A new Contraction Technique with Applications to Congruency-Constrained Cuts

Martin Nägele, Rico Zenklusen
Institute for Operations Research, ETH Zurich

Problem \& Results

Motivation

- Generalizes known problems:
\leadsto Global minimum cut.
$\leadsto s-t$ cut.
\leadsto Odd cut, even cut.
- Bounded subdeterminant lIPs \leadsto Reduction known for bound $m=2$.
- Submodular minimization with congruency constraints
\leadsto Exact derministic algorithm for prime power moduli known.
\leadsto Substantial barriers beyond.

Congruency-Constrained Minimum

 Cut Problem (CCMC)Input: Graph $G=(V, E)$, weights $w: E \rightarrow \mathbb{R}_{\geqslant 0}$, multiplicities $\gamma: V \rightarrow \mathbb{Z}_{\geqslant 0}, m \in \mathbb{Z}_{>0}, r \in \mathbb{Z}_{\geqslant 0}$.

Goal: Find a minimizer of

$$
\min \left\{\begin{array}{l|l}
w(\delta(C)) & \begin{array}{c}
\emptyset \subsetneq C \subsetneq V \\
\sum_{v \in C} \gamma(v) \equiv r(\bmod m)
\end{array}
\end{array}\right\} .
$$

Results

Theorem 1: PRAS for CCMC
CCMC with m con-
stant admits a PRAS.

> Theorem 2: Special case
> CCMC with $m=p q$ for
> $p \neq q$ prime admits an ex-
> act randomized algorithm.

Theorem 3: Some Structure

CCMC with m prime and OPT $\neq 0$ admits a randomized algorithm returning poly. many s - t cut problems so that w.h.p., a cut C solves the input problem with value $\leqslant \kappa$. OPT iff it solves one of the output problems with value $\leqslant \kappa$. OPT.

CCMC instance with opt. solution C for $m=5, r=2$.

Algorithm \& Analysis

Karger's Algorithm

for unconstrained cuts
while $|V|>2$:
Contract random edge.
Key: Singleton feasibility

$$
w(\delta(v)) \geqslant \mathrm{OPT}
$$

Contraction succeeds
with probability $\geqslant 2 /|v|$.

Observation

Relevant for constraint:
$V_{\not \equiv 0}:=\{v \in V \mid \gamma(v) \not \equiv 0\}$
Suffices to find: OPT $\cap V_{\neq 0}$.

Splitting-Off

Two operations to split off at • :
\square u \qquad and () n

Theorem: Efficient splitting Can efficiently get $H=\left(V_{\neq 0}, F\right)$ with weights $w_{H}: F \rightarrow \mathbb{R}_{\geqslant 0}$ s.th. $-\nu(v)=w_{H}\left(\delta_{H}(v)\right) \forall v \in V_{\not \equiv 0}$, - cut values do not increase.

Contraction-Reduction Algorithm

Contraction or Reduction?

Theorem: Contraction

$\sum_{v \in V_{\neq 0}} \nu(v)>\frac{2 \text { OPT }}{c} \cdot\left|V_{\neq 0}\right|$
Edge contraction in aux. graph succeeds with prob. $\geqslant c /\left|v_{\neq 0}\right|$.

Else: $\sum_{v \in V_{\neq 0}} \nu(v)$ small and $\left|V_{\not \equiv 0}\right|$ large.
\Downarrow
Many $v \in V_{\neq 0}$ with
$\gamma(v) \equiv q(\bmod m)$ and
$\nu(v):=\min \left\{w(\delta(C)) \mid C \cap V_{\not \equiv 0}=\{v\}\right\}$
$\nu(v)=w\left(\delta\left(C_{v}\right)\right)<\varepsilon \cdot$ OPT.
\Downarrow
Reduction to modulus $\operatorname{gcd}(m, q)$:

$w\left(C \Delta C_{v}\right)<$ $w(\delta(C))+\varepsilon$ OPT
$\gamma\left(C \Delta C_{v}\right) \equiv$
$\gamma(C) \pm q(\bmod m)$

Auxiliary Graph Construction

$$
\begin{aligned}
\nu(v)=w\left(\delta_{G}\left(C_{V}\right)\right) & =w_{H}\left(\delta_{H}(v)\right) \\
\gamma\left(C_{V}\right) & =\gamma(v)
\end{aligned}
$$

(C) $\pm q(\bmod m)$

