (v) 6 bv for v ∈ V .
I Cut constraints:

|T ∩ δ(S)| 6 bS for S ⊆ V .
I Parity constraints:

|T ∩ δ(S)| ≡ 1 (mod 2) for S ⊆ V .
I . . .

Motivation:
I Applications from Network Design:

Bounded node capacities.

I Thin trees conjecture:
Constraints on all cut sets.

I Parity-correction + uncrossing in Path TSP:
Chain/laminar cut constraints.
Parity constraints.
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What’s known? Minimum Bounded Degree Spanning Trees
(MBDST)

Find a minimum cost spanning tree such that

∀v ∈ V : degT (v) 6 bv .

Minimum Chain-/Laminarly-Constrained Spanning
Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

∀S ∈ F : |T ∩ δ(S)| 6 bS ,

with F⊆ 2V a chain or laminar family, respectively.

Degree Constraints:
I Additive +1 violation.

[Singh, Lau, 2007]

I Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

I Additive O(log |V |) violation.
[Bansal, Kandekar, Könemann, Nagarajan, Peis, 2013]

I Additive violation c·log |V |
log log |V | impossible if P 6= NP.

[Olver, Zenklusen, 2013]

I Multiplicative guarantees: ( λ
λ−1 , 9λ)-approximation for MCCST (λ > 1).

[Olver, Zenklusen, 2013] [Linhares, Swamy, 2016]

c(T ) 6 λ
λ−1 · c(OPT),

|T ∩ δ(S)| 6 9λ · bS .
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Our Results Minimum Chain-/Laminarly-Constrained Spanning
Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

∀S ∈ F : aS 6 |T ∩ δ(S)| 6 bS ,

with F⊆ 2V a chain or laminar family, respectively.

Chain Constraints:

Theorem 1: MCCST

Randomized (1, 1+ε)-approximation for MCCST
with running time |V |O(log |V|)/ε2

.

c(T ) 6 c(OPT),
as

1+ε
6 |T∩δ(S)|6(1+ε)bs .

Laminar Constraints:

Theorem 2: MLCST

Randomized (1, 1+ε)-approximation for MLCST
with running time |V |O(k

k := width(F)

log |V|)/ε2

.

I Upper and lower bounds in constraints.
I Essentially best possible guarantees.
I Quasipolynomiality inherent to approach.

Further application of new techniques:
I (1.5 + ε)-approximations for Path TSP and shortest connected T -join problem.

|V |O(1)/ε |V |O(|T|)/εandRunning times:
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Minimum Chain-Constrained Spanning Trees

An Overview of Our Techniques
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Techniques for MCCST Minimum Chain-Constrained Spanning Trees
(MCCST)

Find a minimum cost spanning tree such that

∀i ∈ [k ] : ai 6 |T ∩ δ(Si)| 6 bi ,

where ∅ ( S1 ( S2 ( . . . ( Sk ( V .

Three main steps:

1 Find good solution x of linear relaxation .
New DP approach, inspired by recent Path TSP approaches.

[Traub, Vygen, 2018] [Zenklusen, 2019]

2 Apply randomized rounding to obtain tree T from x .
Marginal-preserving, negatively correlated rounding.

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2010] [Chekuri, Vondrák, Zenklusen, 2010]

Chernoff-type concentration bounds imply constraints up to (1± ε) with high probability.

3 Perform local corrections to gain back potential loss in objective.
In MCCST: One single edge swap.
General procedure, applicable for similar rounding procedures in {0, 1}-polytopes.
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What properties should x have?

Natural Relaxation:

Q =

{
x ∈ RE

>0

∣∣∣∣ x(E) = |V | − 1

x(E[S]) 6 |S| − 1 ∀S ( V , |S| > 2

}
︸ ︷︷ ︸

spanning tree polytope PST

∩
{

x ∈ RE
∣∣ ai 6 x(δ(Si )) 6 bi ∀ i ∈ [k]

}︸ ︷︷ ︸
chain constraints

I Lower bound for approximation with respect to Q: Factor 2.
Hard limit for prior approaches.

I Thought experiment: What if x(δ(Si)) > c · log k for all i ∈ [k ]?

Chernoff Bounds:

Pr
[
|T ∩ δ(Si)| /∈

[
(1− ε)x(δ(Si)), (1 + ε)x(δ(Si))

]]
6 2e−x(δ(Si ))·ε2/3 = k−Ω(1) .

Union bound is enough to conclude approximate chain bounds with high probability.
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What properties should x have?

Conclusion: Cuts Si with large value x(δ(Si)) are unproblematic!

What about small cuts?

Definition: τ -integral point x ∈ RE

x is τ -integral wrt. S1, . . . ,Sk if for i ∈ [k ],

(i) x(δ(Si)) > τ + 1, or

(ii) x(δ(Si)) 6 τ and x integral on δ(Si).

Theorem: Finding τ -integral points

A τ -integral point x ∈ Q satisfying

c>x 6 c(OPT)

can be found in time |V |O(τ).

I Marginal-preserving rounding: |T ∩ δ(Si)| = x(δ(Si)) for small cuts Si .
Small cuts satisfy chain constraints exactly.

Corollary

(1+ε, 1+ε)-approximation for MCCST with run-
ning time |V |O(log k)/ε2

.

x = 1 x = 1/2 x = 0
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The Dynamic Program

Finding Cheap τ -Integral Points
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Finding τ -integral points using a DP

Definition: τ -integral point x ∈ PST

x ∈ PST is τ -integral wrt. S1, . . . ,Sk if for i ∈ [k ],

(i) x(δ(Si)) > τ + 1, or

(ii) x(δ(Si)) 6 τ and x integral on δ(Si).

large cut

small cut

S1 S2 S3 S4 S5S1 S3 S5

τ = 5

x = 1
x = 1/2

x = 0

DP idea: Extend solution from one small cut to another.
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A special case: τ = 1

I Small cuts separate instance into independent subproblems.
I LP for optimizing subproblems.

Enforcing large cuts: Linear constraints.

I Standard DP finds cheapest 1-integral point.

min c>x
x ∈ PST(Sj \ Si)

x(δ(S`)) > 2 ∀i < ` < j

S1 S2 S3 S4 S5S2 S4

τ = 1

x = 1
x = 1/2

x = 0
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The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution
I Guess connectivity pattern on the right.
I Solve LP for guessed pattern.

Extending to right-compatible solution
I Completing connectivity patterns is hard.
I Solution: relax connectivity requirement,

extend explicit subsolution.

S1 S2 S3S2

τ = 5

x = 1
x = 1/2

x = 0

Consequence: Cannot find cheapest τ -integral point, but remain better than OPT.
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Conclusions

Randomized (1, 1 + ε)-approximation algorithm for MCCST

1. Use the DP to find a τ -integral point x for τ = b96 log(2|V |)/ε2c.
2. Obtain spanning tree T from x by marginal-preserving,

negatively correlated rounding.

3. Return cheapest tree obtained from T by one edge swap.

Open questions:
I Polynomial-time algorithm for MCCST?
I Reducing exponential dependence on width(L) in running time for MLCST?
I Connected T -join problem: Efficient algorithms for arbitrary T?
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