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The agenda for today

Motivation & background
bounded subdeterminant IPs — successes in the bimodular case — new results

9 Structural aspects of CCTU problems and their solutions

a decomposition lemma — proximity — flatness

e A decomposition approach to CCTU problems

Seymour’s decomposition — deciding feasibility for modulus 3

Base block problems
congruency-constrained minimum cuts and circulations
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Motivation & Background

bounded subdeterminant IPs — successes
in the bimodular case — new results



Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)

Given A€ Z™ " be Z", and c € Z", solve
min{c x: Ax < b, x € Z"} .
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Towards general classes of efficiently solvable IPs

Integer Linear Programming (IP)

Given A€ Z™ " be Z", and c € Z", solve
min{c x: Ax < b, x € Z"} .

Two classes of efficiently solvable IPs

» Ifn=0(1)orm= 0O(1):
— Lenstra’s Algorithm
> If Ais totally unimodular (TU):
— Integral relaxation.

[ What if minors, in absolute value, are still bounded, but not by 1? ]
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Bounded subdeterminants

A-modular Integer Programming

Given a constant A € Z~, can integer linear programs
min{c ' x: Ax< b, x € 7"}

with A-modular constraint matrix A be solved efficiently?

> Ac Z™"is A-modular if

— rank(A) = n, and
— absolute values of n X n subdeterminants are
bounded by A

» A-modularity is more general than total A-modularity
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Bounded subdeterminants

A-modular Integer Programming

Given a constant A € Z~, can integer linear programs
min{c ' x: Ax< b, x € 7"}

with A-modular constraint matrix A be solved efficiently?

> Ac Z™"is A-modular if Known results
— rank(A) = n, and v A =1:easy
— absolute values of n x n subdeterminants are v/ A = 2: Bimodular Integer Programming (BIP)
bounded by A

» A-modularity is more general than total A-modularity v Arbitrary constant A, at most 2 non-zeros per row
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Bimodular integer programs

Bimodular integer programming (BIP)

Given A € Z*", b € 7", and ¢ € Z" such that A has full BIP can be solved in strongly polynomial time.
column rank and all n x n minors in {—2, —1,0,1, 2}, solve

min{c x: Ax< b, x€Z"} .
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The approach

X2

BIP can be solved in strongly polynomial time.

X1

Bimodular Integer Program (BIP)

min{c"x: Ax < b,x € 2"}
s.t. Abimodular, relaxation fractional.

Conic Parity TU Problem (CPTU)

min{¢'y: Ty <0,y € Z", y(S) odd}
with T totally unimodular, and S C [n].

Seymour’s TU decomposition

Exploited for reduction to parity-
constrained base block problems.

Interpretation as parity-constrained
cut and circulation problems
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CCTU problems

Congruency-constrained TU problems (CCTU)

Let T € {—1,0,1}**" totally unimodular, b € Z*, v € Z",
m € Zxo,and r € Z. Solve

min {ch: Tx<b, v x=r (mod m), x € Z”} .

> Special case of m-modular IP
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Our results

Congruency-constrained TU problems (CCTU)

Let T € {—1,0,1}**" totally unimodular, b € Z*, v € Z",
m € Zxo,and r € Z. Solve

min {ch: T™X<b v x=r (mod m), x € Z”} .

Theorem 1: Feasibility for m = 3

3 strongly poly. randomized alg. for CCTU feasibility with m = 3.
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Our results

Congruency-constrained TU problems (CCTU)

Let T € {—1,0,1}**" totally unimodular, b € Z*, v € Z",
m € Zxo,and r € Z. Solve

min {ch: T™X<b v x=r (mod m), x € Z”} .

Theorem 1: Feasibility for m = 3

3 strongly poly. randomized alg. for CCTU feasibility with m = 3.

Theorem 2: Flat or feasible

Theorem 3: Proximity

Either 3 flat constraint of width at most m — 2, or a fea- If feasible, then for any xo optimal for a CCTU relaxation,
sible CCTU solution can be found in strongly poly. time. 3 x* optimal for the problem with ||x* — Xo||eo < m — 1.
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Structural results on CCTU problems

decomposition lemma — flatness — proximity



A decomposition lemma for solutions of TU systems

Let xo, ¥ € Z" be solutions of a TU system Tx < b. There are y' € Z" with

¢
y:xo—l—Zy' , and
=1

|d"y'| < 1for all d that are TU-appendable to T, and
VS C []: xo + Y5y is feasible for Tx < b.
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Proximity

y=x+y' +yV¥+y+y +y+y + . +y

optimal for .
relaxation

_. feasible, i.e.,
vy =r (mod m)
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Proximity

y=x+y +y¥+y+y 40+ + 4y

= Y=y 0+ Y+ P+ Y YV Y+ L+ =1 (mod m)

optimal for .
relaxation

_. feasible, i.e.,
vy =r (mod m)
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Proximity

For any m integers, there is a
1 2 9 a . . , subset with sum = 0 (mod m).
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1 2 9 a . . , subset with sum = 0 (mod m).
Yy=X-+y +y +y +y +y +y +...ty

= Ay=y 0+ Y YA Y T Ty =1 (mod m)

38 C [ with S| < m— 1 1d7 (7 — x0)| < m—1
sth. 7 = X0 + > .5 V' is feasible. for all TU-appendable d

optimal for .
relaxation
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Proximity

For any m integers, there is a
1 2 g a . . subset with sum = 0 (mod m).
y=x+ty +ty +y+y+y+y+...+y

= Y=y 0+ Y+ P+ Y YV Y+ L+ =1 (mod m)

38 C [ with |S] < m— 1 1dT (7 — %) < m—1

| T 17— soll < m—1]
sth.j = xo + > .5V is feasible. for all TU-appendable d [

optimal for .
relaxation

_. feasible, i.e.,
vy =r (mod m)
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Flatness or feasibility

A constraint d " x < § is redundant if . Either some constraint widht is at most m — 2,
the width in direction d is at least m — 1. or the problem is feasible.

constraintd " x < §

minimizing d T x -
9 not satisfied
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A decomposition approach to
CCTU problems

deciding feasibility of CCTU problems with m = 3



Decomposition of TU matrices

Theorem: Seymour’s decomposition [Seymour, 1980]

For every TU matrix T € Z¥X", one of the following cases holds:
(i) Tor TT is a network matrix.

(i) T is, after repeatedly deleting unit or duplicate rows/columns,
changing the sign of a row/column, and row/column permuta-
tions equal to one of

1—1 0 0-—1 111
-1 1-1 0 0 111
0—-1 1—-1 0 and 101
0 0—1 1-—1 100
-1 0 0—1 1 110

(ii) T is, possibly after row/column permutations and pivoting once,

of the form
A ef’
gh' B )’

where A and B each have at least 2 columns.

J

(General idea for CCTU:)

Reduce to smaller subproblems along
decomposition, solve base blocks directly.
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Applying the decomposition

CCTU feasibility problem

(o %) () =)

YAXa+8 xe =r (mod m)
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Applying the decomposition

CCTU feasibility problem

A ef"\ (xa ba
T <
gh B XB bB
A-subproblem '7AT X4 + WET xs=r (mod m) B-subproblem

AXASbAfae BXBSbeBg
hTXA = ,8

-
f'xg=a«a
For parameters a == f ' xg and 8 == h' xa, 5

YaXa =ra  (mod m) we want solutions with r4 + r5 = r (mod m). Y8 x5 =15 (mod m)
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Applying the decomposition

CCTU feasibility problem

A ef"\ (xa ba
T <
gh B XB bB
A-subproblem '7AT X4 + WET xs=r (mod m) B-subproblem

AxAgbA—ae BXBSbB—Bg
hTXA = ,8

-
f xg=«
For parameters a == f ' xg and 8 == h' xa, 5

’Y/IXA =r (mod m) we want solutions with ra + rs = r (mod m). ’Y;XB =1 (mod m)

Decomposition lemma: If feasible, there is a
solution with «, 8 in intervals of length m — 1.
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Applying the decomposition

CCTU feasibility problem

A ef"\ (xa ba
T <
gh B XB bB
A-subproblem '7AT X4 + WET xs=r (mod m) B-subproblem

AXA S bA — e
hTXA = ,8

. For parameters a == f ' xg and 8 == h' xa,
Ya Xa =1 (mod m) we want solutions with ra + rs = r (mod m).

Decomposition lemma: If feasible, there is a
solution with «, 8 in intervals of length m — 1.

Natural strategy: Recurse on constantly many
subproblems, check for “compatible” solutions.
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Subproblem patterns orm=3anar=2

CCTU feasibility problem

A ef"\ (xa ba
T <
gh B XB bB
A-subproblem ’YAT X4 + WET xs=2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬁg
hTXA = ,8

-
f'xg=a«a
For parameters a == f ' xg and 8 == h' xa, 5

Yaxa=ra (mod 3) we want solutions with r4 + rs = 2 (mod 3). e xs =rs (mod 3)

Decomposition lemma: If feasible, there is a
b+2+ 1 2 (0,2 solution with o, 3 in intervals of length 2. b+21 (0,1] 1
2 [o0,2] o + [1,20,1,2] 2
b+ 0,2 o Natural strategy: Recurse on constantly many bt 0 0
subproblems, check for “compatible” solutions.

f f f > o f f f a
a a+2 a a+2
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Subproblem patterns orm=3anar=2

CCTU feasibility problem

(o 2) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hT x4 = Fixs =a
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . 5
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
3 B
b+2 Issue: Recursing is efficient only b+2+ 10,11
for log-depth decomposition trees.
f) L [1,20,1,2] 2
= » Can only completely determine the
b pattern of the smaller subproblem! b T 0 0

1 1 1 @ ‘ ‘ } Q
a a+2 a a-+2
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Studying patterns | (orm=3anar=2

CCTU feasibility problem

(o 2) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hT x4 = fxs = a
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . 5
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
e R

b+2+ |[0,1 1

+ [1,20,1,2] 2
b 0 0
t t t a
a a+2
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Studying patterns | (orm=3anar=2

CCTU feasibility problem

A ef"\ (xa ba
T <
gh B XB bB
A-subproblem ’YAT X4 + WET xs=2 (mod 3) B-subproblem

AXA S bA — e
hTXA = IB

. For parameters a == f ' xg and 8 == h' xa,
YaXa =ra (mod 3) we want solutions with r4 + rs = 2 (mod 3).

Any solution xa of the A-subproblem b2+ 01| 1
for (a,8) = (a+ 1,b+ 1) 12“6;2) )
can be complemented to TN
a solution (xa, xg) with residue 2. / b ol o
a a+2 “

18/26



Studying patterns Il orm=3anar=2

CCTU feasibility problem

(o %) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hT x4 = fxs = a
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . 5
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
e R

b+2+ [0,1 1

(@'

a a+2
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Studying patterns Il orm=3anar=2

CCTU feasibility problem

(o %) () =)

Yaxa+7sxe =2 (mod 3)

A-subproblem

AXA S bA — e
hTXA = IB

For parameters a == f ' xg and 8 == h' xa,

YAaxa=ra (mod 3) we want solutions with r4 + rs = 2 (mod 3).

B-subproblem

p
I6]
0
Want a solution with residue 1 or 2, i.e., of 7N
b+2+ 10,1} 1
fXASbA_a'e L 11,2002 2
h xa=b+2
Y4 xa € {1,2} (mod 3) b A 0| o
t t a
a a+2
J
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Studying patterns Il orm=3anar=2

CCTU feasibility problem

(o %) () =)

Yaxa+7sxe =2 (mod 3)

A-subproblem

AXA S bA — e
hTXA = ,8

For parameters a == f ' xg and 8 == h' xa,
YA xa=ra (mod 3)

we want solutions with ra + rs =2 (mod 3).

B-subproblem

Want a solution with residue 1 or 2, i.e., of

b+2+ (0,1) 1
ﬁ\xAgbA—a-e J 1,2]10,2] 2
h xa=b+2
Y4 xa € {1,2} (mod 3) b A 010
Easier problem! / é a¥2 “
.
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Studying patterns Il orm=3anar=2

CCTU feasibility problem

A ef"\ (xa ba
T <
gh B XB bB
A-subproblem ’YAT X4 + WET xs=2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hT x4 = Fixs =a
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . 5
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
e R
3
Want a solution with residue 0 or 1, i.e., of
b+2 0,1 1
fXASbA_a'e L (1,2)02] 2
h xa=b+2 N
Y4 xa € {0,1} (mod 3) bt 0o
Easier problem! / a2 at2 ©
J
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Studying patterns Il orm=3anar=2

CCTU feasibility problem

(o %) () =)

Yaxa+7sxe =2 (mod 3)

A-subproblem

AXA S bA — e

hTXA = ,8 T T
For parameters o :=f ' xgand 3 := h' xa,

T,
YaXa =ra (mod 3) we want solutions with r4 + rs = 2 (mod 3).

B-subproblem

Want a solution with residue 0 or 2, i.e., of

Axa < bs—a-e
h'xa=b+2
Y4 xa € {0,2} (mod 3)

Easier problem! /

b+ 2+ Q1 1
1 1,210,2| 2
b 0 0
a a+2

(@'
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Studying patterns lll  orm=3anar=2

CCTU feasibility problem

(o %) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hT x4 = Fixs =a
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . 5
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
e R
B
b2+ [ 1] 1
g 2 2 2
b A 0 0
t t t a
a a+?2
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Studying patterns lll  orm=3anar=2

CCTU feasibility problem

(o %) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hT x4 = Fixs =a
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . 5
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
e 3 N
pattern: One feaS|t?Ie reIS|d.ue per (v, B)-pair i
— residue is linear in « and .
b+ 2 A 1 1
1 2 2 2
b 0 0
t t t a
a a+?2
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Studying patterns lll  orm=3anar=2

CCTU feasibility problem

(o %) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
hTX = fTX =
. 4 =8 For parameters a == f ' xg and 8 == h' xa, . BT«
Ya Xa =ra (mod 3) we want solutions with r4 + r5 = 2 (mod 3). Ye X =rs (mod 3)
e 3 N
pattern: One feaS|t?Ie reIS|d.ue per (v, B)-pair i
— residue is linear in « and .
b+ 2 A 1 1
:;(A + Oé;‘ < gA | 5 2 2
. Xa—p =
Reduction to
(a, 8) €N b+ 0| o
YA Xa+ na+ B+ =2 (mod 3)
a  at2 °©
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Studying patterns lll  orm=3anar=2

CCTU feasibility problem

(o %) () =)

A-subproblem ’YATXA + WETXB =2 (mod 3) B-subproblem

AXASbAfae BXBSbeﬂg
l717)( S f‘r =
. n=p For parameters a == f ' xg and 8 == h' xa, TXB @
Yaxa=ra (mod 3) we want solutions with 4 + rs = 2 (mod 3). Y8 Xg =z (mod 3)
e 3 ~N
pattern: One feaS|t?Ie reIS|d.ue per (v, B)-pair -
— residue is linear in « and .
b+2 - 1 1
:;(A + Oé;‘ < gA | 5 5 5
. Xa—p =
Reduction to
(a, 8) €N b+ 0| o
YA Xa+ na+ B+ =2 (mod 3)
Single lower-dimensional problem / a ate2 ©
= J
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Studying patterns IV orm=3anar=2

CCTU feasibility problem

A ef"\ [xa
gh-r B XB

A-subproblem

)<

Yaxa+7sxe =2 (mod 3)

AXA S bA — e
hTXA = IB

For parameters a == f ' xg and 8 == h' xa,
we want solutions with ra + rs =2 (mod 3).

YA xa=ra (mod 3)

B-subproblem

( -
1G]
pattern:
) i ) o b+2+ 0,1 1
Combine previous ideas + extra insights
Reduce to T 202 2
— at most one smaller-dimensional problem b 0 0
— constantly many easier problems /
t t a
a a+2
=
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Solving base block problems

Network matrices and their transposes



Network matrices

Theorem: Network matrix problems

3 strongly poly. randomized alg. for CCTU problems with unary
encoded objectives, constant m and network constraint matrices.

» Reduction to congruency-constrained circulation problems

> Examples:
+ m = 2 — Find a shortest odd cycle.
« m = 3 — Find a shortest circulation using 1 (mod 3) many edges.
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Network matrices

Theorem: Network matrix problems

3 strongly poly. randomized alg. for CCTU problems with unary
encoded objectives, constant m and network constraint matrices.

» Reduction to congruency-constrained circulation problems

> Examples:
+ m = 2 — Find a shortest odd cycle.
« m = 3 — Find a shortest circulation using 1 (mod 3) many edges.
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Network matrices

Theorem: Network matrix problems

3 strongly poly. randomized alg. for CCTU problems with unary
encoded objectives, constant m and network constraint matrices.

» Qur approach:

CCTU problem
with network matrices

\/_)[Congruency—constrained]

circulations
Exact-cost
. ) . . _— circulations
integrating residues into objective [ Polynomial identity ]

___—

via exact perfect matchings
and pfaffian polynomials

testing
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Transposes of network matrices

Theorem: Transposed network matrix problems

3 strongly poly. alg. for CCTU problems with constant prime
power modulus m and transposed network constraint matrices.

» Reduction to congruency-constrained directed minimum cut problems

|C| =2 (mod 3)
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Transposes of network matrices

Theorem: Transposed network matrix problems

3 strongly poly. alg. for CCTU problems with constant prime
power modulus m and transposed network constraint matrices.

» Reduction to congruency-constrained directed minimum cut problems

|C| =2 (mod 3)

> Efficient algorithms known for prime power moduli

» Undirected: Randomized approximation scheme for arbitrary modulus
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Open questions

X2

A-modular integer programming

min{c'x: Ax< b,x € Z"}
wh. Ais A-modular, fract. relaxation.

min{¢"y: Ty < b,y y = r (mod m)}
with T totally unimodular, m = A.

Seymour’s TU decomposition

Reduction to congruency-
constrained base block problems.

Interpretation as congruency-con-
strained cut and circulation problems
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Open questions

X2 / Structural results?

Y2

X4

A-modular integer programming
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wh. Ais A-modular, fract. relaxation. . * . .
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+ How to deal with non-tight constraints?
» Beyond m = 3?
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Open questions

X2 / Structural results?

re + Beyond m = p® for

cuts?

» Deterministic approach
for circulations?
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+ Beyond m = 37?
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Open questions

X2 Structural results?
/ Do we need to go through

Seymour’s decomposition?
e « Beyond m = p* for

cuts?

» Deterministic approach
for circulations?

X1

A-modular integer programming

min{c'x: Ax< b,x € Z"} C
wh. Ais A-modular, fract. relaxation. . * . .

min{¢"y: Ty < b,y y = r (mod m)}
with T totally unimodular, m = A.
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