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Introduction: Constrained Spanning Trees

Motivation, Applications, and Our Results




Problem Setting and Motivation

Constrained Spanning Tree Problem

Input: Graph G = (V, E), edge costs ¢: E — R.

Goal: Find a minimum cost spanningtree T C E
satisfying a set of given constraints.

Constraint types: Motivation:

» Degree constraints: » Applications from Network Design:
degr(v) < b, forv e V. ~~» Bounded node capacities.

» Cut constraints: » Thin trees conjecture:
[TN§(S)| < bsforSC V. Ay Constraints on all cut sets.

» Parity constraints: » Parity-correction + uncrossing in Path TSP:
|ITN6(S)| =1 (mod 2) for SC V. A~y Chain/laminar cut constraints.

> .. A~y Parity constraints.
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What's known? Minimum Bounded Degree Spanning Trees

(MBDST)

Find a minimum cost spanning tree such that
VveV: degr(v)<b, .

Degree Constraints:

» Additive +1 violation.
[Singh, Lau, 2007]

» Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]
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What’s known? Minimum Chain-/Laminarly-Constrained Spanning

Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that
VSeF: |TNHS)| < bs,

Degree Constraints: , , , ,
9 with F C 2" a chain or laminar family, respectively.

» Additive +1 violation.
[Singh, Lau, 2007]

» Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

> Additive O(log |V|) violation. > Additive violation (/3£ 1) impossible if P 7 NP.
[Bansal, Kandekar, Kénemann, Nagarajan, Peis, 2013] [Olver, Zenklusen, 2013]

» Multiplicative guarantees: (ﬁ,g)\)-approximation for MCCST (A > 1).
[Olver, Zenklusen, 2013] [Linhares, Swamy, 2016]
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Degree Constraints: , , , ,
9 with F C 2" a chain or laminar family, respectively.

» Additive +1 violation.
[Singh, Lau, 2007]

» Generalization: Constant violation if edges only in constantly many constraints.
[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

> Additive O(log |V|) violation. > Additive violation (/3£ 1) impossible if P 7 NP.
[Bansal, Kandekar, Kénemann, Nagarajan, Peis, 2013] [Olver, Zenklusen, 2013]

» Multiplicative guarantees: (ﬁ,%)—approximation for MCCST (A > 1).
[Olver, Zenklusen, 2013] [Linhares, Swamy, 2016]
o(T) < 325 - c(OPT),
[ITNS(S)| < 9X - bs.
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Our Results

Chain Constraints:

Theorem 1: MCCST
Randomized (1, 14-¢)-approximation for MCCST

with running time |V/|°""/=*,

Laminar Constraints:

Theorem 2: MLCST
Randomized (1, 1+¢)-approximation for MLCST

with running time |V /=",

Minimum Chain-/Laminarly-Constrained Spanning

Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that
VS e F: as<|7-ﬁ(5(8)|<bs7
with F C 2" a chain or laminar family, respectively.

» Upper and lower bounds in constraints.
» Essentially best possible guarantees.
» Quasipolynomiality inherent to approach.
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k := width(F)

Minimum Chain-/Laminarly-Constrained Spanning

Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that
VS e F: as<|7-ﬁ(5(8)|<bs7
with F C 2" a chain or laminar family, respectively.

» Upper and lower bounds in constraints.
» Essentially best possible guarantees.
» Quasipolynomiality inherent to approach.

Further application of new techniques:

> (1.5 + ¢)-approximations for Path TSP and shortest connected T-join problem.

Running times: | v|“/= and

|V|O(\T\)/E
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Minimum Chain-Constrained Spanning Trees

An Overview of Our Techniques




Techniques for MCCST Minimum Chain-Constrained Spanning Trees

(MCCST)
Find a minimum cost spanning tree such that
Vielk]: a<|TNnS) <b,
where) C S C S, C...C S S V.
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Techniques for MCCST Minimum Chain-Constrained Spanning Trees

(MCCST)
Find a minimum cost spanning tree such that
Three main steps: Vielk]: a<|TNiS) <bi,

where ) C S C S C...C S C V.

@ Find good solution x of .

~~> New DP approach, inspired by recent Path TSP approaches.
[Traub, Vygen, 2018] [Zenklusen, 2019]
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Techniques for MCCST Minimum Chain-Constrained Spanning Trees

(MCCST)
Find a minimum cost spanning tree such that
Three main steps: Vielk]: a<|TniS) <bi,

where) C S C S C...C S C V.

@ Find good solution x of .

~»» New DP approach, inspired by recent Path TSP approaches.
[Traub, Vygen, 2018] [Zenklusen, 2019]

@ Apply (randomized rounding) to obtain tree T from x.

A Marginal-preserving, negatively correlated rounding.
[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2010] [Chekuri, Vondrék, Zenklusen, 2010]
Ay Chernoff-type concentration bounds imply constraints up to (1 = €) with high probability.

@ Perform to gain back potential loss in objective.

A~ In MCCST: One single edge swap.
A General procedure, applicable for similar rounding procedures in {0, 1}-polytopes.
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What properties should x have?

Natural Relaxation:

x(E) = V| — 1

=<{xeRE
@ { € 20| xEsy <isi-1 vscv, s> 2

}m{x €RF|a<x(5(s) <b VielH}

chain constraints

spanning tree polytope Pst

8/15



What properties should x have?

Natural Relaxation:

x(E) = V| — 1
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chain constraints
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» Lower bound for approximation with respect to Q: Factor 2.
A2 Hard limit for prior approaches.
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What properties should x have?

Natural Relaxation:

X(E) = V| -1

Elg N<b Vi
Q= {xeR>0 ES) < |s|—1 VSV |s|>2}ﬂ{X€R | & < x(3(s)) <bi VieK}

chain constraints

spanning tree polytope Pst

» Lower bound for approximation with respect to Q: Factor 2.
A2 Hard limit for prior approaches.

> Thought experiment: [What if x(6(S)) = ¢ - log k for all i € [K] j

A2 Chernoff Bounds:
PrITN8(S)] ¢ [(1 = e)x(68(8)), (1 + e)x(8(8))]] < 267 CEN < = =2,

A Union bound is enough to conclude approximate chain bounds with high probability.
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What properties should x have?

Conclusion: Cuts S; with large value x(4(S;)) are unproblematic!
A What about small cuts?
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What properties should x have?

Conclusion: Cuts S; with large value x((S;)) are unproblematic!
A What about small cuts?

Definition: 7-integral point x € RE Theorem: Finding T-integral points
x is T-integral wrt. Sy, ..., Sk if for i € [K], A T-integral point x € Q satisfying
(i) x(6(S))=T1+1,0r ¢ x < ¢(OPT)

(i) x(6(S;)) < 7 and x integral on (S;). can be found in time [V/|©().

> Marginal-preserving rounding: | T N 6(S;)| = x(4(S;)) for small cuts S;.
A~ Small cuts satisfy chain constraints exactly.

(1+¢, 14¢)-approximation for MCCST with run-

ning time V| /<",
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The Dynamic Program

Finding Cheap 7-Integral Points




Finding 7-integral points using a DP

Definition: 7-integral point x € Pst

X € Pstis T-integral wrt. Sy, ..., Sk if for i € [k],
(i) x(6(S))) =7 +1,0r
(i) x(6(S;)) < T and x integral on §(S)).
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Finding 7-integral points using a DP

Definition: 7-integral point x € Pst
X € Pstis T-integral wrt. Sy, ..., Sk if for i € [k],
large cut ()x(8(S})) =7 +1, or

small cut (i) x(6(S;)) < T and x integral on §(S)).
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Finding 7-integral points using a DP

Definition: 7-integral point x € Pst

X € Pstis T-integral wrt. Sy, ..., Sk if for i € [k],
large cut () x(8(S))) =7 +1, 0r

small cut (i) x(6(S;)) < T and x integral on §(S)).

T=5
—x=1
__.X:1/2

x=0

Si S, S3 Sa Ss
DP idea: Extend solution from one small cut to another.
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A special case: 7 = 1

» Small cuts separate instance into independent subproblems. ) T
min ¢ x

X € PST(S/' \ S,)
x(5(S))) =2 Vi<t<|

» LP for optimizing subproblems.
~n» Enforcing large cuts: Linear constraints.

» Standard DP finds cheapest 1-integral point.
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The general case

[Problem: Small cuts no longer separate into independent subproblems.j

o T=5
o
o — =
o o 2 X
0 cx=1p
o
o o x=0
o
o
i | -
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The general case

[Problem: Small cuts no longer separate into independent subproblems.j

Finding left-compatible solution
» Guess connectivity pattern on the right.
» Solve LP for guessed pattern.

P T=5
O
o —_— g
o o - X
o - x=1p
O
o o x=0
[/
o/
/ ™ °
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The general case

[Problem: Small cuts no longer separate into independent subproblems.j

Finding left-compatible solution Extending to right-compatible solution
» Guess connectivity pattern on the right. » Completing connectivity patterns is hard.
» Solve LP for guessed pattern. » Solution: relax connectivity requirement,

extend explicit subsolution.

T=5
(o

o oy —

o] o X =
__.X:1/2

o
o o x=0
o
s o
/

13/15



The general case

[Problem: Small cuts no longer separate into independent subproblems.j

Finding left-compatible solution Extending to right-compatible solution
» Guess connectivity pattern on the right. » Completing connectivity patterns is hard.
» Solve LP for guessed pattern. » Solution: relax connectivity requirement,

extend explicit subsolution.

__.X:1/2

13/15



The general case

[Problem: Small cuts no longer separate into independent subproblems.j

Finding left-compatible solution Extending to right-compatible solution
» Guess connectivity pattern on the right. » Completing connectivity patterns is hard.
» Solve LP for guessed pattern. » Solution: relax connectivity requirement,

extend explicit subsolution.

T=5

— x =
__.X:1/2
x=0

13/15



The general case

[Problem: Small cuts no longer separate into independent subproblems.j

Finding left-compatible solution Extending to right-compatible solution
» Guess connectivity pattern on the right. » Completing connectivity patterns is hard.
» Solve LP for guessed pattern. » Solution: relax connectivity requirement,

extend explicit subsolution.

T=5
(o
o —x=1
__.X:1/2
o ° x=0

Sy S Ss

Consequence: Cannot find cheapest T-integral point, but remain better than OPT.
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Conclusions

Randomized (1, 1 + £)-approximation algorithm for MCCST

1. Use the DP to find a 7-integral point x for 7 = |96 log(2V[) /2|

2. Obtain spanning tree T from x by marginal-preserving,
negatively correlated rounding.

3. Return cheapest tree obtained from T by one edge swap.
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Conclusions

Randomized (1, 1 + €)-approximation algorithm for MCCST

1. Use the DP to find a 7-integral point x for 7 = |96 log(2V[) /2|

2. Obtain spanning tree T from x by marginal-preserving,
negatively correlated rounding.

3. Return cheapest tree obtained from T by one edge swap.

Open questions:
» Polynomial-time algorithm for MCCST?
> Reducing exponential dependence on width(£) in running time for MLCST?
» Connected T-join problem: Efficient algorithms for arbitrary T?
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