A new Dynamic Programming Approach for Spanning Trees with Chain Constraints and Beyond

Martin Nägele Rico Zenklusen ETH Zürich

Introduction: Constrained Spanning Trees

Motivation, Applications, and Our Results

Problem Setting and Motivation

Constrained Spanning Tree Problem

Input: Graph
$$G = (V, E)$$
, edge costs $c \colon E \to \mathbb{R}$.

Goal: Find a minimum cost spanning tree $T \subseteq E$ satisfying a set of given constraints.

Constraint types:

► ...

- Degree constraints: $\deg_T(v) \leq b_v$ for $v \in V$.
- Cut constraints:
 - $|T \cap \delta(S)| \leq b_S$ for $S \subseteq V$.
- Parity constraints: $|T \cap \delta(S)| \equiv 1 \pmod{2}$ for $S \subseteq V$.

Motivation:

- Applications from Network Design:
 - ↔ Bounded node capacities.
- Thin trees conjecture:
 - ↔ Constraints on all cut sets.
- Parity-correction + uncrossing in Path TSP:
 - ↔ Chain/laminar cut constraints.
 - → Parity constraints.

Minimum Bounded Degree Spanning Trees (MBDST)

Find a minimum cost spanning tree such that

 $\forall v \in V$: $\deg_T(v) \leqslant b_v$.

Degree Constraints:

► Additive +1 violation.

[Singh, Lau, 2007]

• Generalization: Constant violation if edges only in constantly many constraints.

[Bansal, Kandekar, Nagarajan, 2009]

What's known?

Degree Constraints:

Additive +1 violation.

[Singh, Lau, 2007]

Generalization: Constant violation if edges only in constantly many constraints.

[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

• Additive $\mathcal{O}(\log |V|)$ violation.

[Bansal, Kandekar, Könemann, Nagarajan, Peis, 2013]

- Additive violation $\frac{c \cdot \log |V|}{\log \log |V|}$ impossible if $P \neq NP$. [Olver. Zenklusen, 2013]
- Multiplicative guarantees: $(\frac{\lambda}{\lambda-1}, 9\lambda)$ -approximation for MCCST ($\lambda > 1$).

[Olver, Zenklusen, 2013] [Linhares, Swamy, 2016]

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST) Find a minimum cost spanning tree such that

 $orall {old S} \in {\mathcal F} \colon \quad |{\mathcal T} \cap \delta({\mathcal S})| \leqslant {old b}_{{\mathcal S}} \; \; ,$

with $\mathcal{F} \subseteq 2^V$ a chain or laminar family, respectively.

What's known?

Degree Constraints:

► Additive +1 violation.

[Singh, Lau, 2007]

Generalization: Constant violation if edges only in constantly many constraints.

[Bansal, Kandekar, Nagarajan, 2009]

Chain or Laminar Constraints:

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that $\forall S \in \mathcal{F}: \quad |T \cap \delta(S)| \leq b_S$, with $\mathcal{F} \subseteq 2^V$ a chain or laminar family, respectively.

Chain Constraints:

Theorem 1: MCCST

Randomized (1, 1+ ε)-approximation for MCCST with running time $|V|^{\mathcal{O}(\log |V|)/\varepsilon^2}$.

Laminar Constraints:

Theorem 2: MLCST

Randomized $(1, 1+\varepsilon)$ -approximation for MLCST with running time $|V|^{\mathcal{O}(k \log |V|)/\varepsilon^2}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that

 $orall {old S} \in {\mathcal F} \colon \quad {old a}_{old S} \leqslant |{\mathcal T} \cap \delta({\mathcal S})| \leqslant {old b}_{old S} \; \; ,$

with $\mathcal{F} \subseteq 2^V$ a chain or laminar family, respectively.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

 $c(T) \leq c(OPT),$ *Chain Constraints:* $a_s \leq |T \cap \delta(S)| \leq (1+\varepsilon)b_s.$ Theorem 1: MCCST Randomized $(1, 1+\varepsilon)$ -approximation for MCCST with running time $|V|^{O(\log |V|)/\varepsilon^2}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that $\forall S \in \mathcal{F}: \quad a_S \leq |T \cap \delta(S)| \leq b_S$,

with $\mathcal{F} \subseteq 2^{V}$ a chain or laminar family, respectively.

Laminar Constraints:

Theorem 2: MLCST

Randomized $(1, 1+\varepsilon)$ -approximation for MLCST with running time $|V|^{\mathcal{O}(k \log |V|)/\varepsilon^2}$.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

 $c(T) \leq c(OPT),$ *Chain Constraints:* $a_s \leq |T \cap \delta(S)| \leq (1+\varepsilon)b_s.$ Theorem 1: MCCST Randomized $(1, 1+\varepsilon)$ -approximation for MCCST with running time $|V|^{O(\log |V|)/\varepsilon^2}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that $\forall S \in \mathcal{F}: \quad a_S \leq |T \cap \delta(S)| \leq b_S$,

with $\mathcal{F} \subseteq 2^V$ a chain or laminar family, respectively.

Laminar Constraints:

Theorem 2: MLCST

Randomized $(1, 1+\varepsilon)$ -approximation for MLCST with running time $|V|^{\mathcal{O}(k\log |V|)/\varepsilon^2}$.

 $\flat k \coloneqq \mathsf{width}(\mathcal{F})$

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

 $c(T) \leq c(OPT),$ *Chain Constraints:* $\int_{1+\varepsilon}^{\frac{a_s}{1+\varepsilon}} \leq |T \cap \delta(S)| \leq (1+\varepsilon)b_s.$ Theorem 1: MCCST Randomized $(1, 1+\varepsilon)$ approximation for MCCST with running time $|V|^{O(\log |V|)/\varepsilon^2}$.

Laminar Constraints:

Theorem 2: MLCST Randomized (1, 1+ ε)-approximation for MLCST with running time $|V|^{O(k \log |V|)/\varepsilon^2}$.

Minimum Chain-/Laminarly-Constrained Spanning Trees (MCCST/MLCST)

Find a minimum cost spanning tree such that $\forall S \in \mathcal{F}: \quad a_S \leq |T \cap \delta(S)| \leq b_S$,

with $\mathcal{F} \subseteq 2^V$ a chain or laminar family, respectively.

- Upper and lower bounds in constraints.
- Essentially best possible guarantees.
- Quasipolynomiality inherent to approach.

Further application of new techniques:

• $(1.5 + \varepsilon)$ -approximations for Path TSP and shortest connected *T*-join problem. Running times: $|V|^{O(1)/\varepsilon}$ and $|V|^{O(|T|)/\varepsilon}$

Minimum Chain-Constrained Spanning Trees

Techniques for MCCST

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that $\forall i \in [k]: \quad a_i \leq |T \cap \delta(S_i)| \leq b_i$, where $\emptyset \subsetneq S_1 \subsetneq S_2 \subsetneq \ldots \subsetneq S_k \subsetneq V$. Three main steps:

✓ New DP approach, inspired by recent Path TSP approaches.

[Traub, Vygen, 2018] [Zenklusen, 2019]

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that $\forall i \in [k]: \quad a_i \leq |T \cap \delta(S_i)| \leq b_i$, where $\emptyset \subsetneq S_1 \subsetneq S_2 \subsetneq \ldots \subsetneq S_k \subsetneq V$. Three main steps:

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that $\forall i \in [k]: \quad a_i \leq |T \cap \delta(S_i)| \leq b_i$, where $\emptyset \subsetneq S_1 \subsetneq S_2 \subsetneq \ldots \subsetneq S_k \subsetneq V$.

✓ New DP approach, inspired by recent Path TSP approaches.

[Traub, Vygen, 2018] [Zenklusen, 2019]

Apply (randomized rounding) to obtain tree T from x.

→ Marginal-preserving, negatively correlated rounding.

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2010] [Chekuri, Vondrák, Zenklusen, 2010]

w Chernoff-type concentration bounds imply constraints up to $(1 \pm \varepsilon)$ with high probability.

Three main steps:

Minimum Chain-Constrained Spanning Trees (MCCST)

Find a minimum cost spanning tree such that $\forall i \in [k]: \quad a_i \leq |T \cap \delta(S_i)| \leq b_i$, where $\emptyset \subsetneq S_1 \subsetneq S_2 \subsetneq \ldots \subsetneq S_k \subsetneq V$.

→ New DP approach, inspired by recent Path TSP approaches.

[Traub, Vygen, 2018] [Zenklusen, 2019]

Apply (randomized rounding) to obtain tree T from x.

✓ Marginal-preserving, negatively correlated rounding.

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2010] [Chekuri, Vondrák, Zenklusen, 2010]

~~ Chernoff-type concentration bounds imply constraints up to (1 $\pm \varepsilon$) with high probability.

3

Perform local corrections to gain back potential loss in objective.

 \checkmark In MCCST: One single edge swap.

 \checkmark General procedure, applicable for similar rounding procedures in $\{0, 1\}$ -polytopes.

Natural Relaxation:

$$Q = \underbrace{\left\{ x \in \mathbb{R}^{E}_{\geqslant 0} \middle| \begin{array}{c} x(E) = |V| - 1 \\ x(E[S]) \leqslant |S| - 1 \quad \forall S \subsetneq V, \ |S| \geqslant 2 \right\}}_{\text{spanning tree polytope } P_{ST}} \cap \underbrace{\left\{ x \in \mathbb{R}^{E} \middle| \begin{array}{c} a_{i} \leqslant x(\delta(S_{i})) \leqslant b_{i} \quad \forall i \in [k] \right\}}_{\text{chain constraints}} \right\}}_{\text{chain constraints}}$$

Natural Relaxation:

$$Q = \underbrace{\left\{ x \in \mathbb{R}^{E}_{\geqslant 0} \middle| \begin{array}{c} x(E) = |V| - 1 \\ x(E[S]) \leqslant |S| - 1 \quad \forall \ S \subsetneq V, \ |S| \geqslant 2 \right\}}_{\text{spanning tree polytope } P_{ST}} \cap \underbrace{\left\{ x \in \mathbb{R}^{E} \middle| a_{i} \leqslant x(\delta(S_{i})) \leqslant b_{i} \quad \forall \ i \in [k] \right\}}_{\text{chain constraints}}$$

Lower bound for approximation with respect to Q: Factor 2.
Ard limit for prior approaches.

Natural Relaxation:

$$Q = \underbrace{\left\{ x \in \mathbb{R}^{E}_{\geqslant 0} \middle| \begin{array}{c} x(E) = |V| - 1 \\ x(E[S]) \leqslant |S| - 1 \quad \forall \ S \subsetneq V, \ |S| \geqslant 2 \right\}}_{\text{spanning tree polytope } P_{\text{ST}}} \cap \underbrace{\left\{ x \in \mathbb{R}^{E} \middle| \begin{array}{c} a_{i} \leqslant x(\delta(S_{i})) \leqslant b_{i} \quad \forall \ i \in [k] \right\}}_{\text{chain constraints}} \right\}}_{\text{chain constraints}}$$

Lower bound for approximation with respect to Q: Factor 2.
And limit for prior approaches.

▶ Thought experiment: What if $x(\delta(S_i)) \ge c \cdot \log k$ for all $i \in [k]$?

♦ Chernoff Bounds:

$$\Pr\left[|T \cap \delta(S_i)| \notin \left[(1-\varepsilon)x(\delta(S_i)), (1+\varepsilon)x(\delta(S_i))\right]\right] \leqslant 2e^{-x(\delta(S_i))\cdot\varepsilon^2/3} = k^{-\Omega(1)} \ .$$

↔ Union bound is enough to conclude approximate chain bounds with high probability.

Conclusion: Cuts S_i with large value $x(\delta(S_i))$ are unproblematic!

↔ What about small cuts?

Conclusion: Cuts S_i with large value $x(\delta(S_i))$ are unproblematic!

→ What about small cuts?

Definition: τ -integral point $x \in \mathbb{R}^{E}$

x is τ -integral wrt. S_1, \ldots, S_k if for $i \in [k]$,

(i) $x(\delta(S_i)) \ge \tau + 1$, or

(ii) $x(\delta(S_i)) \leq \tau$ and x integral on $\delta(S_i)$.

Conclusion: Cuts S_i with large value $x(\delta(S_i))$ are unproblematic!

→ What about small cuts?

Definition: τ -integral point $x \in \mathbb{R}^{E}$

x is τ -integral wrt. S_1, \ldots, S_k if for $i \in [k]$,

```
(i) x(\delta(S_i)) \ge \tau + 1, or
```

(ii) $x(\delta(S_i)) \leq \tau$ and x integral on $\delta(S_i)$.

• Marginal-preserving rounding: $|T \cap \delta(S_i)| = x(\delta(S_i))$ for small cuts S_i .

↔ Small cuts satisfy chain constraints exactly.

Conclusion: Cuts S_i with large value $x(\delta(S_i))$ are unproblematic!

→ What about small cuts?

Definition: τ -integral point $x \in \mathbb{R}^{E}$

```
x is \tau-integral wrt. S_1, \ldots, S_k if for i \in [k],
```

(i) $x(\delta(S_i)) \geqslant \tau + 1$, or

(ii) $x(\delta(S_i)) \leq \tau$ and x integral on $\delta(S_i)$.

Theorem: Finding au-integral points A au-integral point $x \in Q$ satisfying $c^{ op} x \leqslant c(\mathsf{OPT})$

can be found in time $|V|^{\mathcal{O}(\tau)}$.

• Marginal-preserving rounding: $|T \cap \delta(S_i)| = x(\delta(S_i))$ for small cuts S_i .

↔ Small cuts satisfy chain constraints exactly.

Conclusion: Cuts S_i with large value $x(\delta(S_i))$ are unproblematic!

→ What about small cuts?

Definition: τ -integral point $x \in \mathbb{R}^{E}$

x is τ -integral wrt. S_1, \ldots, S_k if for $i \in [k]$,

(i) $x(\delta(S_i)) \geqslant au + 1$, or

(ii) $x(\delta(S_i)) \leq \tau$ and x integral on $\delta(S_i)$.

Theorem: Finding τ -integral points

A τ -integral point $x \in Q$ satisfying $c^{\top}x \leqslant c(\mathsf{OPT})$ can be found in time $|V|^{\mathcal{O}(\tau)}$.

• Marginal-preserving rounding: $|T \cap \delta(S_i)| = x(\delta(S_i))$ for small cuts S_i .

✓ Small cuts satisfy chain constraints exactly.

Corollary

 $(1+\varepsilon, 1+\varepsilon)$ -approximation for MCCST with running time $|V|^{\mathcal{O}(\log k)/\varepsilon^2}$.

The Dynamic Program

Finding τ -integral points using a DP

Definition: τ -integral point $x \in P_{ST}$

$$x \in P_{ST}$$
 is τ -integral wrt. S_1, \ldots, S_k if for $i \in [k]$,

(i)
$$x(\delta(S_i)) \ge \tau + 1$$
, or

(ii) $x(\delta(S_i)) \leq \tau$ and x integral on $\delta(S_i)$.

Finding τ -integral points using a DP

Definition: τ -integral point $x \in P_{ST}$ $x \in P_{ST}$ is τ -integral wrt. S_1, \ldots, S_k if for $i \in [k]$,large cut(i) $x(\delta(S_i)) \ge \tau + 1$, or(ii) $x(\delta(S_i)) \le \tau$ and x integral on $\delta(S_i)$.

Finding τ -integral points using a DP

Definition: τ -integral point $x \in P_{ST}$ $x \in P_{ST}$ is τ -integral wrt. S_1, \ldots, S_k if for $i \in [k]$,large cut(i) $x(\delta(S_i)) \ge \tau + 1$, or(ii) $x(\delta(S_i)) \le \tau$ and x integral on $\delta(S_i)$.

DP idea: Extend solution from one small cut to another.

- Small cuts separate instance into independent subproblems.
- LP for optimizing subproblems.
 - ↔ Enforcing large cuts: Linear constraints.
- Standard DP finds cheapest 1-integral point.

 $egin{array}{lll} \min & c^ op x \ & x \in \mathcal{P}_{\mathsf{ST}}(\mathcal{S}_j \setminus \mathcal{S}_i) \ & x(\delta(\mathcal{S}_\ell)) \geqslant 2 \quad orall i < \ell < j \end{array}$

- Small cuts separate instance into independent subproblems.
- LP for optimizing subproblems.
 - ↔ Enforcing large cuts: Linear constraints.
- Standard DP finds cheapest 1-integral point.

 $egin{array}{lll} \min & c^ op x \ & x \in \mathcal{P}_{\mathsf{ST}}(\mathcal{S}_j \setminus \mathcal{S}_i) \ & x(\delta(\mathcal{S}_\ell)) \geqslant 2 \quad orall i < \ell < j \end{array}$

Problem: Small cuts no longer separate into independent subproblems.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

Problem: Small cuts no longer separate into independent subproblems.

Finding left-compatible solution

- Guess connectivity pattern on the right.
- Solve LP for guessed pattern.

Extending to right-compatible solution

- Completing connectivity patterns is hard.
- Solution: relax connectivity requirement, extend explicit subsolution.

Consequence: Cannot find cheapest τ -integral point, but remain better than OPT.

Conclusions

Conclusions

Randomized (1, 1 + ε)-approximation algorithm for MCCST

- 1. Use the DP to find a τ -integral point *x* for $\tau = \lfloor \frac{96 \log(2|V|)}{\varepsilon^2} \rfloor$.
- 2. Obtain spanning tree *T* from *x* by marginal-preserving, negatively correlated rounding.
- 3. Return cheapest tree obtained from T by one edge swap.

Randomized $(1, 1 + \varepsilon)$ -approximation algorithm for MCCST

- 1. Use the DP to find a τ -integral point *x* for $\tau = \lfloor \frac{96 \log(2|V|)}{\varepsilon^2} \rfloor$.
- 2. Obtain spanning tree *T* from *x* by marginal-preserving, negatively correlated rounding.
- 3. Return cheapest tree obtained from T by one edge swap.

Open questions:

- Polynomial-time algorithm for MCCST?
- Reducing exponential dependence on width(L) in running time for MLCST?
- Connected T-join problem: Efficient algorithms for arbitrary T?