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Abstract

We present a new (3/2+1/e)-approximation algorithm for the Ordered Traveling Salesperson Problem
(Ordered TSP). Ordered TSP is a variant of the classical metric Traveling Salesperson Problem (TSP)
where a specified subset of vertices needs to appear on the output Hamiltonian cycle in a given order,
and the task is to compute a cheapest such cycle. Our approximation guarantee of approximately 1.868
holds with respect to the value of a natural new linear programming (LP) relaxation for Ordered TSP.
Our result significantly improves upon the previously best known guarantee of 5/2 for this problem and
thereby considerably reduces the gap between approximability of Ordered TSP and metric TSP. Our
algorithm is based on a decomposition of the LP solution into weighted trees that serve as building
blocks in our tour construction.
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1 Introduction

The classical metric Traveling Salesperson Problem (TSP) is one of the most fundamental and well-studied
problems in Combinatorial Optimization and has a large number of applications. A metric TSP instance is
given by a complete undirected graph G = (V,E) with metric edge cost c : E → R≥0. The task is to find a
cycle of minimum cost that visits each vertex exactly once, where the cost of a cycle equals the sum of the
edge costs over all edges it contains. Metric TSP is highly relevant in many practical applications and thus,
a lot of different variants are studied (see, e.g., [SKK23]). The problem is NP-hard and APX-hard [PY93];
concretely, assuming P 6= NP, it is known that no polynomial-time algorithm can guarantee to find a cycle
of cost at most 123/122 times the cost of a cheapest cycle [KLS15]. For a long time, the best-known ap-
proximation algorithm for metric TSP was the Christofides-Serdyukov 3⁄2-approximation algorithm [Chr76;
Chr22; Ser87]. This was recently improved to a breakthrough (3/2− ε)-approximation algorithm, for some
ε > 10−36, by Karlin, Klein, and Oveis Gharan [KKO21; KKO23].

In this work, we focus on a generalization of metric TSP known as Ordered TSP, in which some of the
vertices must be visited in a given order:

Ordered TSP (OTSP): Given a complete undirected graph G = (V,E) with metric edge cost
c : E → R≥0 and pairwise distinct vertices d1, . . . , dk ∈ V , the task is to find a cheapest spanning
cycle C in G that contains the vertices d1, . . . , dk in this order.

We typically refer to an input of OTSP as an OTSP instance (G, c, (d1, . . . , dk)); solutions are often called
tours. Our goal in this paper is to further the understanding of the approximability of OTSP, i.e., we aim to
design α-approximation algorithms for OTSP with α as small as possible.

Clearly, OTSP is at least as hard as metric TSP, and therefore APX-hard. Surprisingly, not much more is
known on the approximability of OTSP. Böckenhauer, Hromkovič, Kneis, and Kupke [BHKK06] observed
that a 5/2-approximate solution can be readily obtained by first traversing d1, . . . , dk in this order and sub-
sequently appending a tour on V \ {d1, . . . , dk} constructed through the Christofides-Serdyukov algorithm.
The black-box use of a metric TSP approximation algorithm allows to reduce this guarantee by the same
additive improvement of ε > 10−36 as in the (3/2− ε)-approximation by Karlin, Klein, and Oveis Gharan.
Besides that, Böckenhauer, Mömke, and Steinová [BMS13] gave a (5/2 − 2/k)-approximation algorithm,
where k ≥ 2 is the number of ordered vertices in the OTSP input. Note that their result does not directly
inherit the improvement achieved for metric TSP, making its approximation ratio asymptotically inferior
to the earlier approach of Böckenhauer, Hromkovič, Kneis, and Kupke. Finally, the intuition that OTSP
should become easier once k approaches n is confirmed by a dynamic programming approach of Deı̆neko,
Hoffmann, Okamoto, and Woeginger [DHOW06] that runs in O(2rr2n) time and O(2rrn) space, i.e., in
polynomial time and space if r := n − k, the number of vertices that are not in the input order, is of
magnitude O(log n).

OTSP is in fact a special case of a the following significantly more general TSP variation termed TSP
with Precedence Constraints.

TSP with Precedence Constraints (TSP-PC): Given a complete undirected graph G = (V,E)
with metric edge cost c : E → R≥0 and a partial order ≺ on V , the task is to find a cheapest
spanning cycle C in G that respects ≺, i.e., C can be traversed such that whenever u ≺ v for two
vertices u, v ∈ V , then u appears earlier on C than v.

Compared to the total order constraints in OTSP, general partial orders allow for modeling a much wider
range of problems. One among many applications of TSP-PC is, e.g., tour planning for mixed pickup
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and delivery services, where one needs to make sure that a pickup happens before a delivery (but apart
from that, pickups and deliveries can be intertwined arbitrarily). There is a considerable body of research
on the structure of the TSP-PC polyhedron, different dynamic programming algorithms, enhanced branch-
and-bound methods, and various other exact and heuristic approaches, typically even for the more gen-
eral version of TSP-PC with asymmetric edge cost (see, e.g., [BFP95; GP06; Sal19; KSBK23] and refer-
ences therein). Despite that, essentially no positive results on the approximability of TSP-PC are known,
which is possibly explained by an influential hardness result of Charikar, Motwani, Raghavan, and Silver-
stein [CMRS97]: By relating the problem to the Shortest Common Supersequence Problem, they are able
to show that there is no (log n)δ-approximation for the path version of TSP-PC for any constant δ, unless
NP ⊆ DTIME(nO(log logn)), even if the underlying metric space is a line. This motivates our study of the
approximability of TSP-PC on general metric spaces with special partial orders, i.e., OTSP.

1.1 Our results and techniques

Our main contribution is to significantly improve the state of the art for OTSP by giving an LP-relative
approximation guarantee of 3/2 + 1/e ≈ 1.868, as stated in the following theorem.

Theorem 1. There is a polynomial-time (3/2 + 1/e)-approximation algorithm for OTSP.

This constitutes a significant improvement over the previous (5/2 − ε)-approximation algorithm. We
achieve this improvement by introducing a new linear programming (LP) relaxation for OTSP and devising
a suitable rounding procedure. The LP relaxation is based on the Held-Karp relaxation that is typically lever-
aged in the context of TSP, but allows for taking the prescribed order of the vertices d1, . . . , dk into account
by using disjoint sets of variables to represent the di-di+1 strolls1 that a solution is composed of. Our round-
ing procedure crucially relies on a result on decomposing (fractional) s-t strolls into a convex combination
of trees. This decomposition resembles an existential result by Bang-Jensen, Frank, and Jackson [BFJ95,
Theorem 2.6] on packing branchings in a directed multigraph. Variations thereof have recently been used
for advances on another variant of TSP, namely Prize-Collecting TSP [BN23; BKN24], and motivate the
application here. (See Lemma 5 for the precise statement of the decomposition result.) The trees obtained
from stroll decompositions enable the construction of a subgraph that spans a reasonably large part of V
at cost no more than the LP solution cost, and contains a walk with visits at d1, . . . , dk in this order. Our
tour construction is completed by connecting the remaining isolated vertices in a cheapest possible way, and
applying a parity correction step as typical for TSP-like problems.

Our approach crucially relies on being able to split a solution into di-di+1 strolls upfront, hence it is not
directly suitable for handling arbitrary precedence constraints other than total orders. While one can always
try to guess a suitable total order that is compatible with the given partial order, and then apply Theorem 1,
this is generally not efficient. We can, though, obtain approximation algorithms for some special cases of
precedence constraints, as for example in the following result that is a direct generalization of Theorem 1.

Theorem 2. Consider a TSP-PC instance (G, c,≺) on a complete graphG = (V,E) with a partial order≺
that can be equivalently given as independent total orders on disjoint subsets D1, . . . , D` ⊆ V . There is a
polynomial-time (`+ 1/2 + 1/e`)-approximation algorithm for this class of TSP-PC problems.

The total orders on the sets Di are also called chains. We remark that losing a factor of ` in Theorem 2
is intrinsic to our approach: We never merge the given chains, but traverse them one after another. Still,
the result of Theorem 2 is superior to a black-box algorithm that independently applies the algorithm from
Theorem 1 to the ` chains and concatenates the resulting tours (while shortcutting to avoid repeated visits).

1We use the term s-t stroll instead of s-t path for a path from s to t in the underlying graph to emphasize that we do not require
all vertices to be covered. Also, for convenience of notation, we use dk+1 := d1 throughout the paper.
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1.2 Related Work

Variations of OTSP and TSP-PC are also studied in the context of scheduling with precedence constraints.
In a classical setup, denoted by Pm|prec|Cmax in the scheduling literature, one needs to find a schedule for
a set J of n jobs on m identical machines subject to precedence constraints between the jobs. Formally,
each job j ∈ J is characterized by a processing time pj ∈ Z≥0, and a schedule σ : J → Z≥0×{1, . . . ,m}
assigns each job j ∈ J to a pair (σ1(j), σ2(j)) consisting of an integer start time σ1(j) and a machine σ2(j)
such that no other job scheduled on that machine has their start time in the time interval [σ1(j), σ1(j) + pj ],
and for any two jobs j, j′ ∈ J related as j ≺ j′ it holds that σ1(j) < σ2(j

′). The makespan objective Cmax

of a schedule σ is the maximum completion time Cj = σ1(j) + pj over all jobs j ∈ J . Generally, prece-
dence constraints of this type are studied extensively in a wide range of scheduling problems, including
different settings and objectives (see, e.g., [Sve10; Gra69; DKRTZ20; LR16]). The three-machine prob-
lem P3|prec, pj ≡ 1|Cmax is one of the few famous open problems by Garey and Johnson [GJ79] whose
computational complexity has not yet been resolved.

The complexity of many scheduling problems with precedence constraints that are chains has been
well-investigated. An influential paper of Lenstra and Rinnooy Kan [LR80] shows strong NP-hardness for
minimizing the number of chain-constrained unit-size jobs that miss their deadline on a single machine.
Several other works with chain constraints have appeared [JS10; DLY91; Kun81; Woe00].

Towards analogues of TSP-PC, we may consider the aforementioned problem Pm|prec|Cmax on a single
machine, but add sequence-dependent setup times sij ∈ Z≥0 between any two jobs i and j, which add to the
makespan of the schedule. This problem, which is denoted as 1|prec, sij |Cmax, was discussed by Liaee and
Emmons [LE97, Section 3.1.2]. In case of TSP-PC, the setup times are metric (i.e., sij ≤ sik + skj for any
triple (i, j, k) of distinct jobs), and all jobs have equal processing time pj ≡ 0. To be precise, the objective
function for TSP-PC takes into account the cost for returning to the origin city whereas no such cost occurs
in the objective function for 1|prec, sij |Cmax, hence the latter in fact models a path version of TSP-PC.

1.3 Organization of the paper

In Section 2, we introduce our new linear programming formulation for OTSP (Section 2.1) and analyze a
randomized algorithm giving the guarantee of Theorem 1 in expectation (Section 2.2). We show how this
algorithm can be derandomized in Section 2.3. Finally, Section 3 extends our framework to yield Theorem 2,
and Section 4 shows how our main technical lemma is implied by a closely related known result.

2 Our algorithm

2.1 The LP relaxation and polyhedral basics

The most commonly used LP relaxation in approximation algorithms for classical TSP is the so-called
Held-Karp relaxation. It was first introduced by Dantzig, Fulkerson, and Johnson [DFJ54] and is given by

PHK(G) :=

{
x ∈ RE≥0 :

x(δ(v)) = 2 ∀v ∈ V
x(δ(S)) ≥ 2 ∀S ( V, S 6= ∅

}
,

where G = (V,E) is the underlying complete graph.2 While TSP simply asks for a spanning cycle, OTSP
requires that the vertices d1, . . . , dk appear on the cycle in this order. Thus, a solution is naturally composed
of k strolls, namely a di-di+1 stroll for every i ∈ {1, . . . , k}. For a polyhedral description of s-t strolls
in a complete graph G = (V,E), we modify the Held-Karp relaxation for s-t path TSP3 to allow partial

2For S ⊆ V we denote by δ(S) the set of edges with exactly one endpoint in S. For v ∈ V , we abbreviate δ(v) := δ({v}).
3Given a complete graphG = (V,E) with metric edge costs and vertices s, t ∈ V , s-t path TSP is the variant of TSP that seeks

a path of smallest total cost from s to t while visiting every vertex exactly once.
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coverage of vertices. Concretely, the variables y ∈ RV≥0 in the following formulation indicate the extent at
which vertices are covered:4

Ps-t stroll(G) :=

(x, y) ∈ RE≥0 × RV≥0 :

x(δ(v)) = 2yv ∀v ∈ V
x(δ(S)) ≥ 1 ∀S ⊆ V \ {t}, s ∈ S
x(δ(S)) ≥ 2yv ∀S ⊆ V \ {s, t}, v ∈ S
ys = yt = 1/2

 . (1)

Note that setting ys = yt = 1/2 corresponds to s and t having degree 1 in an s-t stroll, while all interior
vertices of an integral stroll have degree 2, which corresponds to a y-value of 1. Using the above polyhedral
relaxation (1) for all di-di+1 strolls, it remains to link the strolls by requiring full joint coverage of every
v ∈ V . This results in the following LP relaxation for OTSP:

min
∑
e∈E

ce

k∑
i=1

xie

k∑
i=1

yiv = 1 ∀v ∈ V

(xi, yi) ∈ Pdi-di+1 stroll(G) ∀i ∈ {1, . . . k} .

(OTSP LP relaxation)

It is clear that any OTSP solution can be turned into a feasible solution to the above LP of the same
objective value, hence the above LP is indeed a relaxation of OTSP. We first observe that this OTSP LP
relaxation strengthens the Held-Karp relaxation in the following sense.

Observation 3. Let (xi, yi)i∈{1,...,k} be feasible for the OTSP LP relaxation. Then x :=
∑k

i=1 x
i ∈ PHK(G).

Proof. To see that x satisfies the degree constraints in PHK, note that for all v ∈ V , we have

x(δ(v)) =

k∑
i=1

xi(δ(v)) = 2 ·
k∑
i=1

yi = 2 .

To verify the cut constraints, let S ( V be a non-empty set of vertices. If both S ∩ {d1, . . . , dk} 6= ∅
and (V \ S) ∩ {d1, . . . , dk} 6= ∅, then there exist two distinct indices i1, i2 ∈ {1, . . . , k} such that di1 ∈ S
but di1+1 /∈ S, and di2 /∈ S but di2+1 ∈ S. This implies that xi1(δ(S)) ≥ 1 and xi2(δ(V \ S)) ≥ 1, so we
get

x(δ(S)) =
k∑
i=1

xi(δ(S)) ≥ xi1(δ(S)) + xi2(δ(S)) = xi1(δ(S)) + xi2(δ(V \ S)) ≥ 2 .

Otherwise, assume without loss of generality that S ∩{d1, . . . , dk} is empty (if not, V \S has this property)
and fix a vertex v ∈ S. We then know that xi(δ(S)) ≥ 2yv for all i ∈ {1, . . . , k}, hence

x(δ(S)) =

k∑
i=1

xi(δ(S)) ≥ 2 ·
k∑
i=1

yv = 2 .

The point x ∈ PHK(G) constructed in Observation 3 has the property that its cost c>x equals the ob-
jective value cLP of the feasible point of the OTSP LP relaxation that we started with. Thus, following the
arguments of Wolsey’s polyhedral analysis [Wol80] of the Christofides-Serdyukov algorithm, we immedi-
ately obtain the following.

4The constraints of Ps-t stroll imply that for v ∈ V \ {s, t}, we have 2yv ≤ x(δ(V \ {s, t})) ≤ x(δ(s)) + x(δ(t)) ≤ 2, and
thus yv ≤ 1, legitimating the proposed interpretation.
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Corollary 4. Let cLP denote the optimal objective value of the OTSP LP relaxation. Then, in the underlying
graph G with edge costs c, the following holds true.

(i) A shortest spanning tree T satisfies c(T ) ≤ cLP.
(ii) For any even cardinality set Q ⊆ V , a shortest Q-join J satisfies c(J) ≤ 1

2 · cLP.

Proof. Let (xi, yi)i∈{1,...,k} be an optimal solution of the OTSP LP relaxation. By Observation 3, x :=∑k
i=1 x

i ∈ PHK(G). It is well-known due to Held and Karp [HK70] that then, |V |−1|V | · x is feasible for
the spanning tree polytope, and due to Wolsey [Wol80] that 1

2x is feasible for the dominant of the Q-join
polytope, hence c(T ) ≤ |V |−1|V | · c

>x < c>x and c(J) ≤ 1
2c
>x. Using that c>x = cLP, the result follows.

2.2 Rounding an LP solution

At its core, our algorithm for rounding a typically fractional solution (xi, yi)i∈{1,...,k} of the OTSP LP
relaxation is based on leveraging a decomposition result for each of the points (xi, yi) ∈ Pdi-di+1 stroll. By
scaling up (xi, yi) by a large enough factor M such that Mxi is integral, this decomposition can be viewed
as a result on packing trees into the multigraph that has Mxie copies of every edge e ∈ E and such that
every vertex v appears in Myi many of the trees. While most results of this type deal with packing spanning
trees (or, in the directed case, arborescences), i.e., consider uniform packings, Bang-Jensen, Frank, and
Jackson [BFJ95] gave one of few results in a non-uniform setting as we are facing here. Their splitting-off
based construction was revised by Blauth and Nägele [BN23] to obtain more fine-grained control over the
output components of the decomposition when starting from a solution of a Held-Karp-type relaxation that
allows partial coverage of vertices (similar to what we allow in Ps-t stroll). We observe that these findings
can be immediately carried over to solutions of Ps-t stroll, giving Lemma 5 below. We defer a formal proof
to Section 4.

Lemma 5. Let G = (V,E) be an undirected graph, s, t ∈ V , and let (x, y) ∈ Ps-t stroll(G). We can in
polynomial time compute a family T of subtrees of G that all contain the vertices s and t, and weights
µ ∈ [0, 1]T with

∑
T∈T µT = 1 such that5∑

T∈T
µTχ

E[T ] = x and
∑

T∈T : v∈V [T ]

µT = yv ∀v ∈ V \ {s, t} .

In other words, Lemma 5 allows to decompose a fractional s-t stroll into a convex combination of trees
in a family T that all connect s and t, and such that for every other vertex v ∈ V \ {s, t}, the weighted
number of trees that contain v equals the coverage yv of v in the stroll. An example of a feasible solution
(x, y) and a decomposition satisfying the properties of Lemma 5 is given in Figure 1.

After applying Lemma 5 to all strolls (xi, yi) ∈ Pdi-di+1 stroll obtained from an optimal solution of the
OTSP LP relaxation, we choose one tree from each of the decompositions and consider the (multi-)union
of all edges obtained this way. This results in a graph that already contains a closed walk with visits
at d1, . . . , dk in this order, giving the basis for our construction of an OTSP solution. Also, we can easily
bound the expected cost of the edge set obtained in this way by randomly choosing the trees with marginals
given by the weights µ from Lemma 5. To obtain an actual OTSP solution, the missing steps are to (i) con-
nect vertices that are not covered by any of the trees Ti, (ii) perform parity correction to guarantee that there
exists an Eulerian tour, and (iii) shortcut appropriately to obtain an actual OTSP solution. Altogether, this
leads to the randomized Algorithm 1 as laid out below; also see Figure 2 for an example illustration of the
different edge sets that are constructed in Algorithm 1.

We first show that Algorithm 1 gives the guarantees claimed by Theorem 1 in expectation and—even
stronger—with respect to the value cLP of the OTSP LP relaxation, as stated in the subsequent theorem. In

5For a graph H we denote by V [H] the set of vertices and by E[H] the set of edges of H .
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(a) Solution (x, y) with xe = 1/4 for dotted edges, xe = 1/2 for dashed
edges, and xe = 3/4 for solid edges. Likewise, yv = 1/4 for blank
vertices, yv = 1/2 for dashed vertices, and yv = 3/4 for full vertices.

(b) A decomposition of the solution (x, y) given in (a)
into four trees with uniform weight µ ≡ 1/4 satisfying
the properties of Lemma 5.

Figure 1: A solution (x, y) ∈ Ps-t stroll along with a decomposition into trees, exemplifying Lemma 5.

Section 2.3, we show that Algorithm 1 admits an immediate derandomization using the method of condi-
tional expectation, thereby completing the proof of Theorem 1.

Theorem 6. Let cLP be the cost of an optimum solution of the OTSP LP relaxation. Algorithm 1 returns in
polynomial time an OTSP solution C satisfying

E[c(E[C])] ≤
(
3

2
+

1

e

)
· cLP .

To prove Theorem 6, we first study the random graph H0 := (V,
⋃̇
i∈{1,...,k}E[Ti]) obtained from taking

the union of trees Ti ∈ Ti for all i ∈ {1, . . . , k} as sampled in Algorithm 1. In order for the following
statements to also be applicable in a proof of Theorem 2, we refer to the tree distributions of the type
generated in Algorithm 1 as connecting tree distributions.

Definition 7 (Connecting tree distribution). Let G = (V,E) be a graph and let d1, . . . , dk ∈ V . A connect-
ing tree distribution (Ti, µi)i∈{1,...,k} consists of a family Ti of subtrees of G and marginals µi : Ti → (0, 1]
for every i ∈ {1, . . . , k} with the following properties.

(i)
∑

T∈Ti µ
i
T = 1 for all i ∈ {1, . . . , k}.

(ii) V [T ] ∩ {d1, . . . , dk} = {di, di+1} for all T ∈ Ti and i ∈ {1, . . . , k}.
(iii)

∑k
i=1

∑
T∈Ti : v∈V [T ] µ

i
T = 1 for all v ∈ V \ {d1, . . . , dk}.

Algorithm 1: A randomized approximation algorithm for OTSP

Input: OTSP instance (G, c, {d1, . . . , dk}) on graph G = (V,E).

1 Compute an optimal solution (xi, yi)i∈{1,...,k} to the OTSP LP relaxation.
2 foreach i ∈ {1, . . . , k} do
3 Apply Lemma 5 to decompose (xi, yi) into trees Ti with weights µi.
4 Sample one tree Ti from Ti with marginals given by µi.

5 Compute a minimum-cost edge set F ⊆ E such that the multigraph

H :=

(
V, F ∪

⋃̇
i∈{1,...,k}

E[Ti]

)
is connected.

6 Let Q = odd(H) and compute a minimum cost Q-join J in G.
7 return Spanning cycle C in G obtained from H ∪̇ J through Lemma 10.

6



T3

T4

T1

T2

d3

d4

d1

d2

Figure 2: Exemplifying the construction of Eulerian graph H ∪̇J from Algorithm 1: Trees T1, T2, T3, T4
drawn as solid blueish edges, the edge set F connecting all vertices to the trees drawn as curly red edges,
and the odd(H)-join J drawn as dashed green edges.

The distributions (Ti, µi) obtained in Algorithm 1 by applying Lemma 5 indeed satisfy the constraints
of the above definition; in particular, Item (iii) is fulfilled because

k∑
i=1

∑
T∈Ti : v∈V [T ]

µiT =
k∑
i=1

yiv = 1 ∀v ∈ V \ {d1, . . . , dk} ,

where the first equality follows from Lemma 5, and the second one is implied by constraints of Pdi-di+1 stroll.

Lemma 8. Let G = (V,E) be a graph, d1, . . . , dk ∈ V , and let (Ti, µi) be a connecting tree distribution.
(i) For any choice of trees Ti ∈ Ti for i ∈ {1, . . . , k}, the multigraph H0 := (V,

⋃̇
i∈{1,...,k}E[Ti]) con-

sists of one large connected component and potentially several isolated vertices. The large connected
component contains a walk with visits at d1, . . . , dk in this order that can be constructed efficiently
from the trees Ti.

(ii) If, in the above construction, the trees Ti are sampled with marginals µi, we have that for all v ∈
V \ {d1, . . . , dk},

P[v is isolated in H0] ≤
1

e
.

Proof. For Item (i) observe that each tree Ti is connected within itself by definition and, as it contains di
and di+1, the union of all trees form one large connected component, while all other components must be
isolated vertices. Also, because each tree Ti contains a di-di+1 path, we may concatenate these paths to
obtain the desired walk with visits at d1, . . . , dk in this order.

To prove Item (ii), we calculate the probability that a vertex v ∈ V \ {d1, . . . , dk} is isolated in H0.
First, note that for any such vertex v and any i ∈ {1, . . . , k}, we have

P [v /∈ V [Ti]] = 1−
∑

T∈Ti : v∈V [T ]

µiT .

Thus, the probability that a vertex v ∈ V \ {d1, . . . , dk} is not contained in any tree Ti for i ∈ {1, . . . , k},
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and hence is isolated in H0, can be bounded as follows:

P

[
v /∈

k⋃
i=1

V [Ti]

]
=

k∏
i=1

P[v /∈ V [Ti]] =
k∏
i=1

1−
∑

T∈Ti : v∈V [T ]

µiT


≤ exp

− k∑
i=1

∑
T∈Ti : v∈V [T ]

µiT

 =
1

e
,

where we used that 1 − t ≤ exp(−t) for all t ∈ R, and
∑k

i=1

∑
T∈Ti : v∈V [T ] µ

i
T = 1 because (Ti, µi) is a

connecting tree distribution.

Next, we bound the cost of the minimum-cost connector F computed in Line 5 of Algorithm 1.

Lemma 9. Let G = (V,E) be a graph, d1, . . . , dk ∈ V , and let T be a minimum spanning tree of G.
(i) For all v ∈ V \ {d1}, let ev denote the unique edge outgoing of v when orienting T towards d1.

For every graph H0 on the vertex set V with components that are—up to possibly the component
containing d1—singleton vertices, the minimum-cost edge set F that connects H0 satisfies

c(F ) ≤
∑

v isolated in H0

c(ev) .

(ii) Let (Ti, µi) for i ∈ {1, . . . , k} be a connecting tree distribution. If the trees Ti ∈ Ti are sampled with
marginals µi and H0 := (V,

⋃̇
i∈{1,...,k}E[Ti]), we obtain

E[c(F )] ≤ 1

e
c(T ) .

Proof. In order to prove Item (i), we construct a feasible connecting edge set F ′ as the set of all edges ev
for which v is an isolated vertex. Then H0 ∪ F ′ is indeed connected, because each isolated vertex of H0 is
connected to its predecessor in T by an edge of F ′, hence inductively, the component of H0 containing d1
can be reached along edges of F ′. As the minimum-cost connector F has cost at most c(F ′), we have

c(F ) ≤ c(F ′) ≤
∑

v isolated in H0

c(ev) .

To prove Item (ii), we note that in this case,H0 consists of one large connected component and some isolated
vertices by Item (i) of Lemma 8. Using Item (ii) of Lemma 8 on top of the above, we get

E[c(F )] ≤ E[c(F ′)] =
∑

v∈V \{d1}

P[v isolated in H0] · c(ev) ≤
1

e

∑
v∈V \{d1}

c(ev) =
1

e
c(E[T ]) .

The cost of the odd(H)-join J constructed in Line 5 of Algorithm 1 can be bounded by 1
2c
>x by

Item (ii) of Corollary 4. Hence, to complete the analysis of Algorithm 1, it is left to show that from the
Eulerian graph H ∪̇ J constructed in Line 6 of Algorithm 1, we can obtain an OTSP solution of no larger
cost. We remark that such a step has also been used by Böckenhauer, Mömke, and Steinová [BMS13]; we
repeat it here explicitly and give a slightly different proof for completeness. In the proof, we repeatedly use
the operation of shortcutting a vertex v on a walk, which is the following: If the predecessor and successor
of v on the walk are u and w, respectively, we delete the edges {u, v} and {v, w} from the walk and add the
direct edge {u,w} instead. It is clear that this operation results in a walk again; furthermore, by the triangle
inequality, the costs of the walk do not increase under such operations.
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Lemma 10. Let G = (V,E) be complete graph with metric edge costs, and let d1, . . . , dk ∈ V be distinct.
Given an undirected connected Eulerian multigraph M = (V,EM ) together with a closed walk in M with
visits at d1, . . . , dk in this order, we can in polynomial time determine a spanning cycle C in G with visits
at d1, . . . , dk in this order of cost at most c(EM ).

Proof. Let C be the given closed walk on which d1, . . . , dk appear in this order, delete C from M and par-
tition the remaining Eulerian graph into a setW of closed walks. Shortcut C to a cycle while maintaining
visits at d1, . . . , dk in this order. This can, for example, be done by traversing C starting at d1, and short-
cutting (i) vertices that have already been visited, and (ii) vertices di that are not yet to be visited due to the
order constraint. Afterwards, as long asW is non-empty, pick a closed walk W fromW that intersects C,
and let v be a vertex in the intersection. Traversing W starting from v, shortcut W to a cycle by skipping,
except for v itself, all vertices that are already contained in C. Then, merge W into C by first traversing C
up to (and including) v, then completely traversing W until (but not including) v before continuing on C,
thereby including only one visit at v in the updated C. It is immediate that C is still a cycle after any such
operation, and the vertices d1, . . . , dk still appear on C once and in this order. By connectivity of M , this
procedure only terminates onceW is empty, and in that case, C is a spanning cycle of G. Also, all steps can
be implemented to run in polynomial time. Clearly, the final length of C with respect to c is at most c (EM )
because c is metric.

From the above ingredients, we can readily prove Theorem 6.

Proof of Theorem 6. The solution returned by Algorithm 1 is a spanning cycle C in G obtained from H ∪̇J
through Lemma 10, hence it is feasible and of cost at most c(E[H ∪̇ J ]). Note that the required closed
walk in H ∪̇ J with visits at d1, . . . , dk in this order is guaranteed and can be constructed efficiently from
the trees Ti by Item (i) of Lemma 8. Furthermore, by Item (ii) of Lemma 9 and Corollary 4, we know that
E[c(F )] ≤ 1/e · c(T ) ≤ 1/e · cLP, where T is a minimum-cost spanning tree. In addition, Corollary 4 also
implies that c(E[J ]) ≤ 1

2 · cLP. Last but not least, we can express the expected cost of each Ti as

E[c(E[Ti])] =
∑
T∈Ti

µiT c(E[T ]) =
∑
T∈Ti

µiT c
>χE[T ] = c>xi ∀i ∈ {1, . . . , k} .

Thus, by summing over all constructed trees, we obtain
∑k

i=1 E[c(E[Ti])] =
∑k

i=1 c
>xi = cLP. Together,

this yields the proclaimed bound

E[c(C)] ≤ E [c(E[H ∪̇ J ])] ≤
(
3

2
+

1

e

)
· cLP .

It remains to note that Algorithm 1 can be implemented to run in polynomial time. To start with, an optimal
solution of the OTSP LP relaxation can be found in polynomial time because Ps-t stroll admits a polynomial-
time separation oracle through polynomially many calls to a minimum-cut algorithm. Next, the decomposi-
tion in Line 3 is obtained in polynomial time, finding an optimal edge set F in Line 5 can be implemented
by Prim’s algorithm, and the odd(H)-join is well-known to be computable in polynomial time. Finally, also
the computation of the cycle C in Line 7 is polynomial due to Lemma 10, concluding the proof.

2.3 Derandomizing Algorithm 1

To complete a proof of our main result, Theorem 1, we now show how to derandomize Algorithm 1 using
the method of conditional expectations, which results in the following proof.
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Proof of Theorem 1. By the construction of the solution C in Algorithm 1, using Item (i) of Lemma 9 to
bound the cost of F , and Item (ii) of Corollary 4 to bound the cost of J , we know that

c(C) ≤
k∑
i=1

c(E[Ti]) + c(F ) + c(E[J ])

≤
k∑
i=1

c(E[Ti]) +
∑

v/∈
⋃k

i=1 V [Ti]

c(ev) +
1

2
· cLP

︸ ︷︷ ︸
=:g(T1,...,Tk)

, (2)

where we recall that ev, for v ∈ V \ {d1}, is the unique outgoing edge at v when orienting a minimum-
cost spanning tree of G towards d1. For Theorem 6, we showed that E[g(T1, . . . , Tk)] ≤ (3/2 + 1/e) · cLP.
Following the method of conditional expectations, in order to derandomize the choices of the trees Ti in
Line 4 of Algorithm 1 while maintaining the upper bound on the solution cost, we sequentially choose
trees Si for i ∈ {1, . . . , k} such that

Si = argmin
S∈Ti

E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1, Ti = S] . (3)

Note that feasibility of the cycle C and the bound of (2) on its cost are unaffected by fixing Ti = Si. By
definition of conditional expectation, we know that

E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1]

=
∑
S∈Ti

µiS · E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1, Ti = S] ,

hence the sequence of conditional expectations (E[g(T1, . . . , Tk) | T1 = S1, . . . , Ti = Si])i∈{1,...,k} is non-
increasing by the choice in (3), because

∑
S∈Ti µS = 1. Thus, it remains to observe that the conditional

expectations in (3) can be computed. To this end, observe that

E [g(T1, . . . , Tk) | T1 = S1, . . . , T` = S`]

=
∑̀
i=1

c(E[Si]) +
k∑

i=`+1

E[c(E[Ti])] +
∑

v/∈
⋃`

i=1 V [Si]

P

[
v /∈

k⋃
i=`+1

V [Ti]

]
c(ev) +

1

2
· cLP ,

and we can readily compute

E[c(E[Ti])] =
∑
T∈Ti

µiT c(E[T ]) and P

[
v /∈

k⋃
i=`+1

V [Ti]

]
=

k∏
i=`+1

(1− yiv) .

3 Extending to several independent total orders: Proving Theorem 2

In this section, we show how our approach can be extended to TSP-PC with a specific structure of prece-
dence constraints that corresponds to having total orders on disjoint subsets D1, . . . , D` ⊆ V of the input
graph G = (V,E).

As mentioned in the introduction, our approach is inherently tied to handle total orders—which is why,
in the aforementioned setup, our solutions will not interleave vertices from different chains Dj , but rather
treat the chains Dj one after another. Still, our approach allows to do better than simply constructing
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OTSP solutions for all subinstances (G, c,Dj) in a black-box way and concatenating them with appropriate
shortcutting. The latter would lead to an immediate (3/2+ 1/e)`-approximate solution by using Algorithm 1
on each subinstance. Instead, we observe that after solving the OTSP LP relaxation and sampling trees for
each subinstance as in Algorithm 1, we may join all edges obtained this way and only once need to connect
remaining singletons and do parity correction. This leads to Algorithm 2 as stated below.

Note that, deviating from the above outline, Algorithm 2 starts by guessing a root node d0 among the
minimal nodes in all sets Dj with respect to ≺; this node is used as a common anchor of the given partial
orders and results in connectivity of the multigraph containing all sampled trees. To be able to compare the
obtained solution to an optimal solution, we need d0 to be, among the minimal nodes in all sets Dj , the first
one to appear on an optimal solution. We remark that for one j ∈ {1, . . . , `}, we already have d0 ∈ Dj . For
the sake of uniform notation, we still add a copy of d0 to Dj in Line 3 of Algorithm 2.

Algorithm 2: Approximating a special case of TSP-PC.

Input: TSP-PC instance (G, c,≺) on graph G = (V,E), where ≺ precisely
induces total orders on disjoint subsets D1, . . . , D` ⊆ V .

1 Guess a root node d0 among the minimal nodes in Di with respect to ≺.
2 foreach j ∈ {1, . . . , `} do
3 Compute an optimal solution (xji, yji)i∈{0,1,...,|Dj |} to the OTSP LP relaxation

for the OTSP instance (G, c, {d0} ∪̇Dj) with an order given by ≺ extended
by d0 ≺ Dj .

4 foreach i ∈ {0, 1, . . . , |Dj |} do
5 Apply Lemma 5 to decompose (xji, yji) into trees Tji with weights µji.
6 Sample one tree Tji from Tji with marginals given by µji.

7 Compute a minimum-cost edge set F ⊆ E such that the multigraph

H :=

(
V, F ∪

⋃̇`

j=1

⋃̇
i∈{1,...,|Dj |}

E[Tji]

)
is connected.

8 Let Q = odd(H) and compute a minimum cost Q-join J in G.
9 return Shortest spanning cycle C in G (over all guesses of d0) that visits d0,

D1 \ {d0}, . . . , D` \ {d0} in this order (while respecting ≺ in each Di) and is
obtained from H ∪̇ J through Lemma 10.

We show that this algorithm gives the guarantee claimed by Theorem 2 in expectation, and that it can be
derandomized using the method of conditional expectations in a way analogous to the derandomization of
Algorithm 1.

Proof of Theorem 2. Let cOPT denote the cost of an optimal solution of the given TSP-PC instance. For
every j ∈ {1, . . . , `}, note that the value cjLP of the optimal solution (xji, yji)i∈{1,...,|Dj |} to the OTSP
instance (G, c, {d0}∪̇Dj) generated in Line 3 of Algorithm 2 satisfies cjLP ≤ cOPT. For every j ∈ {1, . . . , `},
denote

Hj :=

(
V,
⋃̇|Dj |

i=0
E[Tji]

)
.

Every such graph is composed of trees from a connecting tree distribution. Hence, by Item (i) of Lemma 8,
Hj consists of a large connected component that contains a walk with visits at d0 and all vertices of Dj in
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the desired order, and potentially isolated vertices. For all v /∈ {d0}∪Dj , Item (ii) of Lemma 8 implies that

P[v is isolated in Hj ] ≤
1

e
.

Also, observe that

E[c(E[Hj ])] =

|Dj |∑
i=0

E[c(Tji)] =
|Dj |∑
i=0

∑
T∈Tji

µjiT c(E[T ]) =

|Dj |∑
i=0

c>xji = cjLP ≤ cOPT .

Consequently, the multigraph H0 :=
⋃̇
j∈{1,...,`}Hj has total edge cost at most ` · cOPT. Furthermore, H0

has one large connected component that contains a walk with visits at d0, D1 \ {d0}, . . . , Dj \ {d0} in this
order (obtained by concatenating the walks obtained in the graphs Hj above), i.e., a walk that respects ≺.
Also, because the graphs H1, . . . ,H` are independent,

P[v is isolated in H0] =
∏̀
j=1

P[v is isolated in Hj ] ≤
1

e`
.

Hence, by Item (i) of Lemma 9, the cost of the minimum-cost edge set F connecting H0, as constructed in
Line 7 of Algorithm 2, can be bounded as follows:

E[c(F )] ≤
∑

v isolated in H0

P[v is isolated in H0] · c(ev) ≤
1

e`
· c(T ) ≤ 1

e`
· cOPT .

Here, we used that for any j ∈ {1, . . . , `}, we have c(T ) ≤ cjLP by Item (i) of Corollary 4, and cjLP ≤ cOPT
as mentioned above. Similarly, by Item (ii) of Corollary 4, we know that the cost of a cheapest odd(H)-
join J in the multigraph H = H0 ∪ F can be bounded by c(E[J ]) ≤ 1

2 · c
j
LP for any j ∈ {1, . . . , `}, hence

c(E[J ]) ≤ 1
2 · cOPT.

Altogether, we obtain a connected Eulerian multigraph H ∪̇ J together with a walk that has visits at d0,
D1 \ {d0}, . . . , Dj \ {d0} in the order given by ≺, and

E[c(E[H ∪̇ J ])] ≤
(
`+

1

2
+

1

e`

)
· cOPT .

Thus, by Lemma 10, we can efficiently find a cycle with visits at d0, D1 \ {d0}, . . . , Dj \ {d0} in the order
given by ≺ of at most the above expected cost.

Finally, to derandomize the random selection of trees Tji in Algorithm 2, we observe that the present
randomized analysis relies on a bound of the form

c(C) ≤
∑̀
j=1

|Dj |∑
i=0

c(Tji) +
∑

v/∈
⋃̇

j∈{1,...,`}
⋃̇

i∈{1,...,|Dj |}
V [Tji]

c(ev) +
1

2
· cOPT .

The conditional expectations of this bound with respect to fixing any subset of the trees Tji can be readily
computed. Thus, the derandomization works analogously to Algorithm 1 by the method of conditional
expectations, in each iteration fixing one of the Tji. To complete the proof of Theorem 6, we observe that
all steps of Algorithm 2 can be implemented to run in polynomial time.

Remark 11. We remark that the analysis of Algorithm 2 above is with respect to the actual cost cOPT of
an optimal TSP-PC solution. Alternatively, after guessing a root node d0, one could also write an LP
relaxation generalizing the OTSP LP relaxation by introducing independent copies of the variables for each
chain {d0} ∪Dj and minimizing the cost of a point x ∈ PHK(G) that dominates the edge usage within each
of the copies. For the ease of presentation, though, we decided to present the above analysis only.
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4 Proof of Lemma 5

As mentioned earlier, we derive Lemma 5 from a closely related result used by Blauth and Nägele [BN23,
Lemma 4.2]. We restate their result here in a slightly simplified form that follows immediately from the
original formulation.

Lemma 12 ([BN23, Lemma 4.2]). Let G = (V,E) be a graph with r ∈ V , let (x, y) ∈ RE≥0 × RV≥0 be
feasible for the system

x(δ(v)) = 2yv ∀v ∈ V
x(δ(S)) ≥ 2yv ∀S ⊆ V \ {r}, v ∈ S

yr = 1 ,
(4)

and assume that there is a vertex u ∈ V \ {r} such that yu = 1 and e0 = {u, r} satisfies xe0 ≥ 1. We can
in polynomial time construct a set T of trees that all contain the vertices r and u, and weights µ ∈ [0, 1]T

with
∑

T∈T µT = 1 and the following properties:
(i) The point x ∈ RE≥0 is a conic combination of the trees in T with weights µ and the edge e0, i.e.,

x =
∑
T∈T

µTχ
E[T ] + χe0 .

(ii) For every v ∈ V \ U , ∑
T∈T : v∈V [T ]

µT = yv .

The proof of Lemma 12 relies on the well-known splitting-off technique (see, e.g., [Lov76; Mad78;
Fra92]) applied in the graph G with weights x. Indeed, the constraints in the system (4) can be interpreted
as r-v connectivity requirements for all v ∈ V \ {r}, hence splitting-off allows to remove a vertex from
the graph while preserving the connectivity properties of the remaining graph. An inductive construction
of the desired family of trees is then achieved by reverting the splitting-off operations and extending trees
appropriately. For a complete proof, we refer to Blauth and Nägele [BN23].

To deduce Lemma 5 from Lemma 12, we note that a point (x, y) ∈ Ps-t stroll can be easily transformed
into a point (x′, y′) satisfying the assumptions of Lemma 12 by adding one unit to x{s,t} and adjusting ys
and yt accordingly. Note that intuitively, this corresponds to closing an s-t stroll to obtain a tour by adding
a copy of the edge {s, t}.

Proof of Lemma 5. Given (x, y) ∈ Ps-t stroll, we assume without loss of generality that e0 := {s, t} ∈ E and
define x′ := x + χ{s,t} and y′ = y + 1

2(χ
s + χt). We claim that (x′, y′) with r = s and u = t satisfy the

assumptions of Lemma 12. Indeed, y′s = y′t = 1, and x′e0 = xe0 + 1 ≥ 1. Moreover, for v /∈ {s, t}, we
have x′(δ(v)) = x(δ(v)) = 2yv; for v ∈ {s, t}, we have x′(δ(v)) = x(δ(v)) + 1 = 2 = 2y′v, hence the
degree constraints in (4) are satisfied. Finally, to verify that the cut constraints of (4) are satisfied, too, let
S ⊆ V \ {r} and v ∈ S. If t /∈ S, then x′(δ(S)) = x(δ(S)) ≥ 2yv = 2y′v follows from the corresponding
constraint of Ps-t stroll. If otherwise t ∈ S, we know that x(δ(S)) ≥ 1, hence

x′(δ(S)) = x(δ(S)) + 1 ≥ 2 ≥ 2y′v ,

where we use that y′v = yv ≤ 1 is implied by the constraints of Ps-t stroll for v ∈ V \ {s, t} (see Footnote 4),
and y′s = y′t = 1.

Consequently, by applying Lemma 12 to (x′, y′), we obtain in polynomial time a set T of trees that all
contain s and t, and weights µ ∈ [0, 1]T with

∑
T∈T µT = 1 such that

x+ χe0 = x′ =
∑
T∈T

µTχ
E[T ] + χe0 ,
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i.e., x =
∑

T∈T µTχ
E[T ], and, for every v ∈ V \ {s, t},∑

T∈T : v∈V [T ]

µT = y′v = yv .
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