Congruency-Constrained TU Problems

Beyond the Bimodular Case

Martin Nägele Richard Santiago Rico Zenklusen
Institute for Operations Research
ETH Zürich

The agenda for today

Motivation \& background

bounded subdeterminant IPs - successes in the bimodular case - new results

(2)

Structural aspects of CCTU problems and their solutions

 a decomposition lemma - proximity — flatness©

A decomposition approach to CCTU problems

Seymour's decomposition - deciding feasibility for modulus 3

Base block problems
congruency-constrained minimum cuts and circulations

Motivation \& Background

bounded subdeterminant IPs - successes
in the bimodular case - new results

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

Two classes of efficiently solvable IPs

- If $n=O(1)$ or $m=O(1)$:
\rightarrow Lenstra's Algorithm [Lenstra 1983].
- If A is totally unimodular (TU):
\rightarrow Integral relaxation.

Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)
Given $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

Two classes of efficiently solvable IPs

- If $n=O(1)$ or $m=O(1)$:
\rightarrow Lenstra's Algorithm [Lenstra 1983].
- If A is totally unimodular (TU):
\rightarrow Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1 ?

Bounded subdeterminants

\square

Δ-modular Integer Programming

Given a constant $\Delta \in \mathbb{Z}_{>0}$, can integer linear programs

$$
\min \left\{c^{\top} x: A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$

with Δ-modular constraint matrix A be solved efficiently?

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$, and
\rightarrow absolute values of $n \times n$ subdeterminants are bounded by Δ
- Δ-modularity is more general than total Δ-modularity

Δ-modular Integer Programming

Given a constant $\Delta \in \mathbb{Z}_{>0}$, can integer linear programs

$$
\min \left\{c^{\top} x: A x \leq b, x \in \mathbb{Z}^{n}\right\}
$$

with Δ-modular constraint matrix A be solved efficiently?

- $A \in \mathbb{Z}^{m \times n}$ is Δ-modular if
$\rightarrow \operatorname{rank}(A)=n$, and
\rightarrow absolute values of $n \times n$ subdeterminants are bounded by Δ
- Δ-modularity is more general than total Δ-modularity

Known results
$\checkmark \Delta=1$: easy
$\checkmark \Delta=2$: Bimodular Integer Programming (BIP)
[Artmann, Weismantel, and Zenklusen, STOC 2017]
\checkmark Arbitrary constant Δ, at most 2 non-zeros per row
[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

Bimodular integer programs

Bimodular integer programming (BIP)

Given $A \in \mathbb{Z}^{k \times n}, b \in \mathbb{Z}^{m}$, and $c \in \mathbb{Z}^{n}$ such that A has full column rank and all $n \times n$ minors in $\{-2,-1,0,1,2\}$, solve $\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$.

Theorem
BIP can be solved in strongly polynomial time.

$$
\left(\begin{array}{rr}
0 & -2 \\
1 & -1 \\
1 & 1 \\
0 & 2 \\
-1 & 0 \\
-1 & -1
\end{array}\right) \cdot\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{r}
-1 \\
4 \\
9 \\
9 \\
-1 \\
-3
\end{array}\right)
$$

The approach

Bimodular Integer Program (BIP)
$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$
s.t. A bimodular, relaxation fractional

Theorem

BIP can be solved in strongly polynomial time.

Conic Parity TU Problem (CPTU)
$\min \left\{\tilde{c}^{\top} y: T y \leqslant 0, y \in \mathbb{Z}^{n}, y(S)\right.$ odd $\}$ with T totally unimodular, and $S \subseteq[n]$.

Seymour's TU decomposition
Exploited for reduction to parityconstrained base block problems.

Base block problems

Interpretation as parity-constrained cut and circulation problems

CCTU problems

```
Congruency-constrained TU problems (CCTU)
Let \(T \in\{-1,0,1\}^{k \times n}\) totally unimodular, \(b \in \mathbb{Z}^{k}, \gamma \in \mathbb{Z}^{n}\),
\(m \in \mathbb{Z}_{>0}\), and \(r \in \mathbb{Z}\). Solve
\(\min \left\{c^{\top} x: T x \leq b, \gamma^{\top} x \equiv r(\bmod m), x \in \mathbb{Z}^{n}\right\}\).
```

- Special case of m-modular IP

Let $T \in\{-1,0,1\}^{k \times n}$ totally unimodular, $b \in \mathbb{Z}^{k}, \gamma \in \mathbb{Z}^{n}$, $m \in \mathbb{Z}_{>0}$, and $r \in \mathbb{Z}$. Solve

$$
\min \left\{c^{\top} x: T x \leq b, \gamma^{\top} x \equiv r(\bmod m), x \in \mathbb{Z}^{n}\right\}
$$

Theorem 1: Feasibility for $m=3$
\exists strongly poly. randomized alg. for CCTU feasibility with $m=3$.

Congruency-constrained TU problems (CCTU)

Let $T \in\{-1,0,1\}^{k \times n}$ totally unimodular, $b \in \mathbb{Z}^{k}, \gamma \in \mathbb{Z}^{n}$, $m \in \mathbb{Z}_{>0}$, and $r \in \mathbb{Z}$. Solve

$$
\min \left\{c^{\top} x: T x \leq b, \gamma^{\top} x \equiv r(\bmod m), x \in \mathbb{Z}^{n}\right\}
$$

Theorem 1: Feasibility for $m=3$

$$
\exists \text { strongly poly. randomized alg. for CCTU feasibility with } m=3 .
$$

Theorem 2: Flat or feasible

Either \exists flat constraint of width at most $m-2$, or a feasible CCTU solution can be found in strongly poly. time.

Theorem 3: Proximity

If feasible, then for any x_{0} optimal for a CCTU relaxation, $\exists x^{*}$ optimal for the problem with $\left\|x^{*}-x_{0}\right\|_{\infty} \leq m-1$.

Structural results on CCTU problems

decomposition lemma - flatness - proximity

A decomposition lemma for solutions of TU systems

Decomposition lemma

Let $x_{0}, y \in \mathbb{Z}^{n}$ be solutions of a TU system $T x \leq b$. There are $y^{i} \in \mathbb{Z}^{n}$ with

$$
y=x_{0}+\sum_{i=1}^{\ell} y^{i}, \quad \text { and }
$$

(i) $\left|d^{\top} y^{i}\right| \leq 1$ for all d that are TU-appendable to T, and
(ii) $\forall S \subseteq[\ell]: x_{0}+\sum_{i \in S} y^{i}$ is feasible for $T x \leq b$.

$$
y=x_{0}+y^{1}+y^{2}+y^{3}+y^{4}+y^{5}+y^{6}+\ldots+y^{\ell}
$$

$$
\begin{gathered}
y=x_{0}+y^{1}+y^{2}+y^{3}+y^{4}+y^{5}+y^{6}+\ldots+y^{\ell} \\
\Longrightarrow \quad \gamma^{\top} y \equiv \gamma^{\top} x_{0}+\gamma^{\top} y^{1}+\gamma^{\top} y^{2}+\gamma^{\top} y^{3}+\gamma^{\top} y^{4}+\gamma^{\top} y^{5}+\gamma^{\top} y^{6}+\ldots+\gamma^{\top} y^{\ell} \equiv r \quad(\bmod m)
\end{gathered}
$$

Lemma

For any m integers, there is a subset with sum $\equiv 0(\bmod m)$.

$$
y=x_{0}+y^{1}+y^{2}+y^{3}+y^{4}+y^{5}+y^{6}+\ldots+y^{\ell}
$$

$\Longrightarrow \quad \gamma^{\top} y \equiv \gamma^{\top} x_{0}+\gamma^{\top} y^{1}+\gamma^{\top} y^{2}+\gamma^{\top} y^{3}+\gamma^{\top} y^{4}+\gamma^{\top} y^{5}+\gamma^{\top} y^{6}+\ldots+\gamma^{\top} y^{\ell} \equiv r \quad(\bmod m)$

$$
y=x_{0}+y^{1}+y^{2}+y^{3}+y^{4}+y^{5}+y^{6}+\ldots+y^{\ell}
$$

Lemma

For any m integers, there is a subset with sum $\equiv 0(\bmod m)$.

$$
\Longrightarrow \quad \gamma^{\top} y \equiv \gamma^{\top} x_{0}+\gamma^{\top} y^{1}+\gamma^{\top} y^{2}+\gamma^{\top} y^{3}+\gamma^{\top} y^{4}+\gamma^{\top} y^{5}+\gamma^{\top} y^{6}+\ldots+\gamma^{\top} y^{\ell} \equiv r \quad(\bmod m)
$$

$\exists S \subseteq[\ell]$ with $|S| \leq m-1$
s.th. $\tilde{y}:=x_{0}+\sum_{i \in s} y^{i}$ is feasible.

$$
y=x_{0}+y^{1}+y^{2}+y^{3}+y^{4}+y^{5}+y^{6}+\ldots+y^{\ell}
$$

Lemma

For any m integers, there is a subset with sum $\equiv 0(\bmod m)$.
$\Longrightarrow \quad \gamma^{\top} y \equiv \gamma^{\top} x_{0}+\gamma^{\top} y^{1}+\gamma^{\top} y^{2}+\gamma^{\top} y^{3}+\gamma^{\top} y^{4}+\gamma^{\top} y^{5}+\gamma^{\top} y^{6}+\ldots+\gamma^{\top} y^{\ell} \equiv r \quad(\bmod m)$
$\exists S \subseteq[\ell]$ with $|S| \leq m-1$
s.th. $\tilde{y}:=x_{0}+\sum_{i \in S} y^{i}$ is feasible.

$$
y=x_{0}+y^{1}+y^{2}+y^{3}+y^{4}+y^{5}+y^{6}+\ldots+y^{\ell}
$$

Lemma

For any m integers, there is a subset with sum $\equiv 0(\bmod m)$.
$\Longrightarrow \quad \gamma^{\top} y \equiv \gamma^{\top} x_{0}+\gamma^{\top} y^{1}+\gamma^{\top} y^{2}+\gamma^{\top} y^{3}+\gamma^{\top} y^{4}+\gamma^{\top} y^{5}+\gamma^{\top} y^{6}+\ldots+\gamma^{\top} y^{\ell} \equiv r \quad(\bmod m)$
$\exists S \subseteq[\ell]$ with $|S| \leq m-1$
s.th. $\tilde{y}:=x_{0}+\sum_{i \in s} y^{i}$ is feasible.

A constraint $d^{\top} x \leq \delta$ is redundant if
$\Longrightarrow \quad \begin{gathered}\text { Either some constraint widht is at most } m-2, \\ \text { or the problem is feasible. }\end{gathered}$

A decomposition approach to CCTU problems

deciding feasibility of CCTU problems with $m=3$

Decomposition of TU matrices

Theorem: Seymour's decomposition

For every TU matrix $T \in \mathbb{Z}^{k \times n}$, one of the following cases holds:
(i) T or T^{\top} is a network matrix.
(ii) T is, after repeatedly deleting unit or duplicate rows/columns, changing the sign of a row/column, and row/column permutations equal to one of

$$
\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & -1 \\
-1 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & -1 \\
-1 & 0 & 0 & -1 & 1
\end{array}\right) \text { and }\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

(iii) T is, possibly after row/column permutations and pivoting once, of the form

$$
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)
$$

where A and B each have at least 2 columns.

Reduce to smaller subproblems along decomposition, solve base blocks directly.

Applying the decomposition

CCTU feasibility problem

$$
\begin{aligned}
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)\binom{x_{A}}{x_{B}} & \leq\binom{ b_{A}}{b_{B}} \\
\gamma_{A}^{\top} x_{A}+\gamma_{B}^{\top} x_{B} & \equiv r \quad(\bmod m)
\end{aligned}
$$

Applying the decomposition

Applying the decomposition

CCTU feasibility problem

Decomposition lemma: If feasible, there is a solution with α, β in intervals of length $m-1$.

Applying the decomposition

CCTU feasibility problem

Decomposition lemma: If feasible, there is a solution with α, β in intervals of length $m-1$.

Natural strategy: Recurse on constantly many subproblems, check for "compatible" solutions.

Decomposition lemma: If feasible, there is a solution with α, β in intervals of length 2.

Natural strategy: Recurse on constantly many subproblems, check for "compatible" solutions.

CCTU feasibility problem

$$
\begin{aligned}
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)\binom{x_{A}}{x_{B}} & \leq\binom{ b_{A}}{b_{B}} \\
\gamma_{A}^{\top} x_{A}+\gamma_{B}^{\top} x_{B} & \equiv 2 \quad(\bmod 3)
\end{aligned}
$$

$A x_{A} \leq b_{A}-\alpha e$
$h^{\top} x_{A}=\beta$
$\gamma_{A}^{\top} x_{A} \equiv r_{A} \quad(\bmod 3)$
For parameters $\alpha:=f^{\top} x_{B}$ and $\beta:=h^{\top} x_{A}$, we want solutions with $r_{A}+r_{B} \equiv 2(\bmod 3)$.

$$
\begin{aligned}
B x_{B} & \leq b_{B}-\beta g \\
f^{\top} x_{B} & =\alpha \\
\gamma_{B}^{\top} x_{B} & \equiv r_{B} \quad(\bmod 3)
\end{aligned}
$$

Issue: Recursing is efficient only for log-depth decomposition trees.

Can only completely determine the pattern of the smaller subproblem!

Want a solution with residue 1 or 2 , i.e., of

$$
\begin{aligned}
A x_{A} & \leq b_{A}-a \cdot e \\
h^{\top} x_{A} & =b+2 \\
\gamma_{A}^{\top} x_{A} & \in\{1,2\}(\bmod 3)
\end{aligned}
$$

Want a solution with residue 1 or 2 , i.e., of

$$
\begin{aligned}
A x_{A} & \leq b_{A}-a \cdot e \\
h^{\top} x_{A} & =b+2 \\
\gamma_{A}^{\top} x_{A} & \in\{1,2\}(\bmod 3)
\end{aligned}
$$

Easier problem!

Want a solution with residue 0 or 1 , i.e., of

$$
\begin{aligned}
A x_{A} & \leq b_{A}-a \cdot e \\
h^{\top} x_{A} & =b+2 \\
\gamma_{A}^{\top} x_{A} & \in\{0,1\}(\bmod 3)
\end{aligned}
$$

Easier problem!

Want a solution with residue 0 or 2 , i.e., of

$$
\begin{aligned}
A x_{A} & \leq b_{A}-a \cdot e \\
h^{\top} x_{A} & =b+2 \\
\gamma_{A}^{\top} x_{A} & \in\{0,2\}(\bmod 3)
\end{aligned}
$$

Easier problem!

CCTU feasibility problem

$$
\begin{aligned}
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)\binom{x_{A}}{x_{B}} & \leq\binom{ b_{A}}{b_{B}} \\
\gamma_{A}^{\top} x_{A}+\gamma_{B}^{\top} x_{B} & \equiv 2 \quad(\bmod 3)
\end{aligned}
$$

$A x_{A} \leq b_{A}-\alpha e$
$h^{\top} x_{A}=\beta$
$\gamma_{A}^{\top} x_{A} \equiv r_{A} \quad(\bmod 3)$

For parameters $\alpha:=f^{\top} x_{B}$ and $\beta:=h^{\top} x_{A}$, we want solutions with $r_{A}+r_{B} \equiv 2(\bmod 3)$.

$$
\begin{aligned}
B x_{B} & \leq b_{B}-\beta g \\
f^{\top} x_{B} & =\alpha \\
\gamma_{B}^{\top} x_{B} & \equiv r_{B} \quad(\bmod 3)
\end{aligned}
$$

Linear pattern:
One feasible residue per (α, β)-pair \Longrightarrow residue is linear in α and β.

CCTU feasibility problem

$$
\begin{aligned}
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)\binom{x_{A}}{x_{B}} & \leq\binom{ b_{A}}{b_{B}} \\
\gamma_{A}^{\top} x_{A}+\gamma_{B}^{\top} x_{B} & \equiv 2 \quad(\bmod 3)
\end{aligned}
$$

$A x_{A} \leq b_{A}-\alpha e$
$h^{\top} x_{A}=\beta$
$\gamma_{A}^{\top} x_{A} \equiv r_{A} \quad(\bmod 3)$

For parameters $\alpha:=f^{\top} x_{B}$ and $\beta:=h^{\top} x_{A}$, we want solutions with $r_{A}+r_{B} \equiv 2(\bmod 3)$.

$$
\begin{aligned}
B x_{B} & \leq b_{B}-\beta g \\
f^{\top} x_{B} & =\alpha \\
\gamma_{B}^{\top} x_{B} & \equiv r_{B} \quad(\bmod 3)
\end{aligned}
$$

Linear pattern:
One feasible residue per (α, β)-pair \Longrightarrow residue is linear in α and β.

CCTU feasibility problem

$$
\begin{aligned}
\left(\begin{array}{cc}
A & e f^{\top} \\
g h^{\top} & B
\end{array}\right)\binom{x_{A}}{x_{B}} & \leq\binom{ b_{A}}{b_{B}} \\
\gamma_{A}^{\top} x_{A}+\gamma_{B}^{\top} x_{B} & \equiv 2 \quad(\bmod 3)
\end{aligned}
$$

$A x_{A} \leq b_{A}-\alpha e$
$h^{\top} x_{A}=\beta$
$\gamma_{A}^{\top} x_{A} \equiv r_{A} \quad(\bmod 3)$

For parameters $\alpha:=f^{\top} x_{B}$ and $\beta:=h^{\top} x_{A}$, we want solutions with $r_{A}+r_{B} \equiv 2(\bmod 3)$.

$$
\begin{aligned}
B x_{B} & \leq b_{B}-\beta g \\
f^{\top} x_{B} & =\alpha \\
\gamma_{B}^{\top} x_{B} & \equiv r_{B} \quad(\bmod 3)
\end{aligned}
$$

Linear pattern:
One feasible residue per (α, β)-pair \Longrightarrow residue is linear in α and β.

Mixed pattern:

- Combine previous ideas + extra insights
- Reduce to
\rightarrow at most one smaller-dimensional problem
\rightarrow constantly many easier problems

Solving base block problems

Network matrices and their transposes

Theorem: Network matrix problems
\exists strongly poly. randomized alg. for CCTU problems with unary encoded objectives, constant m and network constraint matrices.

- Reduction to congruency-constrained circulation problems
- Examples:
- $m=2 \rightarrow$ Find a shortest odd cycle.
- $m=3 \rightarrow$ Find a shortest circulation using $1(\bmod 3)$ many edges.

Theorem: Network matrix problems
\exists strongly poly. randomized alg. for CCTU problems with unary encoded objectives, constant m and network constraint matrices.

- Reduction to congruency-constrained circulation problems
- Examples:
- $m=2 \rightarrow$ Find a shortest odd cycle.
- $m=3 \rightarrow$ Find a shortest circulation using $1(\bmod 3)$ many edges.

Network matrices

Theorem: Network matrix problems

\exists strongly poly. randomized alg. for CCTU problems with unary encoded objectives, constant m and network constraint matrices.

- Our approach:

Theorem: Transposed network matrix problems
\exists strongly poly. alg. for CCTU problems with constant prime power modulus m and transposed network constraint matrices.

- Reduction to congruency-constrained directed minimum cut problems

Theorem: Transposed network matrix problems
\exists strongly poly. alg. for CCTU problems with constant prime power modulus m and transposed network constraint matrices.

- Reduction to congruency-constrained directed minimum cut problems

- Efficient algorithms known for prime power moduli [N., Sudakov, and Zenklusen, 2018]
- Undirected: Randomized approximation scheme for arbitrary modulus [N . and Zenklusen, 2019]

Open questions

Open questions

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ wh. A is Δ-modular, fract. relaxation.

Seymour's TU decomposition
Reduction to congruencyconstrained base block problems.

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Open questions

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ wh. A is Δ-modular, fract. relaxation.

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Open questions

Δ-modular integer programming
$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ wh. A is Δ-modular, fract. relaxation.

$$
\begin{aligned}
& \text { Seymour's TU decomposition } \\
& \text { Reduction to congruency- } \\
& \text { constrained base block problems. }
\end{aligned}
$$

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Open questions

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ wh. A is Δ-modular, fract. relaxation.

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Open questions

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ wh. A is Δ-modular, fract. relaxation.

CCTU

$$
\min \left\{\tilde{c}^{\top} y: T y \leqslant b, \gamma^{\top} y \equiv r(\bmod m)\right\}
$$

$$
\text { with } T \text { totally unimodular, } m=\Delta \text {. }
$$

- Transformation for conic problems?
- How to deal with non-tight constraints?

Seymour's TU decomposition
Reduction to congruencyconstrained base block problems.

- Optimization?
- Beyond $m=3$?

Base block problems

Interpretation as congruency-constrained cut and circulation problems

Open questions

- Beyond $m=p^{\alpha}$ for cuts?
- Deterministic approach for circulations?

Base block problems

Interpretation as congruency-constrained cut and circulation problems

- Optimization?
- Beyond $m=3$?

Open questions

Do we need to go through Seymour's decomposition?

Δ-modular integer programming

$\min \left\{c^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$

$$
\text { wh. } A \text { is } \Delta \text {-modular, fract. relaxation. }
$$

\downarrow

Seymour's TU decomposition
Reduction to congruencyconstrained base block problems.

- Optimization?
- Beyond $m=3$?

Interpretation as congruency-constrained cut and circulation problems

- Beyond $m=p^{\alpha}$ for cuts?
- Deterministic approach for circulations?

Base block problems

- How to deal with non-tight constraints?

