Challenges in Congruency-Constrained TU Optimization

Martin Nägele ${ }^{1}$, Christian Nöbel ${ }^{2}$, Richard Santiago ${ }^{2}$, Rico Zenklusen ${ }^{2}$
${ }^{1}$ Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of Bonn
${ }^{2}$ Department of Mathematics, ETH Zurich

Connections to

 bounded subdeterminant IPsAn IP with constraint matrix $A \in \mathbb{Z}^{k \times n}$ is m-modular if A has full column rank and all $n \times n$ subdeterminants are in $\{-m, \ldots, m\}$.

- Reduction to CCTU for $m=2$.
- Special case: Subdets in $\left\{\begin{array}{l}\{0, \pm p\} \text { (for } p \text { prim })\end{array}\right.$

$$
\text { Hermite } \quad\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & : & : \\
: & \cdots & \cdots & 0 & 0 \\
0 & \cdots & 0 & 1 & 0 \\
* & \cdots & * & p \\
* & & & * 0 / \pm p \\
& \cdots & & \vdots \\
* & & & * 0 / \pm p
\end{array}\right)
$$

\rightarrow congruency-constraint through column scaling

Why do Generalization of we care?

Congruency-Constrained TU Optimization (CCTU)

For $T \in\{-1,0,1\}^{k \times n}$ totally unimodular, $b \in \mathbb{Z}^{k}, \gamma \in \mathbb{Z}^{n}$, modulus $m \in \mathbb{Z}_{>0}, r \in\{0, \ldots, m-1\}$, and $c \in \mathbb{Z}^{n}$, solve

$$
\min \left\{c^{\top} x: T x \leq b, \gamma^{\top} x \equiv r \quad(\bmod m), x \in \mathbb{Z}^{n}\right\}
$$

Generalization: \boldsymbol{R}-CCTU problems for $R \subseteq\{0, \ldots, m-1\}$: constraint $\gamma^{\top} x \in R(\bmod m)$

Thm 1: CCTU Feasibility

There is a strongly poly time randomized algorithm for CCTU feasibility problems with $m \leq 3$.

Extends to R-CCTU problems
with prime m and $|R| \geq m-2$.

Thm 3: Reductions
For prime m, R-CCTU feasibility reduces to R-CCTU base block feasibility if $|R| \geq m-2$.

Extends to optimiza-
tion if $|R| \geq m-1$.

"Divide \& Conquer" through Seymour's decomposition:

How to do clean integration?
Concretely, 3-sums $T=\left(\begin{array}{cc}A & e f^{\top} \\ g h^{\top} & B\end{array}\right)$ give subproblems

$$
\begin{aligned}
& A x_{A} \leq b_{A}-\alpha e \\
& h^{\top} x_{A}=\beta \\
& \gamma_{A}^{\top} x_{A} \equiv r_{A} \quad(\bmod m) \\
& \text { and } \\
& B x_{B} \leq b_{B}-\beta g \\
& f^{\top} x_{B}=\alpha \\
& \gamma_{B}^{\top} x_{B} \equiv r_{B} \quad(\bmod m)
\end{aligned}
$$

Can the solution structure of the smaller subproblem be integrated to the larger one?

Seymour's decomposition: Decomposing TU matrices into base blocks

> Congruency-constrained cuts

Given a digraph $G=(V, A)$, find a cut $C \subseteq V$ minimizing $\left|\delta^{+}(C)\right|$ among all cuts with $|C| \equiv r(\bmod m)$.

Connections to
bounded subdeterminant IPs
There is little knowledge on general m-modular IPs.

Can we better relate m-modular IPs and CCTU problems?

Key for optimization with $m=2$: Reduction to conic instances

Congruency-constrained circulations

Given a digraph $D=(V, A)$, find a shortest nonzero circulation $C \subseteq A$ with $|C| \equiv r(\bmod m)$.

Is there an efficient deterministic algorithm?

