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Martin Nägele1, Christian Nöbel2, Richard Santiago2, Rico Zenklusen2

1
Research Institute for Discrete Mathematics and Hausdor� Center for Mathematics, University of Bonn

2
Department of Mathematics, ETH Zurich

Why do

we care?

Connections to
bounded subdeterminant IPs

An IP with constraint matrix

A ∈ Zk×n is m-modular if A has

full column rank and all n × n sub-

determinants are in {−m, . . . ,m}.
I Reduction to CCTU for m = 2.

I Special case: Subdets in {0,±p}:
(for p prime)
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→ congruency-constraint through

column scaling

Generalization of
well-studied problems

So far: Mostly only parity
constraints, e.g.:

I Minimum even/odd cut.

I Shortest odd cycle.

What’s

known?

Thm 1: CCTU Feasibility

There is a strongly poly time

randomized algorithm for CCTU

feasibility problems with m ≤ 3.

Extends to R-CCTU problems

with prime m and |R| ≥ m − 2.

Thm 2: CCTU Optimization

There is a strongly poly time algorithm

for CCTU optimization if m ≤ 2.

[Artmann, Weismantel, and Z., STOC 2017]

Extends to algorithm for R-CCTU prob-

lems with arbitrary m and |R| ≥ m − 1.

Thm 3: Reductions

For prime m,

R-CCTU feasibility

reduces to R-CCTU
base block feasibility

if |R| ≥ m − 2.

Extends to optimiza-

tion if |R| ≥ m − 1.

Key for optimization with m = 2:
Reduction to conic instances

Congruency-Constrained TU Optimization
(CCTU)

For T ∈ {−1, 0, 1}k×n totally unimodular, b ∈ Zk, 𝛾 ∈ Zn,

modulus m ∈ Z>0, r ∈ {0, . . . ,m − 1}, and c ∈ Zn, solve

min
{
c>x : Tx ≤ b, 𝛾>x ≡ r (mod m), x ∈ Zn

}
.

Generalization: R-CCTU problems for R ⊆ {0, . . . ,m − 1}:
constraint 𝛾>x ∈ R (mod m)

Example:
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x + 2y ≡ 1 (mod 4)

x, y ∈ Z

Challenges

Translate to

combinatorial

problems

Concretely, 3-sums T =

(
A ef >

gh> B

)
give subproblems

AxA ≤ bA − 𝛼e
h>xA = 𝛽

𝛾>AxA ≡ rA (mod m)
and

BxB ≤ bB − 𝛽g
f >xB = 𝛼

𝛾>B xB ≡ rB (mod m)

Can the solution structure of the smaller sub-
problem be integrated to the larger one?

“Divide & Conquer” through Seymour’s decomposition:

How to do clean integration?

Base block instances

Given a digraph G = (V ,A), find a cut C ⊆ V mini-

mizing |𝛿+(C) | among all cuts with |C | ≡ r (mod m).

Can we e�ciently solve problems with
constant but non-prime-power m?

Congruency-constrained cuts Given a digraph D = (V ,A), find a shortest non-

zero circulation C ⊆ A with |C | ≡ r (mod m).

Is there an e�cient deterministic algorithm?

Congruency-constrained circulations

There is li�le knowledge

on general m-modular IPs.

Can we better relate m-modular
IPs and CCTU problems?

Connections to
bounded subdeterminant IPs

Recent CCTU progress is

on feasibility problems.

Can we push the opti-
mization counterparts?
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Seymour’s decomposition:
Decomposing TU ma-

trices into base blocks
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