A new Dynamic Programming Approach for Spanning Trees with Chain Constraints and Beyond

Martin Nägele Rico Zenklusen

ETH Zürich

Introduction: Constrained Spanning Trees

Motivation, Applications, and Our Results

Problem Setting and Motivation

Constrained Spanning Tree Problem
Input: Graph $G=(V, E)$, edge costs $c: E \rightarrow \mathbb{R}$.
Goal: Find a minimum cost spanning tree $T \subseteq E$ satisfying a set of given constraints.

Constraint types:

- Degree constraints:

$$
\operatorname{deg}_{T}(v) \leqslant b_{V} \text { for } v \in V .
$$

- Cut constraints:
$|T \cap \delta(S)| \leqslant b_{S}$ for $S \subseteq V$.
- Parity constraints:

$$
|T \cap \delta(S)| \equiv 1(\bmod 2) \text { for } S \subseteq V
$$

Motivation:

- Applications from Network Design: \leadsto Bounded node capacities.
- Thin trees conjecture: \leadsto Constraints on all cut sets.
- Parity-correction + uncrossing in Path TSP:
\leadsto Chain/laminar cut constraints.
\leadsto Parity constraints.

What's known?

Degree Constraints:

- Additive +1 violation.
[Singh, Lau, 2007]
- Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]

What's known?

Degree Constraints:

- Additive +1 violation.
[Singh, Lau, 2007]
- Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

- Additive $\mathcal{O}(\log |V|)$ violation.
[Bansal, Kandekar, Könemann, Nagarajan, Peis, 2013]

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

$$
\forall S \in \mathcal{F}: \quad|T \cap \delta(S)| \leqslant b_{S},
$$

with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

Multiplicative guarantees: $\left(\frac{\lambda}{\lambda-1}, 9 \lambda\right)$-approximation for MCCST $(\lambda>1)$.
[Olver, Zenklusen, 2013] [Linhares, Swamy, 2016]

What's known?

Degree Constraints:

- Additive +1 violation.
[Singh, Lau, 2007]
- Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

- Additive $\mathcal{O}(\log |V|)$ violation.
[Bansal, Kandekar, Könemann, Nagarajan, Peis, 2013]

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

$$
\forall S \in \mathcal{F}: \quad|T \cap \delta(S)| \leqslant b_{S},
$$

with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

Multiplicative guarantees: $\left(\frac{\lambda}{\lambda-1}, 9 \lambda\right)$-approximation for $\operatorname{MCCST}(\lambda>1)$.
[Olver, Zenklusen, 2013] [Linhares, Swamy, 2016]

$$
\begin{gathered}
c(T) \leqslant \frac{\lambda}{\lambda-1} \cdot c(\mathrm{OPT}) \\
|T \cap \delta(S)| \leqslant 9 \lambda \cdot b_{S}
\end{gathered}
$$

Our Results

Chain Constraints:

Theorem 1: MCCST

Randomized ($1,1+\varepsilon$)-approximation for MCCST with running time $|V|^{\mathcal{O}(\log |V|) / \varepsilon^{2}}$.

Laminar Constraints:

Theorem 2: MLCST
Randomized ($1,1+\varepsilon$)-approximation for MLCST with running time $|V|^{\mathcal{O}(k \log |V|) / \varepsilon^{2}}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

$$
\forall S \in \mathcal{F}: \quad a_{S} \leqslant|T \cap \delta(S)| \leqslant b_{S},
$$ with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

Our Results
Chain Constraints: $\int \frac{a_{s}}{1+\varepsilon} \leqslant|T \cap \delta(S)| \leqslant(1+\varepsilon) b_{s}$.

Theorem 1: MCCST

Randomized ($1,1+\varepsilon$)-approximation for MCCST with running time $|V|^{\mathcal{O}(\log | || |) / \varepsilon^{2}}$.

Laminar Constraints:

Theorem 2: MLCST
Randomized $(1,1+\varepsilon)$-approximation for MLCST with running time $|V|^{\mathcal{O}(k \log |V|) / \varepsilon^{2}}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

$$
\forall S \in \mathcal{F}: \quad a_{S} \leqslant|T \cap \delta(S)| \leqslant b_{S},
$$ with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

Our Results
Chain Constraints: $\int \frac{a_{s}}{1+\varepsilon} \leqslant|T \cap \delta(S)| \leqslant(1+\varepsilon) b_{s}$.

Theorem 1: MCCST

Randomized ($1,1+\varepsilon$)-approximation for MCCST with running time $|V|^{\mathcal{O}(\log | || |) / \varepsilon^{2}}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

$$
\forall S \in \mathcal{F}: \quad a_{S} \leqslant|T \cap \delta(S)| \leqslant b_{S},
$$ with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

Our Results

Chain Constraints: $\int \frac{a_{s}}{1+\varepsilon} \leqslant|T \cap \delta(S)| \leqslant(1+\varepsilon) b_{s}$.

Theorem 1: MCCST

Randomized ($1,1+\varepsilon$)-approximation for MCCST with running time $|V|^{\mathcal{O}(\log | || |) / \varepsilon^{2}}$.

Laminar Constraints:

Theorem 2: MLCST

Randomized ($1,1+\varepsilon$)-approximation for MLCST with running time $|V|^{\mathcal{O}(k \log |V|) / \varepsilon^{2}}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

$$
\forall S \in \mathcal{F}: \quad a_{S} \leqslant|T \cap \delta(S)| \leqslant b_{S},
$$ with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

Further application of new techniques:

- $(1.5+\varepsilon)$-approximations for Path TSP and shortest connected T-join problem.

Running times: $|V|^{\mathcal{O}(1) / \varepsilon}$ and $|V|^{\mathcal{O}(|T|) / \varepsilon}$

Minimum Chain-Constrained Spanning Trees

An Overview of Our Techniques

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that $\forall i \in[k]: \quad a_{i} \leqslant\left|T \cap \delta\left(S_{i}\right)\right| \leqslant b_{i}$, where $\emptyset \subsetneq S_{1} \subsetneq S_{2} \subsetneq \ldots \subsetneq S_{k} \subsetneq V$.

Techniques for MCCST

Three main steps:
(1) Find good solution x of linear relaxation.

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that

$$
\forall i \in[k]: \quad a_{i} \leqslant\left|T \cap \delta\left(S_{i}\right)\right| \leqslant b_{i}
$$

where $\emptyset \subsetneq S_{1} \subsetneq S_{2} \subsetneq \ldots \subsetneq S_{k} \subsetneq V$.
\leadsto New DP approach, inspired by recent Path TSP approaches.
[Traub, Vygen, 2018] [Zenklusen, 2019]

Techniques for MCCST

Three main steps:
(1) Find good solution x of linear relaxation.

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that

$$
\forall i \in[k]: \quad a_{i} \leqslant\left|T \cap \delta\left(S_{i}\right)\right| \leqslant b_{i}
$$

where $\emptyset \subsetneq S_{1} \subsetneq S_{2} \subsetneq \ldots \subsetneq S_{k} \subsetneq V$.
\leadsto New DP approach, inspired by recent Path TSP approaches.
[Traub, Vygen, 2018] [Zenklusen, 2019]
(2) Apply randomized rounding to obtain tree T from x.
\leadsto Marginal-preserving, negatively correlated rounding.
[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2010] [Chekuri, Vondrák, Zenklusen, 2010]
\leadsto Chernoff-type concentration bounds imply constraints up to ($1 \pm \varepsilon$) with high probability.

Techniques for MCCST

Three main steps:
(1) Find good solution x of linear relaxation
\leadsto New DP approach, inspired by recent Path TSP approaches.
[Traub, Vygen, 2018] [Zenklusen, 2019]
(2) Apply randomized rounding to obtain tree T from x.
\leadsto Marginal-preserving, negatively correlated rounding.
[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2010] [Chekuri, Vondrák, Zenklusen, 2010]
\leadsto Chernoff-type concentration bounds imply constraints up to ($1 \pm \varepsilon$) with high probability.
(3) Perform local corrections to gain back potential loss in objective.
$\leadsto ~ I n ~ M C C S T: ~ O n e ~ s i n g l e ~ e d g e ~ s w a p . ~$
\leadsto General procedure, applicable for similar rounding procedures in $\{0,1\}$-polytopes.

What properties should x have?

Natural Relaxation:

$$
Q=\underbrace{\left\{x \in \mathbb{R}_{\geqslant 0}^{E} \left\lvert\, \begin{array}{c}
x(E)=|V|-1 \\
x(E[S]) \leqslant|S|-1 \quad \forall S \subsetneq v,|S| \geqslant 2
\end{array}\right.\right\}}_{\text {spanning tree polytope } P_{\text {st }}} \cap \underbrace{\left\{x \in \mathbb{R}^{E} \mid a_{i} \leqslant x\left(\delta\left(S_{i}\right)\right) \leqslant b_{i} \quad \forall i \in[k]\right\}}_{\text {chain constraints }}
$$

What properties should x have?

Natural Relaxation:

$$
Q=\underbrace{\left\{x \in \mathbb{R}_{\geqslant 0}^{E} \left\lvert\, \begin{array}{c}
x(E)=|V|-1 \\
x(E[S]) \leqslant|S|-1 \quad \forall S \subsetneq v,|S| \geqslant 2
\end{array}\right.\right\}}_{\text {spanning tree polytope } P_{\text {st }}} \cap \underbrace{\left\{x \in \mathbb{R}^{E} \mid a_{i} \leqslant x\left(\delta\left(S_{i}\right)\right) \leqslant b_{i} \quad \forall i \in[k]\right\}}_{\text {chain constraints }}
$$

- Lower bound for approximation with respect to Q : Factor 2.
\leadsto Hard limit for prior approaches.

What properties should x have?

Natural Relaxation:

$$
Q=\underbrace{\left\{x \in \mathbb{R}_{\geqslant 0}^{E} \left\lvert\, \begin{array}{c}
x(E)=|V|-1 \\
x(E[S]) \leqslant|S|-1 \quad \forall S \subsetneq V,|S| \geqslant 2
\end{array}\right.\right\}}_{\text {spanning tree polytope } P_{\text {ST }}} \cap \underbrace{\left\{x \in \mathbb{R}^{E} \mid a_{i} \leqslant x\left(\delta\left(S_{i}\right)\right) \leqslant b_{i} \quad \forall i \in[k]\right\}}_{\text {chain constraints }}
$$

- Lower bound for approximation with respect to Q : Factor 2.
\leadsto Hard limit for prior approaches.
- Thought experiment: What if $x\left(\delta\left(S_{i}\right)\right) \geqslant c \cdot \log k$ for all $i \in[k]$?
\leadsto Chernoff Bounds:

$$
\operatorname{Pr}\left[\left|T \cap \delta\left(S_{i}\right)\right| \notin\left[(1-\varepsilon) x\left(\delta\left(S_{i}\right)\right),(1+\varepsilon) x\left(\delta\left(S_{i}\right)\right)\right]\right] \leqslant 2 e^{-x\left(\delta\left(S_{i}\right)\right) \cdot \varepsilon^{2} / 3}=k^{-\Omega(1)}
$$

\leadsto Union bound is enough to conclude approximate chain bounds with high probability.

What properties should x have?

Conclusion: Cuts S_{i} with large value $x\left(\delta\left(S_{i}\right)\right)$ are unproblematic!
\leadsto What about small cuts?

What properties should x have?

Conclusion: Cuts S_{i} with large value $x\left(\delta\left(S_{i}\right)\right)$ are unproblematic!
\leadsto What about small cuts?

Definition: τ-integral point $x \in \mathbb{R}^{E}$

x is τ-integral wrt. S_{1}, \ldots, S_{k} if for $i \in[k]$,
(i) $x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1$, or
(ii) $x\left(\delta\left(S_{i}\right)\right) \leqslant \tau$ and x integral on $\delta\left(S_{i}\right)$.

What properties should x have?

Conclusion: Cuts S_{i} with large value $x\left(\delta\left(S_{i}\right)\right)$ are unproblematic!
\leadsto What about small cuts?

Definition: τ-integral point $x \in \mathbb{R}^{E}$

x is τ-integral wrt. S_{1}, \ldots, S_{k} if for $i \in[k]$,
(i) $x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1$, or
(ii) $x\left(\delta\left(S_{i}\right)\right) \leqslant \tau$ and x integral on $\delta\left(S_{i}\right)$.

- Marginal-preserving rounding: $\left|T \cap \delta\left(S_{i}\right)\right|=x\left(\delta\left(S_{i}\right)\right)$ for small cuts S_{i}.
\leadsto Small cuts satisfy chain constraints exactly.

What properties should x have?

Conclusion: Cuts S_{i} with large value $x\left(\delta\left(S_{i}\right)\right)$ are unproblematic!
\leadsto What about small cuts?

Definition: τ-integral point $x \in \mathbb{R}^{E}$

x is τ-integral wrt. S_{1}, \ldots, S_{k} if for $i \in[k]$,
(i) $x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1$, or
(ii) $x\left(\delta\left(S_{i}\right)\right) \leqslant \tau$ and x integral on $\delta\left(S_{i}\right)$.

Theorem: Finding τ-integral points

A τ-integral point $x \in Q$ satisfying

$$
c^{\top} x \leqslant c(\mathrm{OPT})
$$

can be found in time $|V|^{\mathcal{O}(\tau)}$.

- Marginal-preserving rounding: $\left|T \cap \delta\left(S_{i}\right)\right|=x\left(\delta\left(S_{i}\right)\right)$ for small cuts S_{i}.
\leadsto Small cuts satisfy chain constraints exactly.

What properties should x have?

Conclusion: Cuts S_{i} with large value $x\left(\delta\left(S_{i}\right)\right)$ are unproblematic!
\leadsto What about small cuts?

Definition: τ-integral point $x \in \mathbb{R}^{E}$

x is τ-integral wrt. S_{1}, \ldots, S_{k} if for $i \in[k]$,
(i) $x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1$, or
(ii) $x\left(\delta\left(S_{i}\right)\right) \leqslant \tau$ and x integral on $\delta\left(S_{i}\right)$.

Theorem: Finding τ-integral points

A τ-integral point $x \in Q$ satisfying

$$
c^{\top} x \leqslant c(\mathrm{OPT})
$$

can be found in time $|V|^{\mathcal{O}(\tau)}$.

- Marginal-preserving rounding: $\left|T \cap \delta\left(S_{i}\right)\right|=x\left(\delta\left(S_{i}\right)\right)$ for small cuts S_{i}. \leadsto Small cuts satisfy chain constraints exactly.

Corollary

$(1+\varepsilon, 1+\varepsilon)$-approximation for MCCST with running time $|V|^{\mathcal{O}(\log k) / \varepsilon^{2}}$.

The Dynamic Program

Finding Cheap τ-Integral Points

Finding τ-integral points using a DP

Definition: τ-integral point $x \in P_{\mathrm{ST}}$

$$
\begin{aligned}
& x \in P_{\mathrm{ST}} \text { is } \tau \text {-integral wrt. } S_{1}, \ldots, S_{k} \text { if for } i \in[k] \\
& \text { (i) } x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1 \text {, or } \\
& \text { (ii) } x\left(\delta\left(S_{i}\right)\right) \leqslant \tau \text { and } x \text { integral on } \delta\left(S_{i}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\tau & =5 \\
-x & =1 \\
--x & =1 / 2 \\
-x & =0
\end{aligned}
$$

Finding τ-integral points using a DP

large cut	Definition: τ-integral point $x \in P_{\text {ST }}$
	$x \in P_{\text {ST }}$ is τ-integral wrt. S_{1}, \ldots, S_{k} if for $i \in[k]$,
	(i) ${ }^{-1} x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1$, or
	$\xrightarrow{\text { (ii) }} x\left(\delta\left(S_{i}\right)\right) \leqslant \tau$ and x integral on $\delta\left(S_{i}\right)$.

$$
\begin{gathered}
\tau=5 \\
-x=1 \\
-x=1 / 2 \\
-x=0
\end{gathered}
$$

Finding τ-integral points using a DP

large cut	Definition: τ-integral point $x \in P_{\text {ST }}$
	$x \in P_{\text {ST }}$ is τ-integral wrt. S_{1}, \ldots, S_{k} if for $i \in[k]$,
	(i) ${ }^{-1} x\left(\delta\left(S_{i}\right)\right) \geqslant \tau+1$, or
	(ii) $x\left(\delta\left(S_{i}\right)\right) \leqslant \tau$ and x integral on $\delta\left(S_{i}\right)$.

$$
\begin{gathered}
\tau=5 \\
-x=1 \\
-x=1 / 2 \\
-x=0
\end{gathered}
$$

DP idea: Extend solution from one small cut to another.

A special case: $\tau=1$

- Small cuts separate instance into independent subproblems.
- LP for optimizing subproblems. \leadsto Enforcing large cuts: Linear constraints.

$$
\begin{gathered}
\min \quad c^{\top} x \\
x \in P_{\mathrm{ST}}\left(S_{j} \backslash S_{i}\right) \\
x\left(\delta\left(S_{\ell}\right)\right) \geqslant 2 \quad \forall i<\ell<j
\end{gathered}
$$

- Standard DP finds cheapest 1-integral point.

$$
\begin{gathered}
\tau=1 \\
-x=1 \\
-x=1 / 2 \\
-x=0
\end{gathered}
$$

A special case: $\tau=1$

- Small cuts separate instance into independent subproblems.
- LP for optimizing subproblems. \leadsto Enforcing large cuts: Linear constraints.

$$
\begin{gathered}
\min \quad c^{\top} x \\
x \in P_{\mathrm{ST}}\left(S_{j} \backslash S_{i}\right) \\
x\left(\delta\left(S_{\ell}\right)\right) \geqslant 2 \quad \forall i<\ell<j
\end{gathered}
$$

- Standard DP finds cheapest 1-integral point.

$$
\begin{gathered}
\tau=1 \\
-x=1 \\
--x=1 / 2 \\
-x=0
\end{gathered}
$$

The general case

Problem: Small cuts no longer separate into independent subproblems.

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

$$
\begin{gathered}
\tau=5 \\
-x=1 \\
--x=1 / 2 \\
-x=0
\end{gathered}
$$

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

$$
\begin{aligned}
\tau & =5 \\
-x & =1 \\
--x & =1 / 2 \\
-x & =0
\end{aligned}
$$

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

$$
\begin{aligned}
\tau & =5 \\
-x & =1 \\
--x & =1 / 2 \\
-x & =0
\end{aligned}
$$

The general case

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

Consequence: Cannot find cheapest τ-integral point, but remain better than OPT.

Conclusions

Conclusions

Randomized $(1,1+\varepsilon)$-approximation algorithm for MCCST

1. Use the DP to find a τ-integral point x for $\tau=\left\lfloor 96 \log (2|V|) / \varepsilon^{2}\right\rfloor$.
2. Obtain spanning tree T from x by marginal-preserving, negatively correlated rounding.
3. Return cheapest tree obtained from T by one edge swap.

Conclusions

Randomized ($1,1+\varepsilon$)-approximation algorithm for MCCST

1. Use the DP to find a τ-integral point x for $\tau=\left\lfloor 96 \log (2|V|) / \varepsilon^{2}\right\rfloor$.
2. Obtain spanning tree T from x by marginal-preserving, negatively correlated rounding.
3. Return cheapest tree obtained from T by one edge swap.

Open questions:

- Polynomial-time algorithm for MCCST?
- Reducing exponential dependence on width (\mathcal{L}) in running time for MLCST?
- Connected T-join problem: Efficient algorithms for arbitrary T ?

