Congruency-Constrained TU Problems

Beyond the Bimodular Case

Martin Nägele Richard Santiago Rico Zenklusen Institute for Operations Research ETH Zürich

The agenda for today

- Motivation & background bounded subdeterminant IPs successes in the bimodular case new results
 - Structural aspects of CCTU problems and their solutions a decomposition lemma proximity flatness
 - A decomposition approach to CCTU problems Seymour's decomposition — deciding feasibility for modulus 3
 - Base block problems congruency-constrained minimum cuts and circulations

Motivation & Background

bounded subdeterminant IPs — successes in the bimodular case — new results

Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, solve $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$.

Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, solve $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$.

Two classes of efficiently solvable IPs

- ► If n = O(1) or m = O(1):
 - → Lenstra's Algorithm [Lenstra 1983].
- ► If A is totally unimodular (TU):
 - \rightarrow Integral relaxation.

Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, solve $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$.

Two classes of efficiently solvable IPs

- ► If n = O(1) or m = O(1):
 - → Lenstra's Algorithm [Lenstra 1983].
- ► If A is totally unimodular (TU):
 - \rightarrow Integral relaxation.

What if minors, in absolute value, are still bounded, but not by 1?

Bounded subdeterminants

Δ -modular Integer Programming

Given a constant $\Delta \in \mathbb{Z}_{>0},$ can integer linear programs

$$\min\{c^{\top}x \colon Ax \leq b, \ x \in \mathbb{Z}^n\}$$

with Δ -modular constraint matrix A be solved efficiently?

- ▶ $A \in \mathbb{Z}^{m \times n}$ is Δ -modular if
 - \rightarrow rank(A) = n, and
 - ightarrow absolute values of $n \times n$ subdeterminants are bounded by Δ
- lacktriangle Δ -modularity is more general than *total* Δ -modularity

Bounded subdeterminants

Δ-modular Integer Programming

Given a constant $\Delta \in \mathbb{Z}_{>0},$ can integer linear programs

$$\min\{c^{\top}x \colon Ax \leq b, \ x \in \mathbb{Z}^n\}$$

with Δ -modular constraint matrix A be solved efficiently?

- $ightharpoonup A \in \mathbb{Z}^{m \times n}$ is Δ -modular if
 - \rightarrow rank(A) = n, and
 - ightarrow absolute values of $n \times n$ subdeterminants are bounded by Δ
- $ightharpoonup \Delta$ -modularity is more general than *total* Δ -modularity

Known results

- \checkmark $\Delta = 1$: easy
- ✓ $\Delta = 2$: Bimodular Integer Programming (BIP)

Artmann, Weismantel, and Zenklusen, STOC 2017

✓ Arbitrary constant ∆, at most 2 non-zeros per row

[Fiorini, Joret, Weltge, and Yuditsky, FOCS 2021]

Bimodular integer programs

Bimodular integer programming (BIP)

Given $A \in \mathbb{Z}^{k \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$ such that A has full column rank and all $n \times n$ minors in $\{-2, -1, 0, 1, 2\}$, solve $\min\{c^\top x \colon Ax \leqslant b, \ x \in \mathbb{Z}^n\}$.

Theorem

BIP can be solved in strongly polynomial time.

[Artmann, Weismantel, and Zenklusen, STOC 2017]

$$\begin{pmatrix} 0 & -2 \\ 1 & -1 \\ 1 & 1 \\ 0 & 2 \\ -1 & 0 \\ -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 4 \\ 9 \\ 9 \\ -1 \\ -3 \end{pmatrix}$$

The approach

Bimodular Integer Program (BIP)

 $\min\{c^{\top}x \colon Ax \leqslant b, x \in \mathbb{Z}^n\}$

s.t. A bimodular, relaxation fractional.

 $\min\{\tilde{c}^{\top}y\colon Ty\leqslant 0,y\in\mathbb{Z}^n,y(S)\text{ odd}\}$ with T totally unimodular, and $S \subseteq [n]$.

Theorem

BIP can be solved in strongly polynomial time.

[Artmann, Weismantel, and Zenklusen, STOC 2017]

Seymour's TU decomposition

Exploited for reduction to parityconstrained base block problems.

Interpretation as parity-constrained cut and circulation problems

CCTU problems

Congruency-constrained TU problems (CCTU)

Let
$$T \in \{-1,0,1\}^{k \times n}$$
 totally unimodular, $b \in \mathbb{Z}^k$, $\gamma \in \mathbb{Z}^n$, $m \in \mathbb{Z}_{>0}$, and $r \in \mathbb{Z}$. Solve
$$\min \left\{ c^\top x \colon Tx \le b, \ \gamma^\top x \equiv r \pmod{m}, \ x \in \mathbb{Z}^n \right\} \ .$$

Special case of m-modular IP

Our results

Congruency-constrained TU problems (CCTU)

Let $T\in\{-1,0,1\}^{k\times n}$ totally unimodular, $b\in\mathbb{Z}^k$, $\gamma\in\mathbb{Z}^n$, $m\in\mathbb{Z}_{>0}$, and $r\in\mathbb{Z}$. Solve

$$\min \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} \colon T \boldsymbol{x} \leq \boldsymbol{b}, \; \boldsymbol{\gamma}^{\top} \boldsymbol{x} \equiv \boldsymbol{r} \; (\text{mod } \boldsymbol{m}), \; \boldsymbol{x} \in \mathbb{Z}^n \right\} \; .$$

Theorem 1: Feasibility for m = 3

 \exists strongly poly. randomized alg. for CCTU feasibility with m=3.

Our results

Congruency-constrained TU problems (CCTU)

Let $T\in\{-1,0,1\}^{k\times n}$ totally unimodular, $b\in\mathbb{Z}^k$, $\gamma\in\mathbb{Z}^n$, $m\in\mathbb{Z}_{>0}$, and $r\in\mathbb{Z}$. Solve

$$\min\left\{\boldsymbol{c}^{\top}\boldsymbol{x}\colon \boldsymbol{\mathit{Tx}} \leq \boldsymbol{\mathit{b}}, \; \boldsymbol{\gamma}^{\top}\boldsymbol{\mathit{x}} \equiv \boldsymbol{\mathit{r}} \; (\mathsf{mod} \; \boldsymbol{\mathit{m}}), \; \boldsymbol{\mathit{x}} \in \mathbb{Z}^{\mathit{n}}\right\} \; .$$

Theorem 1: Feasibility for m = 3

 \exists strongly poly. randomized alg. for CCTU feasibility with m=3.

Theorem 2: Flat or feasible

Either \exists flat constraint of width at most m-2, or a feasible CCTU solution can be found in strongly poly. time.

Theorem 3: Proximity

If feasible, then for any x_0 optimal for a CCTU relaxation, $\exists x^*$ optimal for the problem with $||x^* - x_0||_{\infty} < m - 1$.

Structural results on CCTU problems

decomposition lemma — flatness — proximity

A decomposition lemma for solutions of TU systems

Decomposition lemma

Let $x_0, y \in \mathbb{Z}^n$ be solutions of a TU system $Tx \leq b$. There are $y^i \in \mathbb{Z}^n$ with

$$y = x_0 + \sum_{i=1}^{\ell} y^i , \quad \text{and} \quad$$

- (i) $|d^{\top}y^{i}| \leq 1$ for all d that are TU-appendable to T, and
- (ii) $\forall S \subseteq [\ell] : x_0 + \sum_{i \in S} y^i$ is feasible for $Tx \leq b$.

$$y = x_0 + y^1 + y^2 + y^3 + y^4 + y^5 + y^6 + \ldots + y^{\ell}$$

$$y = x_0 + y^1 + y^2 + y^3 + y^4 + y^5 + y^6 + \dots + y^{\ell}$$

$$\implies \gamma^\top y \equiv \gamma^\top x_0 + \gamma^\top y^1 + \gamma^\top y^2 + \gamma^\top y^3 + \gamma^\top y^4 + \gamma^\top y^5 + \gamma^\top y^6 + \dots + \gamma^\top y^{\ell} \equiv r \pmod{m}$$

Lemma

For any m integers, there is a subset with sum $\equiv 0 \pmod{m}$.

$$y = x_0 + y^1 + y^2 + y^3 + y^4 + y^5 + y^6 + \ldots + y^\ell$$

$$\implies \qquad \gamma^\top y \equiv \gamma^\top x_0 + \gamma^\top y^1 + \gamma^\top y^2 + \gamma^\top y^3 + \gamma^\top y^4 + \gamma^\top y^5 + \gamma^\top y^6 + \ldots + \gamma^\top y^\ell \equiv r \pmod{m}$$

Lemma

For any m integers, there is a subset with sum $\equiv 0 \pmod{m}$.

$$y = x_0 + y^1 + y^2 + y^3 + y^4 + y^5 + y^6 + \ldots + y^\ell$$

 $\exists \ \mathcal{S} \subseteq [\ell] \ ext{with} \ |\mathcal{S}| \leq m-1$ s.th. $\widetilde{y} := x_0 + \sum_{i \in \mathcal{S}} y^i \ ext{is feasible}.$

Lemma

For any m integers, there is a subset with sum $\equiv 0 \pmod{m}$.

$$y = x_0 + y^1 + y^2 + y^3 + y^4 + y^5 + y^6 + \ldots + y^\ell$$

$$\Rightarrow \qquad \gamma^{\top} y \equiv \gamma^{\top} x_0 + \gamma^{\top} y^1 + \gamma^{\top} y^2 + \gamma^{\top} y^3 + \gamma^{\top} y^4 + \gamma^{\top} y^5 + \gamma^{\top} y^6 + \ldots + \gamma^{\top} y^{\ell} \equiv r \pmod{m}$$

 $\exists \ S \subseteq [\ell] \text{ with } |S| \le m-1$ s.th. $\tilde{y} := x_0 + \sum_{i \in S} y^i \text{ is feasible.}$ $|d^\top (\tilde{y} - x_0)| \le m-1$ for all TU-appendable d

Lemma

For any m integers, there is a subset with sum $\equiv 0 \pmod{m}$.

$$y = x_0 + y^1 + y^2 + y^3 + y^4 + y^5 + y^6 + \ldots + y^\ell$$

$$\implies \qquad \gamma^\top y \equiv \gamma^\top x_0 + \gamma^\top y^1 + \gamma^\top y^2 + \gamma^\top y^3 + \gamma^\top y^4 + \gamma^\top y^5 + \gamma^\top y^6 + \ldots + \gamma^\top y^\ell \equiv r \pmod{m}$$

 $\exists \ S \subseteq [\ell] \text{ with } |S| \le m-1$ s.th. $\tilde{y} := x_0 + \sum_{i \in S} y^i \text{ is feasible.}$ $|d^\top (\tilde{y} - x_0)| \le m-1$ for all TU-appendable d $||\tilde{y} - x_0||_{\infty} \le m-1$

Flatness or feasibility

A constraint $d^{\top}x \leq \delta$ is redundant if the width in direction d is at least m-1.

Either some constraint widht is at most m-2, or the problem is feasible.

A decomposition approach to CCTU problems

deciding feasibility of CCTU problems with m = 3

Decomposition of TU matrices

Theorem: Seymour's decomposition

[Seymour, 1980]

For every TU matrix $T \in \mathbb{Z}^{k \times n}$, one of the following cases holds:

- (i) T or T^{\top} is a network matrix.
- (ii) T is, after repeatedly deleting unit or duplicate rows/columns, changing the sign of a row/column, and row/column permutations equal to one of

$$\begin{pmatrix} 1 & -1 & 0 & 0 & -1 \\ -1 & 1 & -1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & -1 \\ -1 & 0 & 0 & -1 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix} \; .$$

(iii) T is, possibly after row/column permutations and pivoting once, of the form

$$\begin{pmatrix} A & ef^{\top} \\ gh^{\top} & B \end{pmatrix}$$

where A and B each have at least 2 columns.

General idea for CCTU:

Reduce to smaller subproblems along decomposition, solve base blocks directly.

Decomposition lemma: If feasible, there is a solution with α, β in intervals of length m-1.

Decomposition lemma: If feasible, there is a solution with α , β in intervals of length m-1.

Natural strategy: Recurse on constantly many subproblems, check for "compatible" solutions.

Subproblem patterns (for m = 3 and r = 2)

Decomposition lemma: If feasible, there is a solution with α, β in intervals of length 2.

Natural strategy: Recurse on constantly many subproblems, check for "compatible" solutions.

Subproblem patterns (for m = 3 and r = 2)

Issue: Recursing is efficient only for log-depth decomposition trees.

► Can only completely determine the pattern of the smaller subproblem!

Studying patterns I

 $\gamma_A^\top x_A \equiv r_A \pmod{3}$

(for m=3 and r=2)

For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$, we want solutions with $r_A + r_B \equiv \frac{2}{2} \pmod{\frac{3}{2}}$.

B-subproblem

 $\gamma_B^{\top} x_B \equiv r_B \pmod{3}$

 $Bx_B \leq b_B - \beta g$

 $f^{\top} x_B = \alpha$

Studying patterns I

 $\gamma_A^\top x_A \equiv r_A \pmod{3}$

(for m=3 and r=2)

Any solution x_A of the A-subproblem for $(\alpha, \beta) = (a + 1, b + 1)$ can be complemented to a solution (x_A, x_B) with residue 2.

we want solutions with $r_A + r_B \equiv 2 \pmod{3}$.

B-subproblem

 $\gamma_B^{\top} x_B \equiv r_B \pmod{3}$

 $Bx_B \leq b_B - \beta g$

 $f^{\top} x_{\mathsf{R}} = \alpha$

Studying patterns II (for m = 3 and r = 2)

CCTU feasibility problem $\begin{pmatrix} A & ef^\top \\ gh^\top & B \end{pmatrix} \begin{pmatrix} x_A \\ x_B \end{pmatrix} \leq \begin{pmatrix} b_A \\ b_B \end{pmatrix}$ $\gamma_A^\top x_A + \gamma_B^\top x_B \equiv \mathbf{2} \pmod{3}$

 $h^{\top} x_A = \beta$ For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$,
we want solutions with $r_A + r_B \equiv 2 \pmod{3}$.

Want a solution with residue 1 or 2, i.e., of

B-subproblem

 $Bx_B \leq b_B - \beta g$

a+2

Studying patterns II (for m = 3 and r = 2) CCTU feasibility problem $\begin{pmatrix} A & ef^{\top} \\ gh^{\top} & B \end{pmatrix} \begin{pmatrix} x_A \\ x_B \end{pmatrix} \leq \begin{pmatrix} b_A \\ b_B \end{pmatrix}$ $\gamma_A^{\top} x_A + \gamma_B^{\top} x_B \equiv 2 \pmod{3}$ For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$, we want solutions with $r_A + r_B \equiv 2 \pmod{3}$. $\gamma_B^{\top} x_B \equiv r_B \pmod{3}$

Studying patterns II (for m = 3 and r = 2) (CCTU feasibility problem

$$Ax_A \leq b_A - \alpha e$$

 $h^{\top} x_A = \beta$

 $n \quad x_A \equiv \beta$ $\gamma_A^\top x_A \equiv r_A \pmod{3}$

For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$, we want solutions with $r_A + r_B \equiv 2 \pmod{3}$.

B-subproblem

 $\gamma_B^{\top} x_B \equiv r_B \pmod{3}$

 $Bx_B \leq b_B - \beta g$

 $f^{\top} x_B = \alpha$

Studying patterns II (for m=3 and r=2) CCTU feasibility problem $\begin{pmatrix} A & ef^{\top} \\ gh^{\top} & B \end{pmatrix} \begin{pmatrix} x_A \\ x_B \end{pmatrix} \leq \begin{pmatrix} b_A \\ b_B \end{pmatrix}$ A-subproblem

 $\gamma_A^{\top} x_A + \gamma_B^{\top} x_B \equiv 2 \pmod{3}$ $Ax_A \leq b_A - \alpha e$

 $h^{\top} x_{\Delta} = \beta$ For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$, $\gamma_A^\top x_A \equiv r_A \pmod{3}$

we want solutions with $r_A + r_B \equiv 2 \pmod{3}$.

B-subproblem

 $\gamma_B^{\top} x_B \equiv r_B \pmod{3}$

 $Bx_B \leq b_B - \beta g$

 $f^{\top} x_B = \alpha$

 $\gamma_A^\top x_A \equiv r_A \pmod{3}$

CCTU feasibility problem $\begin{pmatrix} A & ef^{\top} \\ gh^{\top} & B \end{pmatrix} \begin{pmatrix} x_A \\ x_B \end{pmatrix} \leq \begin{pmatrix} b_A \\ b_B \end{pmatrix}$ A-subproblem $\gamma_A^\top x_A + \gamma_B^\top x_B \equiv 2 \pmod{3}$ $Ax_A \leq b_A - \alpha e$ $h^{\top} x_A = \beta$

For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$, we want solutions with $r_A + r_B \equiv 2 \pmod{3}$.

B-subproblem

 $\gamma_B^{\top} x_B \equiv r_B \pmod{3}$

 $Bx_B \leq b_B - \beta g$

 $f^{\top} x_B = \alpha$

CCTU feasibility problem $\begin{pmatrix} A & ef^{\top} \\ gh^{\top} & B \end{pmatrix} \begin{pmatrix} x_A \\ x_B \end{pmatrix} \leq \begin{pmatrix} b_A \\ b_B \end{pmatrix}$ $\gamma_A^{\top} x_A + \gamma_B^{\top} x_B \equiv 2 \pmod{3}$ $Ax_A \leq b_A - \alpha e$ $h^{\top} x_A = \beta$ $\gamma_A^{\top} x_A \equiv r_A \pmod{3}$ For parameters $\alpha := f^{\top} x_B$ and $\beta := h^{\top} x_A$, we want solutions with $r_A + r_B \equiv 2 \pmod{3}$. $Ax_A \leq b_A - \alpha e$ $h^{\top} x_A = \beta$ $\gamma_A^{\top} x_A \equiv r_A \pmod{3}$ we want solutions with $r_A + r_B \equiv 2 \pmod{3}$.

Mixed pattern:

- Combine previous ideas + extra insights
- Reduce to
 - \rightarrow at most one smaller-dimensional problem
 - $\rightarrow \text{constantly many easier problems}$

Solving base block problems

Network matrices and their transposes

Network matrices

Theorem: Network matrix problems

 \exists strongly poly. randomized alg. for CCTU problems with unary encoded objectives, constant m and network constraint matrices.

- ► Reduction to congruency-constrained circulation problems
- Examples:
 - $m = 2 \rightarrow \text{Find a shortest odd cycle.}$
 - $m = 3 \rightarrow \text{Find a shortest circulation using 1 (mod 3) many edges.}$

Network matrices

Theorem: Network matrix problems

∃ strongly poly. randomized alg. for CCTU problems with unary encoded objectives, constant *m* and network constraint matrices.

- ► Reduction to congruency-constrained circulation problems
- Examples:
 - $m = 2 \rightarrow \text{Find a shortest odd cycle.}$
 - $m = 3 \rightarrow \text{Find a shortest circulation using 1 (mod 3) many edges.}$

Network matrices

Theorem: Network matrix problems

 \exists strongly poly. randomized alg. for CCTU problems with unary encoded objectives, constant m and network constraint matrices.

Our approach:

Transposes of network matrices

Theorem: Transposed network matrix problems

 \exists strongly poly. alg. for CCTU problems with constant prime power modulus m and transposed network constraint matrices.

Reduction to congruency-constrained directed minimum cut problems

Transposes of network matrices

Theorem: Transposed network matrix problems

 \exists strongly poly. alg. for CCTU problems with constant prime power modulus m and transposed network constraint matrices.

Reduction to congruency-constrained directed minimum cut problems

- ► Efficient algorithms known for prime power moduli [N., Sudakov, and Zenklusen, 2018]
- Undirected: Randomized approximation scheme for arbitrary modulus [N. and Zenklusen, 2019]

Δ -modular integer programming

$$\min\{c^{\top}x\colon Ax\leqslant b,x\in\mathbb{Z}^n\}$$
 wh. A is Δ -modular, fract, relaxation.

CCTU $\min\{\tilde{c}^\top y\colon \mathcal{T}y\leqslant b, \gamma^\top y\equiv r\ (\text{mod }m)\}$ with T totally unimodular, $m=\Delta$.

Seymour's TU decomposition Reduction to congruency-

Reduction to congruencyconstrained base block problems.

Base block problems

Seymour's TU decomposition

Reduction to congruencyconstrained base block problems.

Base block problems

Reduction to congruency-constrained base block problems.

Base block problems

- Transformation for conic problems?
- How to deal with non-tight constraints?

Reduction to congruency-constrained base block problems.

Base block problems

- Transformation for conic problems?
- How to deal with non-tight constraints?

How to deal with non-tight constraints?

Reduction to congruency-

constrained base block problems.

- Optimization?
- Beyond *m* = 3?

Base block problems

Reduction to congruency-

constrained base block problems.

- Optimization?
- Beyond *m* = 3?

- Beyond $m = p^{\alpha}$ for cuts?
- Deterministic approach for circulations?

Beyond m = 3?