Challenges in Congruency-Constrained TU Optimization

Martin Nägele¹, Christian Nöbel², Richard Santiago², Rico Zenklusen²

¹Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of Bonn ²Department of Mathematics, ETH Zurich

Connections to bounded subdeterminant IPs

An IP with constraint matrix $A \in \mathbb{Z}^{k \times n}$ is *m*-modular if A has full column rank and all $n \times n$ subdeterminants are in $\{-m, \ldots, m\}$.

▶ Reduction to CCTU for m = 2.

Congruency-Constrained TU Optimization (CCTU)

For $T \in \{-1, 0, 1\}^{k \times n}$ totally unimodular, $b \in \mathbb{Z}^k$, $\gamma \in \mathbb{Z}^n$, modulus $m \in \mathbb{Z}_{>0}$, $r \in \{0, \ldots, m-1\}$, and $c \in \mathbb{Z}^n$, solve

 $\min \left\{ c^{\top} x \colon Tx \leq b, \ \gamma^{\top} x \equiv r \pmod{m}, \ x \in \mathbb{Z}^n \right\} .$

Thm 1: CCTU Feasibility

There is a strongly poly time randomized algorithm for CCTU feasibility problems with $m \leq 3$.

Extends to R-CCTU problems with prime m and $|R| \ge m - 2$.

Thm 3: Reductions

For prime *m*, *R*-CCTU feasibility reduces to R-CCTU *base block* feasibility if $|R| \geq m-2$.

Extends to optimization if $|R| \geq m-1$.

Shortest odd cycle.

Extends to algorithm for R-CCTU problems with arbitrary m and $|R| \ge m - 1$.

Connections to

bounded subdeterminant IPs

There is little knowledge on general *m*-modular IPs.

Can we better relate *m*-modular **IPs and CCTU problems?**

Recent CCTU progress is on feasibility problems.

Challenges

Can we push the opti-

"Divide & Conquer" through Seymour's decomposition:

How to do clean integration?

Concretely, 3-sums
$$T = \begin{pmatrix} A & ef^T \\ gh^T & B \end{pmatrix}$$
 give subproblems

 $Bx_B \leq b_B - \beta g$ $Ax_A \leq b_A - \alpha e$ $h^{\top} x_{A} = \beta \qquad \text{and} \\ \gamma_{A}^{\top} x_{A} \equiv \mathbf{r}_{A} \pmod{m}$ $f^{\top} x_B = \alpha$ $\gamma_B^\top x_B \equiv \mathbf{r}_B \pmod{m}$

Can the solution structure of the smaller subproblem be integrated to the larger one?

Base block instances

Translate to combinatorial problems

Seymour's decomposition: Decomposing TU matrices into *base blocks*

Congruency-constrained cuts

Given a digraph G = (V, A), find a cut $C \subseteq V$ minimizing $|\delta^+(C)|$ among all cuts with $|C| \equiv r \pmod{m}$.

> Can we efficiently solve problems with constant but non-prime-power *m*?

mization counterparts?

Key for optimization with m = 2: Reduction to *conic* instances

OPT

Congruency-constrained circulations

Given a digraph D = (V, A), find a shortest nonzero circulation $C \subseteq A$ with $|C| \equiv r \pmod{m}$.

Is there an efficient deterministic algorithm?

