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Abstract

A long-standing open question in Integer Programming is whether integer programs with constraint
matrices with bounded subdeterminants are efficiently solvable. An important special case thereof are
congruency-constrained integer programs min{c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn} with a
totally unimodular constraint matrix T . Such problems have been shown to be polynomial-time solvable
for m = 2, which led to an efficient algorithm for integer programs with bimodular constraint matrices,
i.e., full-rank matrices whose n × n subdeterminants are bounded by two in absolute value. Whereas
these advances heavily relied on existing results on well-known combinatorial problems with parity
constraints, new approaches are needed beyond the bimodular case, i.e., for m > 2.

We make first progress in this direction through several new techniques. In particular, we show how
to efficiently decide feasibility of congruency-constrained integer programs with a totally unimodular
constraint matrix for m = 3 using a randomized algorithm. Furthermore, for general m, our techniques
also allow for identifying flat directions of infeasible problems, and deducing bounds on the proximity
between solutions of the problem and its relaxation.

*This project received funding from Swiss National Science Foundation grants 200021 184622 and P500PT 206742, the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 817750), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - GZ 2047/1, Projekt-ID 390685813.

†Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of Bonn, Bonn, Germany.
Email: naegele@or.uni-bonn.de. Most of this work was done while the author was employed at ETH Zurich.

‡Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: rtorres@ethz.ch.
§Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: ricoz@ethz.ch.

mailto:naegele@or.uni-bonn.de
mailto:rtorres@ethz.ch
mailto:ricoz@ethz.ch


1 Introduction

Integer linear programs (ILPs) min{c>x : Ax ≤ b, x ∈ Zn} for A ∈ Zk×n, b ∈ Zk, and c ∈ Zn are
one of the most basic yet powerful discrete optimization problems. They are well-known to be NP-hard,
and extensive research is dedicated to identify efficiently solvable subclasses. One of the best known such
classes is when the constraint matrixA is required to be totally unimodular (TU), i.e., all square submatrices
ofA have a determinant in {−1, 0, 1}. The class of totally unimodular ILPs still comprises a large number of
interesting and heavily studied problems, as for example network flow and cut problems, bipartite matching
problems, and many others.

Intriguingly, it is still badly understood what kind of generalizations of this classical result on ILPs with
totally unimodular constraint matrices are possible to obtain larger classes of efficiently solvable ILPs. In
particular, there is a long-standing open question on whether ILPs are efficiently solvable if their constraint
matrix is ∆-modular for constant ∆. Here, a matrix A ∈ Zk×n is ∆-modular for ∆ ∈ Z>0 if it has full
column rank n, and all n× n submatrices have determinants bounded by ∆ in absolute value.1 Besides TU
constraint matrices, progress has only been achieved for the bimodular case ∆ = 2, for which an efficient
algorithm was presented by Artmann, Weismantel, and Zenklusen [AWZ17]. A relevant special case of such
problems are Congruency-Constrained TU Problems.2

Congruency-Constrained TU Optimization (CCTU): Let T ∈ {−1, 0, 1}k×n be TU, b ∈ Zk,
c ∈ Zn, m ∈ Z>0, γ ∈ Zn, and r ∈ Z. The task is to show infeasibility, unboundedness, or find a
minimizer of

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn

}
.

Even for m = 2, CCTU problems capture classical combinatorial optimization problems like the minimum
odd cut problem. Moreover, there are reasons to believe that insights on CCTU problems may be key to
make further progress on the open question of bounded subdeterminant ILPs. For ∆ = 2, a result of Veselov
and Chirkov [VC09] implies that bimodular ILPs reduce to CCTU problems with m = 2, i.e., with parity
constraints (see [AWZ17]). The result in [VC09] does not extend to ∆ > 2, and it remains open whether
another reduction to CCTU problems may exist. Questions closely related to CCTU have also appeared in
recent progress of Fiorini, Joret, Weltge, and Yuditsky [FJWY22], who obtained an efficient algorithm for
totally ∆-modular ILPs with a constraint matrix having at most two non-zeros in each row. This algorithm
computes certain circulations with parity constraints, which can be interpreted as CCTU problems with a
bounded number of additional constraints.

Moreover, we highlight that for prime numbers m, CCTU problems with modulus m are equivalent to
ILPs with a constraint matrix A that has full column rank and all of whose n×n subdeterminants are within
{0,±m}, in the sense that any of the two problems can be efficiently transformed to the other one.3

Typically, we consider CCTU problems with a constant modulus m, since CCTU with arbitrary non-
constant modulus m is NP-hard (one can, for example, model the minimum bisection problem).

1One may also consider totally ∆-modular matrices A, where all square subdeterminants of A are bounded by ∆ in absolute
value. The notion of ∆-modularity is more general in the sense that totally ∆-modular ILPs can be reduced to ∆-modular ILPs.
In particular, reducing to a problem with full-rank constraint matrix can be achieved by a standard transformation to non-negative
variables.

2A CCTU problem with modulusm can be written as anm-modular ILP by transforming the congruency constraint into a linear
equality constraint as follows. First append the row γ> to the matrix T and then append a column with zeros everywhere except
for the last entry (the one corresponding to the newly added row), which is set to m. Finally, the right-hand side of the newly added
constraint is set to r, the target residue.

3The reduction mentioned in Footnote 2 from a CCTU problem to a ∆-modular ILP shows one direction. The other one follows
by an analogous reduction to the one used in the bimodular case [AWZ17]. We highlight that in the conference version of this
paper [NSZ22], we missed adding that m needs to be prime for such an analogous reduction to work out.
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1.1 Our results

We present the first progress towards solving CCTU problems beyond the parity-constrained case by ap-
proaching the corresponding feasibility problem.

Congruency-Constrained TU Feasibility (CCTUF): Let T ∈ {−1, 0, 1}k×n be a totally unimod-
ular matrix, let b ∈ Zk, m ∈ Z>0, γ ∈ Zn, and r ∈ Z. The task is to show infeasibility or find a
solution of the system

Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn .

Our main result is the following.

Theorem 1. There is a strongly polynomial-time randomized algorithm for CCTUF problems with m = 3.4

As we show in Appendix A, being able to solve feasibility problems is also enough to detect unbounded-
ness of CCTU problems.5 One of the key ideas in the proof of Theorem 1 is to reduce a CCTUF problem to
a hierarchy of slightly relaxed congruency-constrained problems with totally unimodular constraint matrices
that we call R-CCTUF problems, and which we define as follows.

R-Congruency-Constrained TU Feasibility (R-CCTUF): Let T ∈ {−1, 0, 1}k×n be a totally
unimodular matrix and let b ∈ Zk. Additionally, let m ∈ Z>0, γ ∈ Zn, and R ⊆ {0, . . . ,m − 1}.
The task is to show infeasibility or find a feasible solution of the system

Tx ≤ b, γ>x ∈ R (mod m), x ∈ Zn .

Here, the constraint γ>x ∈ R (mod m) is satisfied if and only if there exists an r ∈ R such that γ>x ≡
r (mod m). We call R the set of target residues. Clearly, every CCTUF problem is an R-CCTUF problem
with R = {r}. Intuitively, the larger the set R of target residues is, the easier the corresponding problem
gets—in the extreme case of |R| = m, the congruency constraint is trivially fulfilled by any solution, and
simply finding a solution of the TU problem without congruency constraint is enough. Additionally, R-
CCTUF problems can always be reduced to several problems of the same type with a smaller set of target
residues. In particular, any R-CCTUF problem can be reduced to |R| many CCTUF problems, namely one
for each r ∈ R. Our new progress for R-CCTUF problems is going two steps into the hierarchy if the
modulus m is a prime number, i.e., we can solve feasibility problems with |R| ≥ m− 2.

Theorem 2. There is a strongly polynomial-time randomized algorithm for R-CCTUF problems with con-
stant prime modulus m and |R| ≥ m− 2.

Observing that for m = 3, an R-CCTUF problem with |R| = m − 2 is in fact a CCTUF problem,
Theorem 1 immediately follows from Theorem 2. Our proof of Theorem 2 is inspired by methods devel-
oped in [AWZ17] for bimodular integer programs, but goes significantly beyond the strategy and techniques
employed there. In particular, we also decompose R-CCTUF problems into smaller ones following Sey-
mour’s decomposition of TU matrices, but we need methods that allow for progressing in the hierarchy of
R-CCTUF problems introduced above. This step requires us to have prime modulus due to an applica-
tion of the Cauchy-Davenport Inequality. The decomposition approach deterministically reduces general
R-CCTUF problems to problems with so-called base-block constraint matrices. While parity-constraints

4In this context, we consider a randomized algorithm to be one that always correctly detects infeasibility of a problem, and finds
a solution of a feasible problem with high probability 1− 1/n, where n is the number of variables.

5Analogous to linear and integer programming, we call a CCTU unbounded if it is possible to achieve arbitrarily good objective
values. Hence, having an unbounded feasible region does not imply unboundedness of the problem.
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are fairly common in Combinatorial Optimization and known techniques could be leveraged in [AWZ17]
to solve parity-constrained base block problems, we present new approaches for m > 2. In particular, we
create new links to recent advances on congruency-constrained submodular optimization and exact weight
flow problems. The only known algorithm for exact weight flow problems is randomized, which is why we
obtain a randomized algorithm as stated in Theorem 2 (and thus also in Theorem 1).

Interestingly, focusing on the case of |R| = m − 1 only, our techniques lead to a substantially simpler
approach for R-CCTUF problems that does not need to rely on decomposition methods and can therefore
avoid both randomization and the prime modulus requirement, resulting in the following theorem.

Theorem 3. There is a strongly polynomial-time algorithm for R-CCTUF problems with |R| = m− 1.

For m = 2, Theorem 3 states that feasibility of parity-constrained TU problems can be decided effi-
ciently. This is a special case of bimodular IP feasibility, which has been known to admit polynomial time
algorithms since the work of Veselov and Chirkov [VC09]. Let us also remark that for generalm, the congru-
ency constraint in R-CCTUF problems with |R| = m− 1 can be rewritten in the form γ>x 6≡ r (mod m)
for some residue r. Such constraint types and generalizations thereof have been studied in different settings
already, in particular in the context of minimizing submodular functions (see Goemans and Ramakrish-
nan [GR95], and Grötschel, Lovász, and Schrijver [GLS93]).

Our approach for Theorem 3 is derived from interesting structural properties ofR-CCTUF problems that
are likely to be of independent interest, and two of which we want to highlight here. One is concerned with
flat directions of the underlying polyhedron, i.e., vectors d ∈ Zn \ {0} for which the width max{d>x : x ∈
Zn, Tx ≤ b} −min{d>x : x ∈ Zn, Tx ≤ b} is small. Prior to our work, results of this type have only been
known for very restricted cases. In particular, it is proved in Artmann’s PhD thesis [Art20, Theorem 3.4] that
for CCTUF problems restricted to modulus m = 3 and to base block constraint matrices, it holds that if the
problem is infeasible, then a row of the constraint matrix is a flat direction of width 1. Our techniques show,
through an arguably much simpler approach, that analogous results hold for arbitrary modulim and CCTUF
problems without any further restriction on the constraint matrix. Moreover, our result also generalizes to
R-CCTUF problems, providing the following bound on the width, which can easily be seen to be tight.

Theorem 4. For every R-CCTUF problem, either there is a constraint matrix row that is a flat direction of
the underlying polyhedron of width at most m − |R| − 1, or a feasible solution of the R-CCTUF problem
can be found in strongly polynomial time.

Finally, our techniques also lead to proximity results. We call the problem obtained from CCTU,
CCTUF, or R-CCTUF problems after dropping the congruency constraint the relaxation of the respec-
tive problem. Note that this relaxation is not a linear relaxation in the usual sense as we still require integral
solutions, but is nonetheless closely related to it due to the totally unimodular constraint matrices. Prior
knowledge of proximity results in this context have been very limited. In particular, it was known [Art20,
Lemma 3.3] that given a feasible CCTU problem with m = 3, then for any vertex y ∈ Zn of the under-
lying polyhedron {x ∈ Rn : Tx ≤ b}, there exists a feasible solution x of the CCTU problem such that
‖y − x‖∞ ≤ 2. While the method used in [Art20] is specific for the m = 3 case, our techniques lead to the
following more general result for arbitrary modulus m and, again, the more general congruency-constraint
type. Here, R-CCTU denotes the optimization versions of R-CCTUF problems, analogous to the relation
between CCTU and CCTUF problems. In other words, an R-CCTU problem is a CCTU problem where the
congruency-constraint γ>x ≡ r (mod m) for a single residue r is replaced by γ>x ∈ R (mod m) for a
set R of residues.

Theorem 5. Consider a feasible R-CCTU problem with modulus m.
(i) For any x0 feasible for the relaxation, there is an x feasible for the problem with ‖x−x0‖∞ ≤ m−|R|.
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(ii) For any x0 optimal for the relaxation, there is an x optimal for the problem with ‖x−x0‖∞ ≤ m−|R|,
and vice versa.

Moreover, in (i) and (ii), given x0 and any feasible or optimal solution of theR-CCTU problem, respectively,
a solution x with the stated properties can be found in strongly polynomial time. Also, in (ii), given x, a
solution x0 with the stated properties can be found in strongly polynomial time.

1.2 Related work

The maximum absolute value ∆ of a subdeterminant of the constraint matrix is a parameter that has received
significant attention in integer programming recently. The closely related problem class of congruency-
constrained combinatorial optimization problems has been investigated already in the early 80’s for the
parity-constrained case, and several further advances have been made since. We briefly recap prior work
linked to these areas.

A problem that can be cast as a bounded subdeterminant integer program, has gained substantial interest
recently [BFMR14; CFHJW20; CFHW22], and was resolved in [FJWY22], is the stable set problem in
graphs G with bounded odd cycle packing number ocp(G), i.e., graphs for which the maximum number
of disjoint odd cycles is bounded. The incidence matrix of such a graph has maximum subdeterminant
2ocp(G) (see, e.g., [GKS95]). Several further interesting results link the parameter ∆ to properties of integer
programs, their relaxations, and underlying polyhedra (see, e.g., [BDEHN14; EV17; LPSX20; LPSX21;
PSW22; Tar86] and references therein). Furthermore, there has been interesting recent progress on the
problem of approximating the largest subdeterminant of a matrix (see Di Summa, Eisenbrand, Faenza, and
Moldenhauer [DEFM15], and Nikolov [Nik15]). Also, IPs with more constrained subdeterminant structures
that admit efficient algorithms for integer programming were considered [VC09; AEGOVW16; GSW21].

One of the most classical congruency-constrained combinatorial optimization problems is the minimum
odd cut problem, which asks to find a minimum cut among all cuts with an odd number of vertices. Pad-
berg and Rao [PR82] presented a first efficient method for the minimum odd cut problem. Subsequently,
Barahona and Conforti [BC87] showed that efficient minimization is also possible over all cuts with an
even number of vertices. Later works by Grötschel, Lovász, and Schrijver [GLS84], and by Goemans and
Ramakrishnan [GR95] generalized these results to the minimization of submodular functions. More pre-
cisely, the approach of [GR95] allows for minimizing over so-called triple families, which includes the case
of cuts C ⊆ V of cardinality not congruent to r modulo m, for any integers r and m. Nägele, Sudakov,
and Zenklusen [NSZ19] showed that a submodular function can also be efficiently minimized over sets of
cardinality r (mod m), for any integer m that is a constant prime power. For the special case of minimum
cuts, Nägele and Zenklusen [NZ20] presented a randomized PTAS for finding a minimum cut among all
cuts containing r (mod m) many vertices, for any constant m.

1.3 Organization of the paper

In Section 2, we present the key ideas and techniques that lead to our new results. In particular, Section 2.1
presents a decomposition lemma, a crucial ingredient that is central to all our results, and we showcase its
strength by readily deducing from it our flatness and proximity results (Theorems 4 and 5). Subsequently,
Section 2.2 gives an overview of our approach to CCTUF problems and the proof of Theorem 2.

A proof of the decomposition lemma as well as more applications thereof (in particular, Theorem 3), are
given in Section 3, while Sections 4 and 5 fill in details and present the missing proofs from Section 2.2.

2 Overview of our approach
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2.1 Decomposition, flat directions, and proximity

One technique that we employ repeatedly is a careful decomposition of vectors into well-structured ones. In
particular, we often apply such decomposition to solutions of CCTUF or R-CCTUF problems, to obtain a
structured sum of other vectors. A key role in this decomposition is taken by elementary vectors, which we
define as follows.

Definition 6. Let T ∈ Zk×n be a totally unimodular matrix.
(i) A vector d ∈ Zn is TU-appendable to T if the matrix

(
T
d>
)

is totally unimodular.
(ii) A vector x ∈ Zn is elementary w.r.t. T if d>x ∈ {−1, 0, 1} for all d that are TU-appendable to T .

Concretely, we obtain the following decomposition lemma. We remark that here and throughout this
paper, we use the shorthand notation [n] := {1, . . . , n} for n ∈ Z≥1.

Lemma 7 (Decomposition lemma). Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix, let b ∈ Zk, and
let x0, y ∈ Zn be two solutions of the system Tx ≤ b. Then, we can determine in strongly polynomial time
y1, . . . , yn ∈ Zn and λ1, . . . , λn ∈ Z≥0 such that y − x0 =

∑n
i=1 λiy

i with the following properties:
(i) y1, . . . , yn are elementary with respect to T .

(ii) For µ1, . . . , µn ∈ Z≥0 with µi ≤ λi for all i ∈ [n], the vector ỹ := x0 +
∑n

i=1 µiy
i satisfies T ỹ ≤ b.

In words, the above decomposition lemma allows for efficiently writing a solution y to the relaxation
of a CCTUF (or, more generally, also R-CCTUF) as a sum of another solution x0 and a combination of
elementary vectors yi that can moreover be freely combined to obtain other solutions to the relaxation. A
formal proof of this decomposition lemma is given in Section 3.3.

One of our applications of the decomposition lemma is to bound the search space in which we need to
look for solutions of R-CCTUF problems. Note that given a solution x0 of the relaxation of an R-CCTUF
problem and any feasibleR-CCTUF solution y, i.e., one that also satisfies the congruency constraint, as well
as a TU-appendable row d>, Lemma 7 allows for efficiently decomposing y − x0 into a sum of the form∑n

i=1 λiy
i with

∑n
i=1 λi ≥ |d>(y − x0)|. Hence, if |d>(y − x0)| is large, the sum

∑n
i=1 λiy

i has many
terms, and due to point (ii), there are many options to build new solutions x0 +

∑n
i=1 µiy

i of the relaxation
of the R-CCTUF problem by removing an arbitrary subset of the terms (i.e., choosing µi ∈ {0, . . . , λi}).
Thus, in order to obtain a new feasible solution for the R-CCTUF problem, we have to make sure that
γ>x0 +

∑n
i=1 µiγ

>yi ∈ R (mod m), i.e., that we hit a feasible residue again. The following lemma shows
that there always exists such a choice with

∑n
i=1 µi ≤ m− |R|.

Lemma 8. Let m ∈ Z>0, R ⊆ {0, . . . ,m− 1}, and r1, . . . , r` ∈ Z with
∑

i∈[`] ri ∈ R (mod m). If there
is no interval I = {i1, . . . , i2} with i1, i2 ∈ [`] and i1 < i2 such that

∑
i∈[`]\I ri ∈ R, then ` ≤ m− |R|.

Proof. Assume for the sake of deriving a contradiction that there is no interval I ⊆ [`] such that
∑

i∈[`]\I ri ∈
R, but ` ≥ m − |R| + 1. Consider the ` integers s0 = 0, s1 = r1, . . . , s`−1 = r1 + . . . + r`−1.
Observe that sj /∈ R (mod m) for all j ∈ [` − 1]; for otherwise, there is an interval I = {j + 1, . . . , `}
for some j ∈ [` − 1] such that

∑
i∈[`]\I ri = sj ∈ R (mod m), contradicting the assumption. Thus,

sj ∈ {0, . . . ,m − 1} \ R (mod m) for j ∈ [` − 1]. Hence, because ` ≥ m − |R| + 1, we have by
the pigeonhole principle that there exist distinct j1, j2 ∈ [` − 1] such that sj1 ≡ sj2 (mod m). Thus,
I = {j1 + 1, . . . , j2} is an interval with

∑
i∈[`]\I ri =

∑
i∈[`] ri − (sj2 − sj1) ≡

∑
i∈[`] ri ∈ R (mod m),

again contradicting the assumption and hence completing the proof.

Indeed, Lemma 8 shows that as long as the sum

γ>y1 + . . .+ γ>y1︸ ︷︷ ︸
λ1 many terms

+ . . .+ γ>yn + . . .+ γ>yn︸ ︷︷ ︸
λn many terms

∈ R− γ>x0 (mod m)
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has at least m − |R| + 1 many terms, there is a subset of consecutive terms that can be removed while
keeping the total residue inside the set R − γ>x0. Iterating the procedure eventually leaves us with terms
corresponding to a solution of the form ỹ := x0 +

∑n
i=1 µiy

i with
∑n

i=1 µi ≤ m − |R|. Observe that this
solution ỹ is close to the solution x0 of the relaxation of the initial problem in the sense that |d>(ỹ− x0)| ≤
m − |R|, which can be used as a bound for the search space when looking for feasible solutions. Beyond
that, the idea described above is also at the heart of our flatness and proximity results (Theorems 4 and 5).

One caveat in the above construction is that a direct realization of the approach suggested by Lemma 8
may have a worst-case running time polynomial in m, which is not polynomial in the input size of the R-
CCTUF problem when m is part of the input. Interestingly, given a sum

∑
ri that lies in R (mod m) for

residues ri ∈ Z and a set R ⊆ {0, . . . ,m − 1}, it is generally NP-hard to find a smallest possible number
of terms ri that also sum to a residue in R modulo m, as can be seen by a reduction from the Subset Sum
problem, for example. Nonetheless, we are able to get the following constructive result by exploiting that
the sum

∑n
i=1 λiy

i contains no more than n distinct vectors yi, and the fact that we do not need to find a
shortest partial sum with residue in R− γ>x0 but only one with at most m− |R| terms. Its formal proof is
postponed to Section 3.3.

Lemma 9. Consider an R-CCTUF problem with modulus m, constraint matrix T , a feasible solution y,
and a solution x0 of its relaxation. We can obtain in strongly polynomial time a feasible solution ỹ such that
x0 + y − ỹ is feasible for the relaxation, as well, and

(i) for any d ∈ Zn that is TU-appendable to T , we have d>(ỹ − x0) ≤ m− |R|, and
(ii) for any c ∈ Zn such that x0 minimizes c>x over the relaxation of the R-CCTUF problem, c>ỹ ≤ c>y.

Note that point (ii) adds an additional property on the relation of the costs of the three vectors x0, y,
and ỹ that is useful in optimization settings. To showcase two concrete applications of Lemma 9 in this
overview, we show how Lemma 9 readily implies our flatness and proximity results, i.e., Theorems 4 and 5.
We start by showing Theorem 4, which is a consequence of the following statement.

Lemma 10. Consider an R-CCTUF problem, and let d>x ≤ β be one of its constraints. Either
(i) d is a flat direction of width at most m− |R| − 1 for the underlying polyhedron, or

(ii) the problem is feasible if and only if theR-CCTUF problem without the constraint d>x ≤ β is feasible.
In case (ii), a solution of the initial problem can be obtained in strongly polynomial time from any solution
of the initial problem without the constraint d>x ≤ β.

Proof. Assume that d is a direction of width at least m− |R|, and let x0 be feasible for the relaxation of the
R-CCTUF problem such that d>x0 ≤ β−m+ |R|. It is enough to show that we can in strongly polynomial
time obtain a feasible solution of the initial problem, assuming that we are given a feasible solution y of the
problem without the constraint d>x ≤ β. Applying Lemma 9 in this setting, we get that given y, we can in
strongly polynomial time obtain another feasible solution ỹ such that d>ỹ ≤ d>x0 + m − |R| ≤ β, i.e., a
solution that also satisfies the constraint d>x ≤ β. This proves the desired statement.

Proof of Theorem 4. Consider an R-CCTUF problem and one of its constraints d>x ≤ β. Using a result of
Tardos [Tar86], we can in strongly polynomial time determine whether this constraint identifies a direction
of width at most m − |R| − 1 of the underlying polyhedron (namely, by optimizing the objectives d>x
and −d>x over the polyhedron). If not, by Lemma 10, the constraint can be dropped without changing the
feasibility status. Iterating over all constraints, we either find a flat direction, or we end up with a problem
without inequality constraints that is trivially feasible, thus implying that the initial problem was feasible as
well. In that case, a solution of the initial problem can be constructed within the desired running time from
a solution of the final problem through Lemma 10.
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Let us remark that the width m − |R| − 1 of flat directions in infeasible problems is best possible for
any size of R, as can be seen from the infeasible problems given by {x ∈ Z : 0 ≤ x ≤ m − ` − 1, x ∈ R`
(mod m)} with R` = {m− `, . . . ,m− 1} for ` ∈ [m− 1].

Finally, we also show how Lemma 9 implies Theorem 5. More precisely, we prove the following gener-
alization, from which Theorem 5 follows immediately.

Theorem 11. Consider a feasible R-CCTU problem with modulus m and constraint matrix T .
(i) For any feasible solution x0 of the relaxation, there is a feasible solution x of the R-CCTU problem

such that for every vector d that is TU-appendable to T, we have d>(x− x0) ≤ m− |R|.
(ii) For any optimal solution x0 of the relaxation, there is an optimal solution x of the R-CCTU problem

such that for every vector d that is TU-appendable to T, we have d>(x − x0) ≤ m − |R|, and vice
versa.

Moreover, in (i) and (ii), given x0 and any feasible or optimal solution of theR-CCTU problem, respectively,
a solution x with the stated properties can be found in strongly polynomial time. Also, in (ii), given x, a
solution x0 with the stated properties can be found in strongly polynomial time.

Proof. For part (i), apply Lemma 9 to the given problem with feasible solutions y and x0 of the problem and
its relaxation, respectively, to obtain a feasible solution ỹ. Property (i) in Lemma 9 states that d>(ỹ−x0) ≤
m− |R| for any d ∈ Zn that is TU-appendable to the constraint matrix. Moreover, if y is given, we can also
obtain ỹ in strongly polynomial time by Lemma 9, hence ỹ has the properties of the solution x claimed by
Theorem 11.

To also deduce the first part of (ii), we proceed identically, but take x0 to be an optimal solution of the
relaxation with respect to the minimization objective c>x, and y an optimal solution to the problem. In that
case, on top of what we derived before, ỹ satisfies c>ỹ ≤ c>y by property (ii) in Lemma 9. Thus, because
y is optimal, this must be an equality and ỹ is optimal, as well.

For the other direction of (ii), where we are given an optimal solution x of the R-CCTU problem, we
first determine any optimal solution x0 of the relaxation. This can be done in strongly polynomial time using
the framework of Tardos [Tar86]. Next, by applying Lemma 9 to x and x0, we can in strongly polynomial
time obtain a feasible solution x̃ of the R-CCTU problem with c>x ≥ c>x̃ such that d>(x̃−x0) ≤ m−|R|
for any d ∈ Zn that is TU-appendable to the constraint matrix. We claim that x̄0 := x0 + x − x̃ has the
desired properties. First, x̄0 is feasible for the relaxation by Lemma 9; additionally, because x is an optimal
solution of the R-CCTU problem, we must have c>x = c>x̃, hence c>x̄0 = c>x0, and hence x̄0 must
in fact be an optimal solution of the relaxation. Moreover, for any d ∈ Zn that is TU-appendable to the
constraint matrix, we have d>(x− x̄0) = d>(x̃− x0) ≤ m− |R|, as desired.

Proof of Theorem 5. Note that for every i ∈ [n], the unit vector ei and its negative −ei are TU-appendable
to every totally unimodular matrix. Thus, the solutions guaranteed by Theorem 11 satisfy

‖x− x0‖∞ = max
i∈[n]

max{e>i (x− x0),−e>i (x− x0)} ≤ m− |R| .

We postpone further applications of the decomposition lemma to Section 3, and continue with an
overview of our approach to deal with R-CCTUF problems. The above discussion aimed at exemplifying
how the decomposition lemma can be employed, and should help to better understand further implications,
including settings that we state in the following overview of how to deal with R-CCTUF problems.

2.2 Overview of our approach to R-CCTUF problems and Theorem 2

When approaching R-CCTUF problems of the form

Tx ≤ b, γ>x ∈ R (mod m), x ∈ Zn
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with constant prime modulus m, we follow the general idea of decomposing the problem into smaller ones
by applying Seymour’s TU decomposition to the constraint matrix T . Exploiting Seymour’s decomposition
to approach problems that involve TU matrices is a standard approach that has been successfully used in
a variety of contexts (see for example [DK14; AWZ17; AF21]). In particular, this includes the solution
to parity-constrained TU problems presented in [AWZ17]. However, going to congruency-constraints with
modulus 3 or larger creates substantial extra hurdles beyond prior techniques. For completeness and clear
references, we repeat Seymour’s TU decomposition framework here, which breaks a TU matrix into smaller
ones using so-called 1-, 2-, and 3-sums, and pivoting operations, which are defined as follows.

Definition 12 (1-, 2-, and 3-sums). LetA ∈ ZkA×nA ,B ∈ ZkB×nB , e ∈ ZkA , f ∈ ZnB , g ∈ ZkB , h ∈ ZnA .
(i) The 1-sum of A and B is A⊕1 B :=

(
A 0
0 B

)
.

(ii) The 2-sum of
(
A e

)
and

(
f>

B

)
is
(
A e

)
⊕2

(
f>

B

)
:=
(
A ef>

0 B

)
.

(iii) The 3-sum of
(
A e e
h> 0 1

)
and

(
0 1 f>

g g B

)
is
(
A e e
h> 0 1

)
⊕3

(
0 1 f>

g g B

)
:=
(

A ef>

gh> B

)
.

Definition 13 (Pivoting). Let C ∈ Zk×n, p ∈ Zn, q ∈ Zk, and ε ∈ {−1, 1}. The matrix obtained from
pivoting on ε in T :=

(
ε p>

q C

)
, i.e., pivoting on the element T11 of T , is pivot11(T ) :=

(
−ε εp>

εq C−εqp>

)
. More

generally, pivotij(T ) for indices i and j such that Tij ∈ {−1, 1} is obtained from T by first permuting rows
and columns such that the element Tij is permuted to the first row and first column, then performing the
above pivoting operation on the permuted matrix, and finally reversing the row and column permutations.

It is well-known that a 1-, 2-, and 3-sum is totally unimodular if and only if the two summands it is
obtained from are, and a pivoted matrix is totally unimodular if and only if the original matrix is. Seymour’s
TU decomposition theorem states that a TU matrix is either very structured, or it can be decomposed using
1-, 2-, and 3-sums, or pivoting steps. We use the following variation of the decomposition theorem, which
provides some extra guarantees on the dimensions of the matrices appearing in the decomposition. It readily
follows from classical statements of Seymour’s decomposition for TU matrices (see Section 5.1 for details).

Theorem 14 (Seymour’s TU decomposition). Let T ∈ Zk×n be a totally unimodular matrix. Then, one of
the following cases holds.

(i) T or T> is a network matrix.
(ii) T is, possibly after iteratively applying the operations of

– deleting a row or column with at most one non-zero entry,
– deleting a row or column that appears twice or whose negation also appears in the matrix, and
– changing the sign of a row or column,

equal to one of ( 1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

)
and

(
1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

)
.

(iii) T can, possibly after row and column permutations, be decomposed into a 1-, 2-, or 3-sum of totally
unimodular matrices with nA, nB ≥ 2.

(iv) T can, after pivoting once and possibly performing row and column permutations, be decomposed into
a 3-sum of totally unimodular matrices with nA, nB ≥ 2.

Additionally, we can in time poly(n) decide which of the cases holds and determine the involved matrices.

Cases (i) and (ii) are the cases where T is a so-called base block matrix. We exploit the structure of those
matrices to reduce CCTUF problems with such a constraint matrix T to certain combinatorial optimization
problems with congruency constraints. In particular, if T is a network matrix, the corresponding problem
can be interpreted as a congruency-constrained circulation problem. Here, we exploit a connection to exact
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weight matching problems [CGM92] that results in an efficient randomized procedure. For T being the
transpose of a network matrix, we present a reduction to a congruency-constrained submodular minimization
problem, which can be solved (whenever m is a prime power) by a recent algorithm by Nägele, Sudakov,
and Zenklusen [NSZ19]. We expand on these connections in Section 4, thereby obtaining the following
statement on the corresponding feasibility problems.

Theorem 15. Let T be a TU matrix for which case (i) or (ii) in Theorem 14 holds. There is a strongly
polynomial time randomized algorithm for CCTUF problems with constraint matrix T and constant prime
power modulus.

In the cases where the constraint matrix T admits a decomposition as a 1-, 2-, or 3-sum, i.e., case (iii) of
Theorem 14, we can write T =

(
A ef>

gh> B

)
. If T is a 2-sum, g and h will be zero vectors; if T is a 1-sum,

also e and f will be zero vectors. This matrix decomposition splits the variables x, the right-hand sides b,
and the residue vector γ into two parts accordingly. The R-CCTUF problem can then be rewritten as the
problem of finding a feasible solution of the system(

A ef>

gh> B

)
·
(
xA
xB

)
≤
(
bA
bB

)
γ>AxA + γ>BxB ∈ R (mod m)

xA ∈ ZnA , xB ∈ ZnB .

(1)

For any fixed values of α := f>xB and β := h>xA, the above problem can be split into the two almost
independent CCTUF problems

AxA ≤ bA − αe
h>xA = β

γ>AxA ≡ rA (mod m)

xA ∈ ZnA

and

BxB ≤ bB − βg
f>xB = α

γ>BxB ≡ rB (mod m)

xB ∈ ZnB

, (2)

where we would like to find solutions xA and xB for residues rA and rB such that rA + rB ∈ R (mod m).
Hence, this desired relation between the target residues rA and rB is the only dependence between the two
problems once α and β are fixed. We refer to the problem on the left as the A-problem and the problem on
the right as the B-problem.

A solution of the initial R-CCTUF problem can only exist for pairs (α, β) ∈ Z2 for which both the
A- and the B-problem are feasible. We denote this set by Π ⊆ Z2. In Section 5, we will see that Π is
a polyhedron that can be obtained by essentially projecting feasible solutions of the relaxation of our R-
CCTUF problem down to the (α, β)-space. This will allow us to deduce structural properties of Π. For now,
we aim at narrowing down the values of (α, β) ∈ Π that we have to consider for finding a feasible solution.
To this end, we use the following Lemma.

Lemma 16. Consider an R-CCTUF problem of the form given in (1). We can in strongly polynomial time
obtain `i, ui ∈ Z with ui− `i ≤ m−|R| for i ∈ {0, 1, 2} such that if the R-CCTUF problem has a solution,
then it has one with `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, and `2 ≤ β ≤ u2, where α = f>xB and β = h>xA.

Note that α, β, and α + β are scalar products of a solution of (1) with suitably chosen row vectors.
We show in Section 3.2 that those rows are all TU-appendable to the constraint matrix, thus enabling the
application of techniques from the previous section to prove existence of solutions with those scalar products
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bounded to the desired range. Here, as a consequence of Lemma 16, we can restrict our attention to O(m2)
many pairs (α, β) in the narrowed set

Πnarrowed := Π ∩
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

We will later see that properties of Π imply that we can choose `i, ui such that we even have

Πnarrowed =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

One natural attempt at this point would be to explicitly try all O(m4) remaining combinations of rA,
rB , and (α, β) ∈ Πnarrowed, and recurse on the corresponding (now independent) A- and B-problems in (2).
If we could guarantee that both problems had about the same number of variables in each such step (more
precisely, at least a constant fraction of the original variables), this would lead to a polynomial time proce-
dure at least for constant moduli m: The number of variables would go down by roughly a factor of two in
every step; hence we would fall back to cases (i) or (ii) of Theorem 14 after O(log n) many iterations at the
latest, each increasing the number of subproblems by a factor of O(m4), giving a total running time bound
of mO(logn).6 Unfortunately, the guarantees of Theorem 14 are much weaker: We can only guarantee that
both A and B have at least two columns, and if their sizes happen to be imbalanced in most decomposition
steps, the above argument fails.

Still, we can always solve the relaxations of both problems for all (α, β) ∈ Πnarrowed. Without loss of
generality, let us assume that the B-problem is the smaller among the A- and the B-problem (with respect
to the number of columns in its constraint matrix, i.e., the number of variables). Because B has at most
half the number of columns compared to T , it turns out that we can afford (in terms of running time) to
recursively call Theorem 2 on an R-CCTUF version of the B-problem (i.e., the B-problem in (2) with the
congruency constraint replaced by γ>BxB ∈ RB (mod m), for sets RB of the same size as the set R in the
original problem). Concretely, for any fixed (α, β) ∈ Πnarrowed, at most m − |R| + 1 such recursive calls
suffice to determine up to m − |R| + 1 different feasible residues of the B-problem (or fewer, if there are
less than that many). We elaborate on why this is enough in what follows.

Let π : Πnarrowed → 2{0,...,m−1} be the function assigning to any (α, β) ∈ Πnarrowed the set π(α, β) ⊆
{0, . . . ,m−1} of residues rB ∈ {0, 1, . . . ,m−1} for which theB-problem is feasible. We call π a narrowed
pattern associated to the problem given in (1). Note that this pattern depends on the 3-sum decomposition
and the choice of `i and ui in Lemma 16, and hence may not be unique. Also, we remark that a narrowed
pattern can be seen as a restriction (to the narrowed domain Πnarrowed) of a global pattern that maps any
(α, β) ∈ Π to the corresponding set of feasible residues of the B-problem.

We can easily obtain a feasible solution for (1) if, among the solutions of the B-problem that we com-
pute, we find a solution xB that fulfills γ>AxA + γ>BxB ∈ R (mod m), where xA is the computed solution
to the relaxation of the A-problem. Indeed, in this case, the concatenation of the two solutions xA and xB
is feasible for the relaxation of (1). In particular, if |π(α, β)| ≥ m − |R| + 1 for some (α, β) ∈ Πnarrowed,
we are guaranteed that there is such a feasible combination. As explained above, through recursive calls
to our procedure on the B-problem, we can decide whether we are in this case, and if so also compute
m − |R| + 1 different feasible residues (and corresponding solutions). Concretely, if we start from a prob-
lem with |R| = m−2, whenever we find a pair (α, β) of scalar products in Πnarrowed with |π(α, β)| ≥ 3, we
can find a feasible solution. If |π(α, β)| ≤ 2 for all (α, β) ∈ Πnarrowed, we study the pattern π more closely.

One interesting special case is when |π(α, β)| = 1 for all (α, β) ∈ Πnarrowed, i.e., each of theB-problems
is feasible for precisely one residue rB . It turns out that in this case, π is linear in the following sense.

6More generally, this enumerative approach is efficient whenever the depth of Seymour’s decomposition is at most logarithmic
in the input size.
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Definition 17. Let Π ⊆ Z2, and let π : Π → 2{0,...,m−1} for some m ∈ Z>0. We say that π is linear if
|π(α, β)| = 1 for all (α, β) ∈ Π, and there exist r0, r1, r2 ∈ Z such that the mapping r : Π → Z fulfilling
π(α, β) = {r(α, β)} satisfies r(α, β) ≡ r0 + r1α+ r2β (mod m) for all (α, β) ∈ Π.

Linearity of π and the shape of the domain Πnarrowed makes it possible to encode the feasibility structure
of the B-problem in only two variables y1 and y2 that represent the scalar products α and β, which allows
for replacing xB with those new variables.

Theorem 18. Consider an R-CCTUF problem of the form given in (1) and let π an associated narrowed
pattern. If π is linear, then (1) can be reduced to the R-CCTUF problem

AxA + ey1 ≤ bA
h>xA − y2 = 0

`0 ≤ y1 + y2 ≤ u0

`1 ≤ y1 ≤ u1

`2 ≤ y2 ≤ u2

γ>AxA + r1y1 + r2y2 ∈ r0 +R (mod m)
xA ∈ ZnA

y1 , y2 ∈ Z

(3)

for suitable `0, u0, `1, u1, `2, u2 ∈ Z with ui − `i ≤ m− |R| and r0, r1, r2 ∈ {0, 1, . . . ,m− 1} that can be
determined in strongly polynomial time. That is, the initial R-CCTUF problem is feasible if and only if (3)
is, and a solution of one problem can be transformed into one for the other in strongly polynomial time.

Hence, when π is linear, we aim at applying Theorem 18 and continuing our procedure with the R-
CCTUF problem (3). To make progress, we aim at obtaining a smaller problem, which, as before, we
measure in terms of the number of variables. Note that the number of variables of (3) is the number of
columns of A plus 2, which is the same as the number of columns of the original problem plus 2 minus the
number of columns ofB. However, recall that by Theorem 14, we are only guaranteed that the matrixB has
at least two columns—which, in the extreme case, is not enough to reduce the number of columns through
Theorem 18. Nevertheless, the equality constraint in (3) allows for eliminating a variable while keeping the
TU structure of the constraint matrix, thus guaranteeing that we can make progress. The following theorem
formalizes this result.

Theorem 19. Let
(
A a1
a>2 α

)
be a TU matrix with α 6= 0. Then, the matrix A − αa1a

>
2 is TU, and the two

systems
{

Ax + a1y ≤ b
a>2 x + αy = β

and
{ (

A− αa1a
>
2

)
x ≤ b− αβa1

y = αβ − αa>2 x
are equivalent.

Combining Theorems 18 and 19, we can thus make progress in case of a linear narrowed pattern π. For
non-linear narrowed patterns, like the one exemplified in Fig. 1, there are pairs (α, β) for which there is
more than one residue available, i.e., |π(α, β)|, which is an additional flexibility we can exploit as follows.

Concretely, consider a pair (α, β) ∈ Πnarrowed of scalar products with π(α, β) = {r1
B, . . . , r

`
B} for

some ` > 1 and pairwise different riB ∈ {0, . . . ,m − 1}, and let x1
B, . . . , x

`
B be solutions of the relaxation

of the B-problem with residues γ>Bx
i
B = riB . Observe that we can combine any feasible solution xA of

the corresponding A-problem with any of the solutions xiB to obtain feasible solutions (xA, x
i
B) of the

relaxation of the initial R-CCTUF problem. Thus, there is a solution with scalar products (α, β) if and only
if the following variation of the A-problem is feasible, where R′ := R−π(α, β) = {(r− rB mod m) : r ∈
R, rB ∈ π(α, β)}:

AxA ≤ bA − αe
h>xA = β
γ>AxA ∈ R′ (mod m)
xA ∈ ZnA .

(4)
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{0, 1} {1}

{0} {0, 1}

{0}

α

β

−1 0

−1

0

1

Figure 1: A non-linear pattern π with support defined by −1 ≤ α ≤ 0, −1 ≤ β ≤ 1, and −1 ≤ α+ β ≤ 1.

We will create a subproblem of the above form for each pair (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2, and
recurse on these problems. Doing so for all such scalar product pairs (α, β) ∈ Πnarrowed, we create O(m2)
many R-CCTUF problems to recurse on, each having at most n− 2 many variables. A key observation that
allows for bounding the number of times we construct a problem of type (4) and recurse on it is that prob-
lem (4) is simpler than the problem we started with, because the set of target residues R′ strictly increased
in size compared to R, whenever m is a prime number. This is a consequence of the Cauchy-Davenport
Inequality stated below.

Lemma 20 (Cauchy-Davenport Inequality). Let m be a prime number and let R1, R2 ⊆ {0, . . . ,m − 1}.
Then

|{(r1 + r2 mod m) : r1 ∈ R1, r2 ∈ R2}| ≥ min{m, |R1|+ |R2| − 1} .

Consequently, after at mostm−|R| reduction steps, the target residues comprise all possible residues and
the corresponding problem gets trivial. Therefore, the total number of subproblems that are spawned can be
bounded by O(m2(m−|R|)). It thus remains to discuss scalar products (α, β) ∈ Πnarrowed with |π(α, β)| = 1
that are not covered by the previous arguments. Fig. 1 shows an example of a narrowed pattern that contains
three scalar product pairs (α, β) with |π(α, β)| = 1 together with two pairs with |π(α, β)| = 2. Again,
explicitly solving the corresponding A-problems is not an option because we lack the necessary progress
either in terms of the number of variables or the number of target residues.

Also, it is not possible to apply Theorem 18 only to the pairs (α, β) ∈ Πnarrowed with |π(α, β)| = 1,
because Theorem 18 crucially relies on the shape of the full domain of π, which can be described by
inequalities of the form `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, and `2 ≤ β ≤ u2. Therefore, we focus in this case
on identifying a well-chosen linear sub-pattern π̃ of π, i.e., a mapping π̃ with the properties that (i) its domain
is a subset of the domain of π and can be described by inequalities of the above type, (ii) π̃(α, β) = {rα,β}
for some rα,β ∈ π(α, β), and (iii) π̃ is linear according to Definition 17. Loosely speaking, a sub-pattern
covers some of the available residues in the B-problem, and it is structured enough so that we can apply a
variation of Theorem 18 to cover these options through a smaller problem. If |R| ≥ m− 2, it turns out that
one such sub-pattern is enough in the following sense.

Lemma 21. Let π : Πnarrowed → 2{0,...,m−1} be a narrowed pattern associated to a feasible R-CCTUF
problem of the form in (1) with prime modulus m and |R| ≥ m − 2. Then, we can in strongly polynomial
time determine a linear sub-pattern π̃ of π such that one of the following holds:

(i) There are (α, β) ∈ Πnarrowed with |π(α, β)| = 1 so that for any xA solving the relaxation of the A-
problem with respect to (α, β), there is an xB solving the relaxation of the B-problem such that the
combination (xA, xB) is feasible for the R-CCTUF problem.

(ii) There is a feasible solution for some pair (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2.
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(iii) There is a feasible solution (xA, xB) for some pair (α, β) ∈ dom(π̃) such that π̃(α, β) = {γ>BxB}.

Thus, to check feasibility for an R-CCTUF problem of the form (1), we can first compute, for each pair
(α, β) ∈ Πnarrowed, a solution xA to the relaxation of the A-problem with respect to scalar products (α, β)
and check whether there is a solution xB to the B-problem that, combined with xA, leads to a feasible
solution to the initial problem. If this is the case, we are done. Otherwise, we know that (i) of Lemma 21
does not hold, and therefore either (ii) or (iii) must hold. Moreover, as previously explained, we call our
procedure recursively for pairs (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2, spawning independent and simpler
(because we increase the size of the allowed target residues R) subproblems for the A-problem. Hence,
if (ii) of Lemma 21 applies, then one of these simpler subproblems will lead to a feasible solution to the
original problem. Finally, we apply (a slight extension of) Theorem 18 using the linear sub-pattern π̃ and
Theorem 19, thereby reducing to problems with fewer variables. By Lemma 21, we know that if there is a
feasible solution, we will find one in the described procedure. Altogether, we get to the following theorem.

Theorem 22. Consider an R-CCTUF problem with prime modulus m, n variables, ` ∈ {m − 1,m − 2}
many target residues, and a constraint matrix T falling into case (iii) of Theorem 14. Let p = min{nA, nB}
be the number of columns of the smaller matrix in the decomposition. After solving less than 3(m− `+ 1)2

many R-CCTUF problems with p variables, modulus m, and at most ` target residues, we can in strongly
polynomial time determine either a solution of the problem, or a family F of at most

– one R-CCTUF problem with at most n− p+ 1 variables, modulus m, and ` target residues, and
– (m− `+ 1)2 R-CCTUF problems with n− p variables, modulus m, and at least `+ 1 target residues

such that the initial R-CCTUF problem is feasible if and only if at least one problem in F is feasible. Also,
a feasible solution to any problem in F can in strongly polynomial time be transformed to one of the initial
problem.

Finally, it remains to cover the case where the constraint matrix T falls into case (iv) of Theorem 14,
i.e., only after pivoting, a decomposition step is possible. It turns out that such R-CCTUF problems can
be rewritten as a problem of the same type with the pivoted constraint matrix and one extra constraint
that is a variable bound, thus subsequently allowing for a decomposition step without interfering with the
progress that was made before (the number of variables and the number of target residues stay the same in
the described transformation). The following theorem formalizes this.

Theorem 23. Consider an R-CCTUF problem with constraint matrix T for which case (iv) of Theorem 14
applies, i.e., pivotij(T ) admits a decomposition as a 3-sum according to Theorem 14. Then we can in
strongly polynomial time determine an R-CCTUF problem of the form

Ty ≤ b, yj ≤ δ, γ>y ∈ R (mod m), y ∈ Zn , (5)

where T is, up to changing the sign in some rows and columns, the matrix pivotij(T ), and solutions of the
initial problem can be transformed to solutions of (5) in strongly polynomial time, and vice versa.

Leveraging Theorems 14, 15, 22 and 23, we can conclude our main result, Theorem 2.

Proof of Theorem 2. Consider an R-CCTUF problem with modulus m and ` ≥ m − 2 target residues. If
` = m, a solution can be found in strongly polynomial time by solving the relaxation of the problem using
the framework of Tardos [Tar86]. Else, we apply Theorem 14 to the constraint matrix T . If case (i) or (ii)
of Theorem 14 applies, Theorem 15 guarantees that we can efficiently solve the corresponding problem. If
case (iv) applies, we can reduce the problem to one where case (iii) applies through Theorem 23. Finally, if
case (iii) of Theorem 14 applies, we apply Theorem 22 to reduce the problem to several smaller problems
on which we recursively call our procedure. Through these recursive calls, the initial R-CCTUF problem is
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reduced to several simpler R-CCTUF problems, where each of them has either m many target residues or
its constraint matrix is a base block matrix.

We first bound the number of such simpler R-CCTUF problems that we obtain. Let f(n, `) be the
smallest upper bound on the number of such problems that we obtain through our reductions when starting
from an instance with n variables and ` target residues. We claim that

f(n, `) ≤ m2(m−`) · nm−`+3 log2m+2 .

Indeed, note that f(n, `) = 1 for n ≤ 3 and all ` ≤ m, and f(n,m) = 1 for all n, and assume that the
inequality holds for all instances of up to n− 1 variables. By Theorem 22 and this assumption, we get, for
some p ∈ {2, . . . , bn/2c}, the desired

f(n, `) ≤ 3m2f(p, `) + f(n− p+ 1, `) +m2f(n− p, `+ 1)

≤ m2(m−`)nm−`+3 log2m+2

(( p
n

)2
+

(
n− p+ 1

n

)2

+
n− p
n2︸ ︷︷ ︸

≤1

)
≤ m2(m−`)nm−`+3 log2m+2 .

Now observe that each of the at most f(n, `) many subproblems can either be solved directly in strongly
polynomial time as stated earlier (if it is a problem with m target residues), or we can apply the strongly
polynomial randomized algorithm provided by Theorem 15 to each of them logn(nf(n, `)) = O(1) many
times to correctly solve each problem with error probability at most 1/nf(n, `). Thus, by a union bound, we
can solve all these problems (and thus the initial problem) correctly with probability 1 − 1/n. To finish the
proof, it remains to observe that the time for solving the discussed problems clearly dominates the time
needed for transformations and solution propagation.

3 Proof and further implications of the decomposition lemma

For the sake of presentation, we postpone the proof of the decomposition lemma (Lemma 7) and Lemma 9
to the end of this section and start by showing additional implications, namely Theorem 3 and Lemma 16.

3.1 An alternative approach to R-CCTUF problems with |R| = m−1: Proving Theorem 3

In this section, we prove that R-CCTUF problems with |R| = m − 1 can be solved deterministically and
in strongly polynomial time, as stated by Theorem 3. This result is closely linked to our flatness statement,
Theorem 4, which already guarantees that if none of the constraint matrix rows of the R-CCTUF problem
is a flat direction of the underlying polyhedron with width m − |R| − 1, then the problem can be solved
efficiently. For |R| = m − 1, the width in this statement is 0, i.e., the corresponding constraint is a tight
constraint for the full underlying polyhedron. Using Theorem 19, we can see that in this case of non-full-
dimensional underlying polyhedra, we can easily project to a lower-dimensional space.

Lemma 24. Consider an R-CCTUF problem in n ≥ 2 variables with a constraint that is tight for all points
in the underlying polyhedron. We can in strongly polynomial time determine anR-CCTUF problem in n−1
variables such that solutions of the first problem can be transformed to solutions of the second problem in
strongly polynomial time, and vice versa.

Proof. After permuting variables and constraints, we may assume that the inequality system in the given
R-CCTUF problem has the form(

T a1

a>2 α

)(
x
xn

)
≤
(
b
bn

)
, where T =

(
T a1

a>2 α

)
, x =

(
x
xn

)
, and b =

(
b
bn

)
,
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such that a>2 x + αxn = bn is a constraint that is tight for any solution to the relaxation of the R-CCTUF
problem and α 6= 0. By Theorem 19, (y, yn) is a solution of the above system if and only if y solves the
TU system

(
T − αa1a

>
2

)
x ≤ b, and yn = αbn − αa>2 y. Therefore, the original R-CCTUF problem can be

reduced in strongly polynomial time to the following R-CCTUF problem with only n− 1 variables:

Tx ≤ b, (γ − αγna2)>x 6≡ r − αγnbn (mod m), x ∈ Zn−1 .

Although not exploited here, we remark that the above reduction of non-full-dimensional problems also
applies to the optimization version of the considered problem. Now, combining Lemma 24 and Theorem 4,
we immediately obtain a proof of Theorem 3.

Proof of Theorem 3. We start by observing that using a result of Tardos [Tar86], we can solve linear pro-
grams over the underlying polyhedron of a given R-CCTUF problem in strongly polynomial time, and
hence, we can also detect in strongly polynomial time whether there is a tight constraint. If there is no tight
constraint, then the problem can be solved by Theorem 4. Otherwise, the problem is trivial when n = 1,
and if n ≥ 2, we can repeatedly apply Lemma 24 until we obtain a problem with n = 1, or one that does
not have tight constraints. Note that the number of variables reduces by 1 in each application of Lemma 24,
hence there are less than n iterations. We conclude the proof by observing that solutions of a problem with-
out tight constraints that stem from Lemma 24 can be transformed back to solutions of the initial problem
in strongly polynomial time by the very same lemma.

3.2 Bounded scalar products

The goal of this subsection is to deduce Lemma 16, which we use to restrict the search space for solutions of
R-CCTUF problems. It turns out that this lemma is an implication of a more general result that we expand
on below.

Lemma 25. Consider a feasible R-CCTUF problem with constraint matrix T and modulus m, and let d be
TU-appendable to T . We can determine in strongly polynomial time `, u ∈ Z with u − ` ≤ m − |R| such
that the R-CCTUF problem has a feasible solution x0 if and only if it has one with ` ≤ d>x0 ≤ u.

Proof. Let Tx ≤ b be the inequality system in the R-CCTUF problem. To start with, we can in strongly
polynomial time determine ηmax := max{d>x : Tx ≤ b, x ∈ Rn} and ηmin := min{d>x : Tx ≤ b, x ∈
Rn}. If ηmax − ηmin ≤ m − |R|, we can choose u = ηmax and ` = ηmin, and there is nothing to show.
Otherwise, we claim that the statement holds for any choice of `, u ∈ {ηmin, . . . , ηmax} with u − ` ≤
m − |R|. To see this, consider any such choice of ` and u and consider the given R-CCTUF problem with
the constraints ` ≤ d>x ≤ u added to the inequality system. Because by construction, d is a flat direction
of width exactly m− |R| for that problem, applying twice Lemma 10 (once for each of the two constraints
that we added) gives that the problem with the constraints added is feasible if and only if the original one is
feasible.

Note that if we are given vectors d1, . . . , dp that are all simultaneously TU-appendable to the constraint
matrix of the problem, we can apply Lemma 25 iteratively with the TU-appendable vectors di, adding the
obtained constraints `i ≤ d>i x ≤ ui to the system in each step. This immediately implies the following
corollary.

Corollary 26. Consider a feasible R-CCTUF problem with constraint matrix T and modulus m, and let
d1, . . . , dp be simultaneously TU-appendable to T . We can determine in strongly polynomial time `i, ui ∈ Z
with ui − `i ≤ m− |R| for i ∈ [p] such that the R-CCTUF problem has a feasible solution x0 if and only if
it has one with `i ≤ d>x0 ≤ ui for all i ∈ [p].
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Now Lemma 16 follows immediately from Corollary 26 after observing the following.

Observation 27. Consider a matrix T that is a 3-sum of the form T =
(

A ef>

gh> B

)
. Then, the rows

(
0 f>

)
,(

h> 0
)
, and

(
h> f>

)
are simultaneously TU-appendable to T .

Proof. Observe that 
A ef>

0 f>

h> f>

h> 0
gh> B

 =

 A e e
0 1 1
h> 0 1

⊕3


0 1 f>

1 1 f>

1 1 0
g g B

 . (6)

Recall that because the totally unimodular matrix T decomposes into a 3-sum of the two matrices
(
A e e
h> 0 1

)
and

(
0 1 f>

g g B

)
, we know that these matrices are totally unimodular, as well. It can be easily seen that this

implies total unimodularity of the two summands in (6), and hence also of the 3-sum of the two matrices.

Proof of Lemma 16. By Corollary 26 above, it is enough to show that the vectors
(
0 f>

)
,
(
h> 0

)
, and(

h> f>
)

are simultaneously TU-appendable to T . The latter is true, as seen in Observation 27 above.

Finally, we note that the assumption of simultaneous TU-appendability in Corollary 26 is necessary to
obtain ranges of width m− |R| for each scalar product. More generally, if we want to obtain bounds simul-
taneously for all TU-appendable vectors, our general proximity result, Theorem 11, only implies ranges of
width 2(m− |R|) + 1.

3.3 Proof of the decomposition lemma (Lemma 7) and Lemma 9

In order to prove Lemma 7 we first show a key property of pointed polyhedral cones defined by TU matrices
(which we also call TU cones), from which will later derive Lemma 7. To this end, we recall that, for a
polyhedral cone C := {x ∈ Rn : Ax ≤ 0} (where A ∈ Qk×n), an extremal ray of C is a non-zero vector
r ∈ C that lies on a 1-dimensional face of C. Moreover, we use the following notion of elementary extremal
ray.

Definition 28 (Elementary extremal ray). An extremal ray r of a polyhedral cone C ⊆ Rn is elementary if
r ∈ Zn and the greatest common divisor of the coordinates of r is one.

Hence, for every rational cone C and every extremal ray r of the cone, there is some unique λ > 0 such
that λr is an elementary extremal ray of C.

Lemma 29 below shows that any point in a pointed cone C that is defined by a TU matrix can be
integrally decomposed into few elementary extremal rays in strongly polynomial time. We highlight that the
crucial part of Lemma 29 is that the coefficients λi can be chosen to be integral. Note that, despite the cone
being defined by a TU matrix, the elementary extremal rays in Lemma 29 have to be well-chosen because
the set of elementary extremal rays of C does not form a totally unimodular matrix.7 Hence, even if a set of
n elementary extremal rays of C spans y, it may be that the decomposition of y into a conic combination of
these elementary extremal rays requires non-integral coefficients. (This is arguably the case to be expected
without choosing the rays carefully.)

7Indeed, cones defined by TU matrices can have exponentially many elementary extremal rays. This follows for example by the
well-known fact that the bipartite matching polytope P , which can be described by a TU matrix, has vertices v ∈ vertices(P ) with
exponentially many edges incident to them. Hence, the set of constraints of P that are tight at v define a TU cone (when shifted
such that v becomes the origin) with exponentially many elementary extremal rays.
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Lemma 29. Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix such that the coneC := {x ∈ Rn : Tx ≤
0} is pointed, and let y ∈ C ∩Zn. Then one can determine in strongly polynomial time elementary extremal
rays y1, . . . , yn ∈ Zn of C and coefficients λ1, . . . , λn ∈ Z≥0 such that y =

∑n
i=1 λiy

i.

Proof. We prove the statement by determining successively pairs (λi, y
i) of the desired decomposition of y.

We start by explaining how we compute λ1 and y1, and then highlight how to iterate the procedure to obtain
the full decomposition of y. To obtain a first coefficient λ1 and vector y1 of the desired decomposition of y,
we define an auxiliary polytope P1 by

P1 := C ∩ C1 , where C1 := {x ∈ Rn : − Tx ≤ −Ty} .

Hence,

P1 :=

{
x ∈ Rn :

(
T
−T

)
x ≤

(
0
−Ty

)}
.

Note that C1 can be interpreted as a reversed version of C with apex at y. Also note that P1 is a polytope
because C is pointed. Indeed, if P1 were unbounded, there would need to be a non-zero vector r ∈ Rn with
Tr ≤ 0 and −Tr ≤ 0, which implies Tr = 0 and contradicts that C is pointed. Moreover, as highlighted
above, observe that P1 can be described by the constraint matrix

(
T
−T
)
, which is TU.

Let T= be the set of constraints of C that are tight at y. Hence, T=y = 0. Similarly, let T< denote the
remaining constraints of C, which are the ones not tight at y. Hence, T<y < 0. In addition, without loss of
generality, we may assume that the rows in T< are linearly independent of those of T=; for otherwise they
are redundant and we can drop them. Let y1 be any extremal ray of

Q1 := {x ∈ Rn : T=x = 0, T<x ≤ 0} .

Note that Q1 is pointed because Q1 ⊆ C and C is pointed; thus, it has extremal rays. Such an extremal ray
y1 can be computed efficiently via standard techniques.8 By rescaling y1, we can assume without loss of
generality that y1 ∈ Zn is an elementary extremal ray of Q1. Let

λ1 := max
{
λ ∈ R≥0 : − T<(λy1) ≤ −T<y

}
,

that is, λ1 captures how far in the direction of the elementary extremal ray y1 we can go, when starting
from the origin, while staying within P1. The constraints of the above optimization problem are of the form
λai ≤ bi for i ∈ [`], with ai := −(T<y1)i and bi := −(T<y)i. By definition of T<, we have T<y < 0, and
thus bi > 0 for all i ∈ [`]. Hence,

λ1 = min

{
bi
ai

: i ∈ [`] with ai > 0

}
,

which shows that λ1 can be computed in strongly polynomial time by first computing ai and bi for i ∈ [`]
and then determining the minimizing ratio bi/ai.

Note that λ1y
1 must be a vertex of P1. This follows because λ1y

1 ∈ P1 by construction, and y1 is an
extremal ray of Q1 (it thus lies on a face of Q1 of dimension 1), and therefore y1 is also an extremal ray
of P1 because Q1 is a face of P1.9 Hence, λ1y

1 is a face of P1 of dimension 0, i.e., λ1y
1 ∈ vertices(P1).

8Any vertex u ∈ Rn
≥0 of the polytope P ′ := Q1 ∩ {x ∈ Rn : 1>x ≤ 1}, with u 6= 0, induces an extremal ray of Q1. Hence,

it is enough to compute an optimal vertex solution of the linear program max{1>x : x ∈ P ′}, which can be done in polynomial
time via standard methods. Note that all numbers/coefficients involved in this linear program are small (actually they are all within
{−1, 0, 1}). Hence, the running time is thus trivially strongly polynomial in the original input size.

9Here we use the basic polyhedral fact that a face of a face of a polyhedron is a face of the polyhedron.

17



Moreover, because P1 is described by a TU system, its set of vertices must be all integral, and hence
λ1y

1 ∈ Zn. Furthermore, we must also have that λ1 ∈ Z≥0. If not, then we can write λ1 = p/q with
p, q ∈ Z≥0 such that their greatest common divisor gcd(p, q) equals 1 and q ≥ 2. As λ1y

1 ∈ Zn, we must
have that q divides py1

i for all i ∈ [n]. However, this implies that q divides y1
i for all i ∈ [n], which follows

from gcd(p, q) = 1 and a well-known basic number theory result.10 But this contradicts with y1 being
elementary.

We now proceed inductively on the vector y′ := y − λ1y
1. Note that by construction we have Ty′ ≤ 0,

and can thus reiterate the above-explained approach with the vector y′ instead of y. Let T=
1 be the rows of

T that correspond to constraints of Tx ≤ 0 that are tight at y′; hence, T=
1 y
′ = 0. Analogously as before, let

T<
1 be the other rows, which correspond to constraints of Tx ≤ 0 that are not tight at y′. As before, we then

define
Q2 := {x ∈ Rn : T=

1 x = 0, T<
1 x ≤ 0} ,

compute an elementary extremal ray of Q2 and continue as above. Note that dim(Q2) < dim(Q1), because
y′ := y − λ1y

1 was chosen such that a new constraint of Tx ≤ 0 that was not tight at y became tight at y′.
Hence, this procedure will terminate after at most dim(Q1) ≤ nmany iterations. If the procedure terminates
in less than n iterations, in which case we get a decomposition with fewer than n terms, we can add arbitrary
extremal rays with zero coefficients to the decomposition to obtain the claimed n many terms.

The following statement shows that elementary extremal rays of a TU cone are elementary with respect
to the TU matrix defining the cone. This property links the notions of elementary extremal ray and of being
elementary with respect to a TU matrix.

Lemma 30. Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix and r ∈ Zn be an elementary extremal
ray of C := {x ∈ Rn : Tx ≤ 0}. Then r is elementary with respect to T .

Proof. With the goal of deriving a contradiction, assume that there is a vector d ∈ {−1, 0, 1}n that is TU-
appendable to T and such that η := d>r 6∈ {−1, 0, 1}. Without loss of generality, we assume η > 0, which
can be achieved by replacing d by −d if necessary. We denote by

L := {λr : λ ≥ 0}

the 1-dimensional face of C on which r lies. Note that (1/η) · r lies in the polyhedron Z defined by

Z :=
{
x ∈ Rn : Tx ≤ 0, d>x = 1

}
.

Hence, because
(
T
d>
)

is TU (recall that d is TU-appendable to T ), (1/η) · r can be written as a convex
combination of integer points in Z, say

1

η
· r =

q∑
j=1

µjzj , (7)

with µj ≥ 0, zj ∈ Z ∩ Zn for j ∈ [q], and
∑q

j=1 µj = 1. Observe that (1/η) · r is the only point on L that is
also in Z because d>r 6= 0, i.e.,

L ∩ Z = {(1/η) · r} .

As (1/η) · r 6∈ Zn, because r is elementary and η > 1, we have

zj 6∈ L ∀j ∈ [q] .

However, this leads to a contradiction because it implies that the decomposition (7) expresses a point on
the 1-dimensional face L of C as a convex combination of points in C, none of which lies on L. This is
impossible because any convex combination that describes a point on a 1-face of a polyhedron needs to use
terms on the same face.

10More precisely, we use that for any a, b, c ∈ Z with gcd(a, b) = 1, if a divides bc then a divides c.
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We are now ready to prove Lemma 7.

Proof of Lemma 7. Because the statement is invariant under a shift of the coordinate system, we can assume
x0 = 0 for convenience. (Formally, instead of considering Tx ≤ b and x0, y, we consider the system
Tx ≤ b− Tx0 and replace x0 and y by the origin and y − x0, respectively.) Moreover, we observe that we
can assume that the system Tx ≤ b contains, for each i ∈ [n], the constraint{

xi ≥ 0 if yi ≥ 0 ,

xi ≤ 0 if yi < 0 .
(8)

Indeed, by adding these constraints, the thus obtained system T̃ x ≤ b̃ is still a TU system for which both the
origin and y are feasible. Moreover, a decomposition of y with respect to this new system T̃ x ≤ b̃ has the
desired properties because a vector is TU-appendable to T if and only if it is TU-appendable to T̃ , which
implies that a vector is elementary w.r.t. T if and only if it is elementary w.r.t. T̃ .11 Hence, we assume from
now on that Tx ≤ b contains the constraints (8), which implies that T has full column rank.

We now define a TU matrix T ∈ {−1, 0, 1}k×n which is obtained from T by changing the sign of some
of its rows. More precisely for each row w> of T , the matrix T contains a row{

w> if w>y ≤ 0 ,

−w> if w>y > 0 .

We define
C :=

{
x ∈ Rn : Tx ≤ 0

}
.

Note that C is pointed because T has full column rank, which follows from T having full column rank. We
now apply Lemma 29 to the TU matrix T and point y. This leads to a decomposition of y as y =

∑n
i=1 λiy

i

such that, for i ∈ [n], we have λi ∈ Z≥0 and yi is an elementary extremal ray of C. We claim that this
decomposition has the desired properties.

Note that by Lemma 30, each vector yi for i ∈ [n] is elementary with respect to T . It is therefore also
elementary with respect to T , because T and T have the same set of TU-appendable rows as they are the
same matrices up to sign changes of some of the rows.

It remains to show that for any coefficients µ1, . . . , µn ∈ Z≥0 with µi ≤ λi for i ∈ [n], we have that the
vector

ỹ := x0 +
n∑
i=1

µiy
i =

n∑
i=1

µiy
i

satisfies T ỹ ≤ b. To this end consider a constraint w>x ≤ β of the system Tx ≤ b. We distinguish between
whether w> or −w> is a row of T . If w> is a row of T , then

w>ỹ =
n∑
i=1

µiw
>yi ≤ 0 ≤ β ,

where the first inequality follows from w>yi ≤ 0 because yi is a ray of C, and the second inequality follows
from the fact that the origin is feasible for the system Tx ≤ b, which implies that all right-hand sides are
non-negative.

11The fact that TU-appendability to T is the same as TU-appendability to T̃ is an immediate consequence of the fact that adding
rows that are all-zero except for a single 1 or −1 entry to any TU matrix preserves TU-ness.
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Consider now the case where −w> is a row of T . Then we have

w>ỹ = w>y −
n∑
i=1

(λi − µi)w>yi ≤ w>y ≤ β ,

where the first inequality follows from λi ≥ µi together with w>yi ≥ 0, which holds because Tyi ≤ 0
and T contains the row −w>, and the last inequality follows from Ty ≤ b, which contains the constraint
w>y ≤ β. Hence, ỹ fulfills all constraints of the system Tx ≤ b, as desired, which finishes the proof.

Proof of Lemma 9. By applying Lemma 7 to the solutions y and x0 of the system Tx ≤ b of the given
R-CCTUF problem, we obtain in strongly polynomial time y1, . . . , yn ∈ Zn and λ1, . . . , λn ∈ Z≥0 such
that y = x0 +

∑n
i=1 λiy

i and (i) d>yi ∈ {−1, 0, 1} for all i ∈ [n] and all d that are TU-appendable to T ,
and (ii) ỹ = x0 +

∑n
i=1 µiy

i is feasible for Tx ≤ b for any choice of µi ∈ {0, . . . , λi}. By these properties,
in order to prove Lemma 9, it is enough to identify in strongly polynomial time µi ∈ {0, . . . , λi} with∑n

i=1 µi ≤ m− |R| such that γ>ỹ = γ>x0 +
∑n

i=1 µiγ
>yi ∈ R (mod m). Denoting Λ =

∑n
i=1 λi and

R′ = {(r − γ>x0 mod m) : r ∈ R} , as well as

r1 = . . . = rλ1 = γ>y1 ,

rλ1+1 = . . . = rλ1+λ2 = γ>y2 ,

...

rλ1+...+λn−1+1 = . . . = rΛ = γ>yn ,

(9)

we can formulate this problem as follows: We start from the sum
∑

i∈S0 ri ∈ R
′ (mod m) with S0 = [Λ],

and our goal is to identify a subset S ⊆ S0 of size at most m − |R| = m − |R′| such that
∑

i∈S ri ∈
R′ (mod m), as well. By Lemma 8, we know that if |S0| > m − |R′|, there exists an interval I1 =
{i11, . . . , i12} with i11, i

1
2 ∈ S0 and i11 < i12 such that for S1 = S0 \ I1, we have

∑
i∈S1 ri ∈ R

′ (mod m).
Iterating this argument, we obtain that for j = 1, 2, . . . and while |Sj−1| > m− |R′|, there exists an interval
Ij = {ij1, . . . , i

j
2} with ij1, i

j
2 ∈ S0 and ij1 < ij2 such that Ij ∩ Sj−1 6= ∅, and for Sj = Sj−1 \ Ij , we have∑

i∈Sj rj ∈ R
′ (mod m). For clarity, we remark that in step j, we are removing the terms with indices in

Sj−1 ∩ Ij from the sum. Moreover, while these indices are consecutive in the sum that we consider in step
j, they may not be so in the original sum

∑n
i=1 ri, as indices in Ij \ Sj−1 correspond to terms that were

removed in earlier steps. For this reason, an index i ∈ [Λ] may well be contained in several intervals Ij .
Because Ij ∩Sj−1 6= ∅, the number of terms in the sum strictly decreases in every step, so the procedure

terminates, which shows existence of the desired solution ỹ, as already pointed out in Section 2.1. To arrive
at a suitably short sum in strongly polynomial time, we split the deletion process into two phases:
Phase 1: Steps j such that |Sj−1| > m− 1, i.e., the sum has more than m− 1 terms.

Hence, the above arguments can be applied with R′ replaced by the singleton set {(
∑

i∈S0 ri mod
m)} such that the sums

∑
i∈Sj ri obtained in this phase all have the same residue. Equivalently, terms

that sum to 0 (mod m) are removed in every step, i.e.,
∑

i∈Sj−1∩Ij ri ≡ 0 (mod m).
Phase 2: Steps j such that |Sj−1| ≤ m− 1, i.e., the sum has at most m− 1 terms.

In this case, at most |R| − 1 further deletion steps suffice to reduce to at most m− |R| many terms.
A way to perform the steps in strongly polynomial time both in phase 1 and phase 2, as well as a strongly
polynomial bound on the number of steps in phase 1 is provided by the following two claims:

(a) We can, in every step of the described procedure and in strongly polynomial time, determine an interval
to delete of maximum possible size, i.e., determine Ij such that |Sj−1 ∩ Ij | is maximized.

(b) If in every step, Ij is chosen according to point (a), the procedure ends after at most n steps.
Together, (a) and (b) immediately prove Lemma 9. To proof the two claims, let us start with focusing on
claim (b). First, we observe that in phase 1, choosing Ij to maximize |Sj−1∩Ij | implies that no two intervals
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will overlap, i.e., Ij∩Ik = ∅ for all intervals Ij and Ik that we construct in this phase. To see this, assume for
the sake of deriving a contradiction that I` is an interval that overlaps with some earlier intervals Ij1 , . . . , Ijt
with j1 < . . . < jt < `, and choose the minimum ` with this property. In particular, we thus know that the
intervals Ij1 , . . . , Ijt do not overlap with each other and with any other intervals Ij with j < `. This implies
that in step j1, I ′ := I` ∪ Ij1 ∪ . . . ∪ Ijt is a candidate interval: Indeed, taking I ′ would remove the terms

∑
i∈Sj1−1∩I′

ri =
∑
i∈I′

ri =
t∑

p=1

∑
i∈Ijp

ri +
∑

i∈I`\
⋃t

p=1 Ijp

ri =
t∑

p=1

∑
i∈Sjp−1∩Ijp

ri +
∑

i∈S`−1∩I`

ri ≡ 0 (mod m) ,

where we use that I` is the first interval that overlaps with other intervals, and that because we are in phase 1,
each individual sum in the last expression is 0 (mod m). Moreover, note that Sj1−1 ∩ Ij1 ( Sj1−1 ∩ I ′,
hence |Sj1−1 ∩ Ij1 | < |Sj1−1 ∩ I ′|, contradicting the choice of Ij1 to maximize |Sj1−1 ∩ Ij1 |. Thus, the
intervals Ij obtained in phase 1 are all disjoint, hence in particular, we always have Sj−1 ∩ Ij = Ij , i.e., in
step j, we remove precisely the terms with indices in Ij from the sum.

Next, recall the way that residues ri were defined in (9): They come in n chunks of equal residues,
namely with indices in C1 = {1, . . . , λ1}, C2 = {λ1 + 1, . . . , λ1 + λ2}, . . . , Cn = {λ1 + . . . + λn−1 +
1, . . . ,Λ}. We observe that each of those chunks Ci can contain at most 2 endpoints of intervals Ij that are
constructed during phase 1. To see this, assume for the sake of deriving a contradiction that one C` contains
at least three interval endpoints. We distinguish two cases:

– C` contains both endpoints of an interval Ij = {ij1, . . . , i
j
2}, and (at least) one endpoint of Ik =

{ik1, . . . , ik2}. Intervals do not overlap, so assume without loss of generality that ij2 < ik1 and choose k
such that ik1 is smallest possible. We claim that instead of Ij or Ik (whichever was deleted first), we
could also have chosen the larger interval I ′ = {ik1 − i

j
2 + ij1, . . . , i

k
2}: Indeed,

∑
i∈I′

ri =

ik1−1∑
i=ik1−i

j
2+i

j
1−1

ri +

ik2∑
i=ik1

ri =
∑
i∈Ij

ri +
∑
i∈Ik

ri ≡ 0 (mod m) ,

where we use that ri = ri′ for all i, i′ ∈ C`, and that because we are in phase 1, each individual sum
in the last expression is 0 (mod m). Because |Ij |, |Ik| < |I ′|, this contradicts the choice of intervals
Ij such that |Sj−1 ∩ Ij | = |Ij | is maximized.

– C` does not contain both endpoints of any interval Ij . This implies that every interval that has one
endpoint in C` contains at least one of the minimum or maximum indices in C`. Consequently, if
C` contains at least three endpoints, one of these two indices is covered by at least two intervals,
contradicting that intervals are disjoint in phase 1.

This proves that every Ci can contain at most 2 endpoints of intervals constructed in phase 1, hence there
can be at most n such intervals, and phase 1 ends after at most n steps. This proves claim (b).12

Finally, and to complete the proof of Lemma 9, we focus on claim (a) above, i.e., on how to efficiently
find intervals Ij maximizing |Sj−1 ∩ Ij |. To this end, let us recall what the situation is: We are given
r1, . . . , rΛ as defined in (9), and a set S of target residues (in phase 1, S will contain a single residue; in
phase 2, it will be equal to R′ from (9)) such that

∑
i∈[Λ] ri ∈ S (mod m), and the goal is to identify an

interval I = {i1, . . . , i2} ⊆ [Λ] such that
∑

i∈[Λ]\I ri ∈ S (mod m), and |I| has maximum possible size.
Observe that if we update the values λi, Λ, and ri accordingly to reflect the remaining sum after each step of
the procedure, this is the precise setup that we are faced with in each step. In what follows, we show that an
optimal interval I = {i1, . . . , i2} can be identified after solving O(n2|S|) many IPs with a constant number
of variables and a constant number of constraints.

12We remark that a slightly more careful analysis, in particular of endpoints in C1 and Cn, immediately improves this bound to
n− 1, but this is not needed for our purpose.
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To see this, let Cj and Ck (as defined earlier), with 1 ≤ j ≤ k ≤ n, be such that i1 ∈ Cj and i2 ∈ Ck.
If j < k, then i1 =

∑j−1
i=1 λi + τ1 for some τ1 ∈ [λj ], and i2 =

∑k−1
i=1 λi + τ2 for some τ2 ∈ [λk],

∑
i∈[Λ]\I

ri =
∑
i∈[Λ]

ri −

(λj − τ1 + 1)rλ1+...+λj+1 +
k−1∑
i=j+1

λirλi+...+λi+1 + τ2rλ1+...+λk+1

 ,

and thus ∑
i∈[Λ]\I

ri ∈ S (mod m) ⇐⇒ −τ1rλ1+...+λj+1 + τ2rλ1+...+λk+1 ∈ S′ (mod m) ,

where S′ is a shifted version of S. Moreover, observe that |I| = λj − τ1 + 1 +
∑k−1

i=j+1 λi + τ2, hence |I| is
of maximum size if τ2 − τ1 is maximized. Altogether, we obtain that (τ1, τ2) is an optimal solution of

maxs∈S′ max τ2 − τ1

−τ1rλ1+...+λj+1 + τ2rλ1+...+λk+1 = zm+ s

τ1 ∈ [λj ]
τ2 ∈ [λk]
z ∈ Z .

(10)

Similarly, if j = k, then i1 =
∑j−1

i=1 λi + τ1 and i2 =
∑j−1

i=1 λi + τ2 for some τ1, τ2 ∈ [λj ] with τ1 ≤ τ2, and
we have∑

i∈[Λ]\I

ri =
∑
i∈[Λ]

ri − (τ2 − τ1 + 1)rλ1+...+λj+1 ∈ S (mod m)

⇐⇒ (τ2 − τ1)rλ1+...+λj+1 ∈ S′ (mod m) ,

where again, S′ is a shifted version of S. Moreover, |I| = τ2 − τ1 + 1, hence |I| is of maximum size if
τ2 − τ1 is maximized. Thus, we obtain that (τ1, τ2) is an optimal solution of

maxs∈S′ max τ2 − τ1

(τ2 − τ1)rλ1+...+λj+1 = zm+ s

τ1 ≤ τ2

τ1, τ2 ∈ [λj ]
z ∈ Z .

(11)

Finally, observe that to solve the problems in (10) and (11), it is enough to solve the inner maximization
problem for every s ∈ S′. Given s, these maximization problems are integer programs with 3 variables
and a constant number of constraints, and can thus be solved in time polynomial in the encoding size of the
IP using Lenstra’s algorithm [Len83], which is strongly polynomial in the size of the R-CCTUF problem.
Moreover, for fixed j and k, it is immediate that a solution of (10) or (11) (if it exists) corresponds to a largest
possible interval I with endpoints in Cj and Ck. Altogether, by going through the O(n2) many options for
j, k ∈ [n], we can in strongly polynomial time determine the optimal interval I . This proves claim (a), and
thus concludes the proof of Lemma 9.

4 Solving base block problems

In this section, we discuss how to solve CCTU problems—and thus also CCTUF andR-CCTUF problems—
whose constraint matrices are base block matrices, i.e., matrices falling into case (i) or (ii) of Theorem 14.
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Note that we can always assume to start with a CCTU problem whose relaxation is feasible, which we
can check in strongly polynomial time; for otherwise, the CCTU problem is clearly infeasible. Hence, we
assume feasibility of the relaxation throughout this section. To start with, let us recall the definition of a
network matrix.

Definition 31. A matrix T is a network matrix if the rows of T can be indexed by the edges of a directed
spanning tree (V,U), and the columns can be indexed by the edges of a directed graph (V,A) on the same
vertex set, such that for every arc a = (v, w) ∈ A and every arc u ∈ U ,

Tu,a =


1 if the unique v-w path in U passes through u forwardly,
0 if the unique v-w path in U does not pass through u,
−1 if the unique v-w path in U passes through u backwardly.

Note that here, a directed graph is called a spanning tree if it is a spanning tree when ignoring edge
directions. Moreover, we remark that we allow graphs to have several parallel edges connecting the same two
vertices. In particular, the graph (V,A) in the above definition may have parallel edges, which correspond
to identical columns of T . An important fact for our purposes is the following.

Lemma 32 (see, for example, [Sch98]). Given a matrix T , one can in strongly polynomial time recognize
whether it is a network matrix. If so, a directed graph (V,A) and a directed tree (V,U) as in Definition 31
can be found efficiently.

In the subsequent three sections, we distinguish three cases, namely whether the constraint matrix T of
the CCTU problem that we consider is a network matrix, the transpose of a network matrix, or a matrix
stemming from the constant-size matrices given in case (ii) of Theorem 14. As indicated above, we show
in each case that the corresponding CCTU problem can be solved efficiently under some assumptions, thus
implying Theorem 15, which covers the corresponding feasibility problems.

In the case of network matrices and their transposes, we perform reductions to combinatorial problems.
In this context, it is convenient to transform the CCTU problems into a more structured class of CCTU
problems, which we call normalized CCTU problems and are defined as follows.

Definition 33 (Normalized CCTU problem). A problem of the form

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0

}
(12)

fulfilling that the origin is an optimal solution to the relaxation of (12), is called a normalized CCTU
problem.

Note that the right-hand side b of a normalized CCTU problem is non-negative because the origin is
feasible. As we briefly discuss in the following, it is not hard to see that one can assume to deal with
normalized CCTU problems, as formalized in the following observation.

Observation 34. Every CCTU problem can be reduced in strongly polynomial time to a normalized CCTU
problem. Furthermore, if the constraint matrix of the first problem is a base block matrix, the constraint
matrix of the latter problem is a base block matrix of the same type.

Proof. Indeed, consider an arbitrary CCTU problem (with feasible relaxation)

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn

}
. (13)

An equivalent CCTU problem where the origin is an optimal solution to its relaxation can simply be obtained
by a standard shifting argument. To this end, assume first that the relaxation has a finite optimal solution.
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In this case we compute such a finite optimal solution x0, and then substitute x by x′ + x0 to obtain the
equivalent CCTU problem

min
{
c>x′ : Tx′ ≤ b′, γ>x′ ≡ r′ (mod m), x′ ∈ Zn

}
,

where b′ = b − Tx0 and r′ = r − γ>x0. Clearly, the origin is an optimal solution to the relaxation of
this transformed problem. In case the relaxation is unbounded, we know by Lemma 72 that (13) is either
infeasible or unbounded. Hence, it is unbounded if and only if it is feasible. Moreover, Lemma 72 allows
for obtaining efficiently a description of a set of unbounded solutions from any solution to (13). Hence,
in this case, the optimization problem for (13) is equivalent to its feasibility version, and we can therefore
replace the objective c by an all-zeros objective. This brings us back to the first case where the relaxation
has a finite optimum.

Furthermore, to reduce to non-negative variables we can use another standard transformation that re-
places every variable x ∈ Z by the difference x+ − x− of two non-negative variables x+, x− ∈ Z≥0.
Notably, these substitutions change the constraint matrix, but it can be observed that base block matrices
remain base block matrices of the same type.13 Applying this reduction on top of the previous one, we
maintain that the origin is an optimal solution to the relaxation, thus obtaining Observation 34.

Moreover, note that by our proximity result, Theorem 5, we obtain that a normalized CCTU problem
has an optimal solution x∗ with ‖x∗‖∞ ≤ m− 1. Due to the non-negativity of the variables in a normalized
CCTU problem, we thus obtain that there is an optimal solution x∗ with x∗i ∈ {0, . . . ,m− 1} for each entry
i ∈ [n]. This is a property we repeatedly exploit in our reductions developed in the following.

4.1 Network matrices

In this section, we show that CCTU problems with unary encoded objectives and constraint matrices that
are network matrices can be solved efficiently using a randomized algorithm.

Theorem 35. There is a strongly polynomial time randomized algorithm for CCTU problems with unary
encoded objectives, constant modulus and constraint matrices that are network matrices.

Our approach in this case is to exploit the graph structure that comes with network matrices to interpret
CCTU problems (or, more precisely, normalized CCTU problems) with network constraint matrices as
minimum-cost congruency-constrained circulation problems in certain directed graphs. To get started, let
us recall that a circulation f in a directed graph G = (V,A) with capacities u : A → Z≥0 is a mapping
f : A→ Z≥0 such that f(a) ≤ u(a) for every arc a ∈ A, and f(δ+(v)) = f(δ−(v)) for every vertex v ∈ V .
Given arc lengths ` : A → Z, the length of a circulation f is `(f) :=

∑
a∈A `(a)f(a). Note that here, arc

lengths are allowed to be negative.
A congruency-constrained circulation problem is formally defined as follows.

Congruency-Constrained Circulation (CCC): LetG = (V,A) be a directed graph with capacities
u : A → Z≥0, arc lengths ` : A → Z, and let η : A → Z, r ∈ Z, and m ∈ Z>0. Find a minimum-
length circulation f : A→ Z≥0 in the given network such that

∑
a∈A η(a)f(a) ≡ r (mod m).

The lemma below reduces CCTU problems with constraint matrices that are network matrices to CCC
problems.

13Indeed, if we start with a constraint matrix T , this transformation to non-negative variables will lead to constraints described
by the constraint matrix [T − T ] together with non-negativity constraints. Moreover, each of the base block matrix types is closed
under copying columns, changing the signs of columns, and adding rows with a single non-zero entry.
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Lemma 36. CCTU problems with modulus m, objective vector c, and constraint matrices that are network
matrices can be reduced in strongly polynomial time to CCC problems with modulus m, capacities u within
{0, . . . ,m− 1}, and arc lengths ` with ‖`‖∞ ≤ ‖c‖∞.

Proof. First of all, we know by Observation 34 that any CCTU problem with a constraint matrix that is a
network matrix can be efficiently reduced to a normalized CCTU problem with a constraint matrix of the
same type. Thus, assume we are given a normalized problem of the form

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0

}
with a network matrix T . By Theorem 11, we have that there is an optimal solution x to the above problem
with |d>x| ≤ m− 1 for all d that are TU-appendable to T .

We now define a CCC problem to which the above CCTU problem reduces. To this end, let (V,U) be the
directed tree whose edges index the rows of the network matrix T , and let (V,E) be the digraph whose edges
index the columns of T , as described in Definition 31. Let G be the directed graph with vertex set V and
edge set A := U ∪ ~U ∪ ~E, where ~U := {(w, v) : (v, w) ∈ U} and analogously ~E := {(w, v) : (v, w) ∈ E}.
Moreover, for an arc u = (v, w), denote by ~u = (w, v) the corresponding reverse arc. We define the
capacities u : A → Z≥0, lengths ` : A → Z, and values η : A → Z of the CCC problem as follows. For all
a ∈ A,

u(a) :=

{
min{ba,m− 1} if a ∈ U
m− 1 if a ∈ ~U ∪ ~E

,

`(a) :=

{
c ~a if a ∈ ~E

0 if a ∈ U ∪ ~U
, and

η(a) :=

{
γ( ~a) if a ∈ ~E

0 if a ∈ U ∪ ~U
.

Moreover, the modulus and target residue of the CCC problem are the same as of the CCTU problem, i.e.,
m and r, respectively. This concludes the definition of the CCC problem to which we reduce.

Finally, the desired statement follows directly from the following claim, which relates solutions of the
CCTU problem to feasible circulations of the above-defined CCC problem.

Claim 37. There is a solution of the CCC problem of length no larger than the optimal value of the CCTU
problem. Conversely, given a circulation f for the CCC problem, one can compute in strongly polynomial
time a solution x of the CCTU problem with c>x = `(f).

To see the forward direction of the claim, we start with an optimal solution x to the CCTU problem. By
Theorem 11, we can assume that |d>x| ≤ m − 1 for all d that are TU-appendable to T . In particular, this
implies x ∈ {0, . . . ,m− 1}E .

We now start by defining a circulation g : A → Z≥0 (that may violate the capacity constraints given by
u) by

g(a) :=
∑
e∈E

x(e)
(
χ ~e(a) + χPe(a)

)
, (14)

where, for every e = (v, w) ∈ E, the set Pe ⊆ U ∪ ~U is the unique path from v to w in U ∪ ~U that has all
edges directed from v to w. Finally, the circulation f : A → Z≥0 that corresponds to x is obtained from g
by canceling out flows on arcs in opposite directions. Formally, we set

f(a) :=

{
g(a) if a ∈ ~E ,

g(a)−min{g(a), g( ~a)} if a ∈ U ∪ ~U .
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Hence, one can interpret f as being obtained from g by canceling flow on 2-cycles. By the definition of the
lengths `, one immediately obtains `(f) = c>x as desired. Moreover, because x is integral, we have that g
is integral and therefore also f . Also,

∑
a∈A η(a)f(a) = γ>x ≡ r (mod m). It remains to observe that f

is a circulation, i.e., each vertex has the same in-flow as out-flow with respect to f and f fulfills the capacity
constraints given by u.

Note that each vertex has the same in- and out-flow with respect to g, because every term in (14) corre-
sponds to sending a flow of x(e) along the cycle ~e ∪ Pe. Because f is obtained from g by canceling flow on
2-cycles, also f has the same in- and out-flow at every vertex.

It remains to verify that the capacities given by u are respected by f . The capacities of arcs a ∈ ~E,
which are u(a) = m− 1, are fulfilled by f because x(e) ≤ m− 1. Consider now an arc a ∈ U and denote
by Ca ⊆ V the unique cut in (V,U) that satisfies δ+(Ca) = {a} and δ−(Ca) = ∅. Such a cut exists as
(V,U) is a tree. Because f is a circulation, we have

0 = f(δ+(Ca))− f(δ−(Ca)) = f(a)− f( ~a) + f(δ+(Ca) ∩ ~E)− f(δ−(Ca) ∩ ~E)

⇐⇒ f(a)− f( ~a) =
∑

e∈E : a∈Pe

x(e)−
∑

e∈E : ~a∈Pe

x(e) . (15)

Observe that the difference of the last two sums is precisely d>x, where d is the row vector of T indexed by
u. Because d>x ≤ ba is a constraint of the original normalized CCTU problem, we have f(a) − f( ~a) =
d>x ≤ ba. Moreover, because both d> and −d> are TU-appendable to the constraint matrix T , we obtain
by Theorem 11 that −m+ 1 ≤ f(a)− f( ~a) ≤ m− 1. Hence,

−(m− 1) ≤ f(a)− f( ~a) ≤ min{ba,m− 1} .

The above inequality implies f(a) ≤ min{ba,m− 1}+ f( ~a) = u(a) + f( ~a) and f( ~a) ≤ m− 1 + f(a) =
u( ~a) + f(a). Note that because f has by definition a value of zero on either a or ~a, and u(a) ≥ 0, it follows
from these inequalities that both f(a) ≤ u(a) and f( ~a) ≤ u( ~a) hold. Thus, f also fulfills the capacity
constraints for all arcs in U ∪ ~U .

For the backward direction of Claim 37, assume that we are given an integral circulation f in G respect-
ing the capacity constraints u, and define x(e) := f( ~e) for all e ∈ E. Note that we thus obtain x in strongly
polynomial time. Again, (15) holds and the right-hand side is d>x, where d is the row indexed by a in T .
Non-negativity of f and the capacity constraints then imply for all a ∈ A that

d>x = f(a)− f( ~a) ≤ f(a) ≤ ba .

Hence, x satisfies all constraints Tx ≤ b and is non-negative due to non-negativity of f . Moreover, we again
have

γ>x =
∑
e∈E

γ(e)x(e) =
∑
e∈ ~E

η( ~e)f( ~e) =
∑
a∈A

η(a)f(a) ≡ r (mod m) .

Hence, the vector x is feasible for the CCTU problem. This proves the claim, which in turn implies the
statement of Lemma 36, as desired.

We remark that for modulusm = 2, an analogous reduction to the one we used in the proof of Lemma 36
was already done in [AWZ17]. Our reduction is a generalization of that one. For the special case with
modulus m = 2, the resulting CCC problems are non-trivial only if r = 1, i.e., when the goal is to find an
odd circulation. This can easily be reduced to finding a shortest odd cycle in a suitable auxiliary graph, which
can be solved via standard techniques. For general m, however, the solution structure can be significantly
more complex. We observe and exploit a connection to the so-called exact length circulation problem, where
the goal is to find a circulation whose length is equal to a given value.
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Exact Length Circulation (XLC): Let G = (V,A) be a digraph with capacities u : A → Z>0 and
arc lengths ` : A→ Z. Given L ∈ Z, find a circulation f in the given network such that `(f) = L.

Exact length circulation problems can be solved using a randomized pseudopolynomial algorithm, as shown
by Camerini, Galbiati, and Maffioli [CGM92]. They reduce the problem to an exact cost perfect match-
ing problem, which can then be reduced to computing the coefficients of a well-defined polynomial. The
following theorem summarizes the result of Camerini, Galbiati, and Maffioli [CGM92] for XLC.

Theorem 38 ([CGM92]). There is a randomized algorithm for XLC problems in a directed graph G =
(V,E) with capacities u : A→ Z≥0 in time poly(|V |,maxa∈A u(a),maxa∈A |`(a)|).

Thus, it remains to build the connection between CCC and XLC problems. We achieve this by integrat-
ing the contributions η(a) of every arc towards the congruency constraint into its length, and searching for
the minimum length of a suitable circulation using binary search, thereby obtaining the following lemma.

Lemma 39. A CCC problem in a graph G = (V,A) with arc lengths ` : A → Z, capacities u : A →
{0, 1, . . . ,m− 1}, and modulus m can be polynomially reduced to poly(m, |V |, |A|,maxa∈A |`(a)|) many
XLC problems in G with the same capacities.

Proof. Note that in any CCC problem, we may assume without loss of generality that η(a) ∈ {0, . . . ,m−1}
by reducing the values modulo m. Now, for every arc a in a given CCC problem, define a new length
function ˜̀(a) = `(a) ·m2|A| + η(a). We thus have ˜̀(f) = `(f) ·m2|A| +

∑
a∈A η(a)f(a), and because∑

a∈A η(a)f(a) < m2|A|, we can retrieve both `(f) and
∑

a∈A η(a)f(a) from ˜̀(f). Consequently, finding
a circulation of length L with

∑
a∈A η(a)f(a) ≡ r (mod m) is equivalent to solving XLC problems in G

with respect to lengths ˜̀and with target length L̃ = L ·m2|A| + km + r for all k ∈ {0, . . . ,m|A| − 1}.
We can find the smallest L for which there is a CCC solution of length L by binary search in O(log(m|A| ·
maxa∈A |`(a)|)) iterations, because |`(f)| =

∣∣∑
a∈A `(a)f(a)

∣∣ ≤ m|A| · maxa∈A |`(a)|. Altogether, this
gives the desired result.

Combining the above findings, we conclude this section with a proof of Theorem 35.

Proof of Theorem 35. By Lemma 36, a CCTU problem whose constraint matrix is a network matrix can be
reduced in strongly polynomial time to a CCC problem with u(a) ≤ m − 1 for all a ∈ A. By Lemma 39,
this problem further reduces to poly(m, |V |, |A|,maxa∈A |c(a)|) many XLC problems, where each of them
can be solved in poly(|V |,maxa∈A u(a),maxa∈A |c(a)|) = poly(|V |,m,maxa∈A |c(a)|) time using a ran-
domized algorithm. Thus, overall, we obtain that there is a randomized algorithm to solve a CCTU problem
whose constraint matrix is a network matrix in time poly(m, |V |, |A|,maxa∈A |c(a)|), i.e., a strongly poly-
nomial algorithm if the objective c is given in unary encoding and m is a constant.

4.2 Transposes of network matrices

The purpose of this section is to prove the following theorem.

Theorem 40. There is a strongly polynomial time algorithm for CCTU problems with constant prime power
modulus and constraint matrices that are transposed network matrices.

To achieve this result, we again exploit the graph structure coming with network matrices. This time,
we reduce CCTU problems (or, more precisely and equivalently, normalized CCTU problems) to certain
directed cut problems of the following form.
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Constrained Tree Cuts (CTC): Let T = (V,U) be a directed tree, A ⊆ V × V and b : A→ Z≥0.
Let c : U → Z be arc costs, α : V → Z, r ∈ Z, and m ∈ Z>0. Find a family of sets S1, . . . , S` ⊆ V
minimizing the total cost

∑`
i=1 c(δ

+(Si)) such that
(i) δ−(Si) = ∅ for all i ∈ [`],

(ii) |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| ≤ ba for all a = (v, w) ∈ A, and
(iii)

∑`
i=1 α(Si) ≡ r (mod m), where α(Si) :=

∑
v∈Si α(v).

We highlight that in CTC problems, the number ` ∈ Z≥0 of sets that are returned is not fixed upfront; in the
extreme case, we might even return an empty family, i.e., use ` = 0. Moreover, we also allow the sets Si to
be empty or equal to V , opposed to the typical setting in cut problems where this is usually excluded. CTC
problems inherit many structural properties from CCTU problems, including structural results on optimal
solutions. These will allow us to further reduce CTC problems to directed congruency-constrained minimum
cut problems, for which efficient algorithms are known for the case of the modulusm being a constant prime
power [NSZ19]. In CTC problems, we call the constraint (iii) the congruency constraint, and we refer to
the problem obtained after dropping that constraint as the relaxation of the CTC problem.

We start by showing the reduction from normalized CCTU problems to CTC problems. More concretely,
to every normalized CCTU problem min{c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0} with T being the
transpose of a network matrix and such that T does not contain identical rows (otherwise, one row of
the identical rows corresponds to a redundant constraint and can be deleted), we associate the following
CTC problem: The tree (V,U) and the extra arc set A ⊆ V × V are those coming with the network
constraint matrix through Definition 31, b : A → Z≥0 is the right-hand side vector of the CCTU problem
(which is non-negative because we assume the CCTU problem to be normalized), α : V → Z is defined by
α(v) := γ(δ+(v))− γ(δ−(v)) for all v ∈ V , and costs c as well as r and m are left unchanged.14 To relate
feasible solutions of CCTU problems and the associated CTC problem, we prove the following result.

Lemma 41. Consider a normalized CCTU problem whose constraint matrix has no identical rows and is
the transpose of a network matrix, and the associated CTC problem. Let S1, . . . , S` ⊆ V with δ−(Si) = ∅
for all i ∈ [`], and define x =

∑`
i=1 χ

δ+(Si). Then x is a feasible CCTU solution if and only if S1, . . . , S` is
a feasible CTC solution. Moreover, if both are feasible, their objective values are the same.

The main ingredient in Lemma 41 is to relate inequality constraints of the CCTU problem and the con-
straints (ii) in the associated CTC problems. We use this relation again later, and hence state it independently
here before using it to prove Lemma 41.

Lemma 42. Let (V,U) be a directed spanning tree, let S1, . . . , S` ⊆ V with δ−(Si) = ∅ for all i ∈ [`], and
denote x =

∑`
i=1 χ

δ+(Si). Then for any v, w ∈ V , the vector tvw ∈ {−1, 0, 1}U defined by

∀u ∈ U : tvw(u) =


1 if the unique v-w path in U passes through u forwardly,
0 if the unique v-w path in U does not pass through u,
−1 if the unique v-w path in U passes through u backwardly

satisfies t>vwx = |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}|.

Proof. By definition of x, we have that

t>vwx =
∑̀
i=1

∑
u∈δ+(Si)

tvw(u) .

14Assuming that T does not contain identical rows implies that no parallel arcs are needed in A, which justifies the assumption
A ⊆ V × V .
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For fixed i ∈ [`] and by definition of tvw, the non-zero terms in the inner sum correspond to edges u that are
oriented from a vertex inside Si to a vertex outside Si, and that lie on the unique v-w path P in U . Recall
that δ−(Si) = ∅, hence the sum in fact has one non-zero term for every time the path P crosses from one
side of Si to the other. More precisely, there is a term +1 for every time the path P crosses from a vertex
inside Si to one outside Si, and a term −1 for every time the path P crosses from a vertex outside Si to one
inside Si. Consequently, the total value of the sum only depends on where the start- and endpoints v and w
are located with respect to Si: If v ∈ Si and w /∈ Si, for example, P will cross from a vertex inside Si to
one outside Si one more time than the other way round, hence the sum will be +1. Generally, we get that∑

u∈δ+(Si)
tvw(u) = 1v∈Si − 1w∈Si , and thus

t>vwx =
∑̀
i=1

(
1v∈Si − 1w∈Si

)
=
∑̀
i=1

1v∈Si −
∑̀
i=1

1w∈Si = |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| .

Proof of Lemma 41. We start by showing that x is feasible for the inequality system Tx ≤ b of the CCTU
problem if and only if S1, . . . , S` is feasible for constraint (ii) of the CTC problem. To this end, consider
a row of the constraint matrix T that is indexed by the arc a = (v, w) ∈ A × A, and note that this row
is precisely the vector t>vw, with tvw as defined in Lemma 42. Consequently, the corresponding constraint
t>vwx ≤ ba of the CCTU problem is, by Lemma 42, equivalent to |{i ∈ [`] : v ∈ Si}|−|{i ∈ [`] : w ∈ Si}| ≤
ba, which is one of the constraints in (ii) in the CTC problem (namely the one for the arc a = (v, w) ∈ A).
Thus, we conclude that Tx ≤ b is equivalent to constraint (ii) in the CTC problem. Next, we observe that

∑̀
i=1

α(Si) =
∑̀
i=1

∑
v∈Si

(
γ(δ+(v))− γ(δ−(v))

)
=
∑̀
i=1

(
γ(δ+(Si))− γ(δ−(Si))

)
=
∑̀
i=1

γ>χδ
+(Si) = γ>x ,

and hence
∑`

i=1 α(Si) ≡ r (mod m) if and only if γ>x ≡ r (mod m). Together, we obtain that x is
a feasible CCTU solution if and only if S1, . . . , S` is a feasible CTC solution. To finish the proof of the
lemma, we observe that the objectives of the CCTU solution x and the CTC solution S1, . . . , S` are equal
because c>x =

∑`
i=1 c

>χδ
+(Si) =

∑`
i=1 c(δ

+(Si)).

By showing that for any feasible CCTU solution x, there exist sets S1, . . . , S` ⊆ V with δ−(Si) = ∅
and x =

∑`
i=1 χ

δ+(Si), and combining this with Lemma 41, we thus obtain the following.

Lemma 43. Consider a normalized CCTU problem whose constraint matrix has no identical rows and is
the transpose of a network matrix, and the associated CTC problem as constructed above.

(i) For every feasible solution x of the CCTU problem, there is a feasible solution S1, . . . , S` of the CTC
problem with the same objective value such that x =

∑`
i=1 χ

δ+(Si).
(ii) For every optimal solution x of the CCTU problem, there is an optimal solution S1, . . . , S` of the CTC

problem such that x =
∑`

i=1 χ
δ+(Si).

Proof. (i) Note that because (V,U) is a tree, for every u ∈ U , there is a unique cut Cu ⊆ V with
δ+(Cu) = {u} and δ−(Cu) = ∅. By definition, we have x =

∑
u∈U x(u)χδ

+(Cu). Consequently, by
Lemma 41, the collection consisting of x(u) times the set Cu for all u ∈ U is a feasible CTC solution,
and its objective value is the same as the objective value of x in the CCTU problem.

(ii) By part (i), it is enough to prove that the associated CTC problem does not have solutions with objective
value less than the value c>x of x. If there was such a CTC solution, say S′1, . . . , S

′
`′ , of value strictly

less than c>x, then by Lemma 41, we know that x′ =
∑`′

i=1 χ
δ+(S′i) is a feasible CCTU solution of
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the same objective value—but this is a contradiction, since we assumed x to be optimal for the CCTU
problem.

In other words, the above immediately implies that CCTU problems can be reduced to CTC problems.

Corollary 44. Every normalized CCTU problem whose constraint matrix has no identical rows and is the
transpose of a network matrix can be strongly polynomially reduced to the associated CTC problem, i.e., the
CTC problem can be obtained in strongly polynomial time, and any optimal CTC solution can in strongly
polynomial time be transformed to an optimal CCTU solution.

Proof. The CTC problem associated to a CCTU problem can be constructed in strongly polynomial time,
in particular because from the constraint matrix T , the tree T = (V,U) and the extra arcs A ⊆ V ×
V can be obtained in polynomial time (in the encoding size of T ) through Lemma 32. Lemma 43 (ii)
shows that optimal solutions of the CCTU problem and the CTC problem have the same values. Moreover,
by Lemma 41, any solution S1, . . . , S` of the CTC problem immediately gives a feasible solution x =∑`

i=1 χ
δ+(Si) of the CCTU problem with the same value (and note that x can be computed in strongly

polynomial time). Thus if S1, . . . , S` is optimal for the CTC problem, then so is x for the CCTU problem.

We remark that the above reduction gives CTC instances with α(V ) = 0. It turns out that because
the underlying graph (V,U) is a tree, this condition is enough to uniquely determine corresponding values
γ : U → Z such that α(v) = γ(δ+(v)) − γ(δ−(v)) for all v ∈ V , which allows us to also reduce CTC
problems to CCTU problems in that case. As for our purposes, the direction covered by Corollary 44 is
enough, we leave the details of this argument to the reader. To be able to exploit the reduction given in
Corollary 44, we continue with studying the structure of CTC solutions in more detail, with the goal to
identify patterns that help for finding optimal CTC solutions efficiently.

Lemma 45. Consider a CTC problem and let S1, . . . , S` be a feasible solution. Then there exists a feasible
solution T1, . . . , T` such that T` ⊆ T`−1 ⊆ . . . ⊆ T1 and

∑`
i=1 χ

δ+(Si) =
∑`

i=1 χ
δ+(Ti).

Proof. If for all j, k ∈ [`], we have Sj ⊆ Sk or Sk ⊆ Sj , there is nothing to prove, because relabeling the
sets to satisfy S` ⊆ S`−1 ⊆ . . . ⊆ S1 will give the desired solution. Thus, assume that there are two sets
Sj and Sk for j, k ∈ [`] such that Sj 6⊆ Sk and Sk 6⊆ Sj . We claim that removing the sets Sj , Sk from
the solution and adding the sets in Sj ∪ Sk and Sj ∩ Sk instead gives another feasible solution for the CTC
problem such that the sum

∑`
i=1 χ

δ+(Si) is unchanged. To see this, observe the following:
– δ−(Sj ∪ Sk) = δ−(Sj ∩ Sk) = ∅ because an arc entering the union or intersection of the two sets

would enter at least one of the sets, but we know that δ−(Sj) = δ−(Sk) = ∅. Thus, δ−(Si) = ∅ holds
for all Si in the new solution.

– For any vertex v ∈ V , the number of sets in the solution that contain v is invariant under replacing
two sets with their union and intersection, hence the left-hand side of any constraint in condition (ii)
of CTC problems remains the same, and thus the constraints in condition (ii) of CTC problems holds
for the new solution, as well.

– We have α(Sj) + α(Sk) = α(Sj ∪ Sk) + α(Sj ∩ Sk), so the congruency-constraint is fulfilled by the
new solution if and only if the initial solution fulfilled it.

– Finally, it generally holds that

χδ
+(Sj) + χδ

+(Sk) = χδ
+(Sj∪Sk) + χδ

+(Sj∩Sk) + χU(Sj\Sk,Sk\Sj) + χU(Sk\Sj ,Sj\Sk) ,

where, for vertex sets V1, V2 ⊆ V , we denote by U(V1, V2) ⊆ U all arcs of U with tail in V1 and
head in V2. Because δ−(Sj) = δ−(Sk) = ∅, we have U(Sj \ Sk, Sk \ Sj) = U(Sk \ Sj , Sj \
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Sk) = ∅, which implies that the last two terms of the right-hand side above are zero. Consequently,
χδ

+(Sj) + χδ
+(Sk) = χδ

+(Sj∪Sk) + χδ
+(Sj∩Sk), and thus the sum

∑`
i=1 χ

δ+(Si) is unchanged under
the replacement step, as well.

Thus, as long as there are two sets Sj and Sk such that Sj 6⊆ Sk and Sk 6⊆ Sj , we can replace them by Sj∪Sk
and Sj ∩ Sk while maintaining feasibility for the CTC problem and not changing the sum

∑`
i=1 χ

δ+(Si). To
see that this procedure ends, note that in any step, the potential function Φ(S1, . . . , S`) :=

∑`
i=1 |Si|2 ∈ Z

strictly increases. The latter follows from the fact that, for any two sets A and B with A * B and B * A,
we always have |A|2 + |B|2 < |A ∩ B|2 + |A ∪ B|2. Obviously, Φ(S1, . . . , S`) ≤ `|V |2, so the procedure
terminates after less than `|V |2 many steps with a solution that has the desired properties.

In the next lemma, we prove that in CTC problems that are obtained via a reduction from CCTU prob-
lems, there even exist optimal solutions that consist of a chain S` ⊆ . . . ⊆ S1 with a bounded number of
sets, namely ` ≤ m−1. This closely links back to our general proximity result, Theorem 11, from which we
know that a normalized CCTU problem has an optimal solution x∗ such that for any vector d ∈ Zn that is
TU-appendable to the constraint matrix T , we have d>x∗ ≤ m−1. In the proof of the following lemma, we
show that the optimal CTC solution corresponding to such a CCTU solution x∗ has the desired properties.

Lemma 46. Consider a normalized CCTU problem with modulus m whose constraint matrix has no iden-
tical rows and is the transpose of a network matrix. Then, the associated CTC problem has an optimal
solution S1, . . . , S` such that S` ⊆ S`−1 ⊆ . . . ⊆ S1 and ` ≤ m− 1.

Proof. Let x∗ be an optimal solution of the CCTU problem such that for every vector d ∈ Zn that is TU-
appendable to the constraint matrix T , we have d>x∗ ≤ m − 1. Such a solution exists due to Theorem 11
because the CCTU problem is normalized, and hence x0 = (0 0 . . . 0)> ∈ Zn is an optimal solution of
its relaxation. By Lemma 43, there exists an optimal solution S1, . . . , S` of the associated CTC problem
such that x∗ =

∑`
i=1 χ

δ+(Si), and by Lemma 45, we may even choose the sets Si ⊆ V such that they
form a chain, i.e., S` ⊆ S`−1 ⊆ . . . ⊆ S1. Moreover, we may assume that Si 6= ∅ and Si 6= V for all
i: Such sets could be removed from the solution family without affecting feasibility of the solution (the
left-hand sides of constraints in point (ii) of CTC problems will remain the same, and because α(∅) = 0
and α(V ) =

∑
v∈V α(v) =

∑
v∈V γ(δ+(v)) − γ(δ−(v)) = 0, the congruency constraint will still be

satisfied, as well) and the objective value (which is the same because δ+(V ) = δ+(∅) = ∅, and thus
c(δ+(V )) = c(δ+(∅)) = 0).

We claim that with the above assumptions, we have ` ≤ m − 1. To see this, choose v ∈ S1 and
w ∈ V \ S`. Note that such v and w exist by the assumption that Si 6= ∅ and Si 6= V for all i ∈ [`]. Let
tvw ∈ {−1, 0, 1}U be defined as in Lemma 42, where (V,U) is the directed tree indexing the columns of the
constraint matrix T of the CCTU problem according to Definition 31. By definition, tvw is TU-appendable
to the matrix T , as we can add the arc (v, w) to the arc (multi-)set indexing the rows of T according to
Definition 31 and thereby obtain that the matrix T with extra row tvw is the transpose of a network matrix
again, and hence TU. Consequently, by the choice of the optimal solution x∗, we have t>vwx

∗ ≤ m− 1. On
the other hand, Lemma 42 implies that

t>vwx
∗ = |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| = ` ,

because by choice of v and w, all sets Si contain v, but none of them contain w. Altogether, this gives
` ≤ m− 1, as desired.

Thus, by Lemma 45, it is enough to find an optimal solution of a CTC problem associated to a CCTU
problem such that the sets in the solution form a chain of (at most)m−1 cuts. This bounded number of cuts
allows for a reduction to submodular minimization problems with congruency constraints of the following
type.
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Congruency-Constrained Submodular Minimization (CCSM): Given a submodular function
f : L → Z defined on a lattice L ⊆ 2N , γ : N → Z, m ∈ Z>0, and r ∈ {0, . . . ,m − 1}, find
a minimizer of min{f(C) : C ∈ L, γ(C) ≡ r (mod m)}.

Such problems were studied by Nägele, Sudakov, and Zenklusen [NSZ19], where an algorithm for solving
problems of this kind ifm is a constant prime power modulus was presented. We remark that [NSZ19] stud-
ies a slightly less general setup than stated above, namely γ ≡ 1, where the constraint γ(S) ≡ r (mod m)
translates to |S| ≡ r (mod m). For that case, algorithms with running time |N |2m+O(1) were presented.
However, the setting with general γ can be readily reduced to that with γ ≡ 1 by replacing every element
v ∈ N by t = (γ(v) mod m) many elements v1, . . . , vt with γ(vi) = 1 and updating the lattice and the
function correspondingly. Observing that this reduction blows up the ground set by a factor of at most m,
we thus get the following immediate generalization of Theorem 1.1 in [NSZ19].

Theorem 47. For any prime power m ∈ Z>0, CCSM problems can be solved in (m|N |)2m+O(1) time.

It remains to discuss our reduction from CTC problems to CCSM problems.

Lemma 48. Consider a CTC problem with constant modulus m. Finding a feasible solution of minimum
cost among all solutions that consist of at most m − 1 sets S1, . . . , S` with S` ⊆ S`−1 ⊆ . . . ⊆ S1 can be
strongly polynomially reduced to a CCSM problem with modulusm, i.e., the CCSM problem can be obtained
in strongly polynomial time, and an optimal solution of that problem can be transformed to an optimal CTC
solution in strongly polynomial time.

Proof. Consider a CTC instance with the usual notation. We construct a CCSM instance on a ground set
N with a lattice L ⊆ 2N whose sets correspond to feasible solutions of the relaxation of the given CTC
problem that have the desired chain structure. Moreover, we show that the function f : L → Z assigning
to each set in L the value of the corresponding CTC solution is a modular function. The last step will then
be to observe that we can define a congruency constraint of the type appearing in CCSM problems that is
equivalent to the congruency constraint in the CTC problem.

Let the ground set N consist of m − 1 copies of the vertex set V of the tree in the CTC instance, i.e.,
N :=

⋃m−1
i=1 Vi, where Vi = {vi : v ∈ V }. Sets C ⊆ N are in one-to-one correspondence with set families

S1, . . . , S` ⊆ V that satisfy ` ≤ m − 1 as follows: Given C, the corresponding set family is given by
Si = {v ∈ V : vi ∈ C}, and vice versa, given a set family S1, . . . , S` with ` ≤ m − 1, the corresponding
subset of N is C =

⋃`
i=1{vi : v ∈ Si}. Now let us define a set L ⊆ 2N such that C ⊆ N is in L if and only

if all three of the following are satisfied:
(i) If vi ∈ C for some v ∈ V and i ∈ [m− 1], then vj ∈ C for all j ≤ i.

(ii) For every (v, w) ∈ U , if wi ∈ C for some i ∈ [m− 1], then vi ∈ C.
(iii) For every (v, w) ∈ A, if vi ∈ C and i− ba ≥ 1, then wi−ba ∈ C.

Claim 49. Sets C ∈ L are precisely those subsets of N that correspond to set families S1, . . . , S` with
` ≤ m− 1 that have chain structure S` ⊆ . . . ⊆ S1 and are feasible solutions of the relaxation of the given
CTC problem.

To see the claim, we start by observing that a set C ⊆ N satisfies (i) if and only if the corresponding
sets S1, . . . , S` satisfy Si ⊆ Sj for all i ≥ j: If C satisfies (i), then v ∈ Si, we get vi ∈ C, which implies
vj ∈ C because i ≥ j, and thus v ∈ Sj . For the other way round, if Si ⊆ Sj for all i ≥ j, then if vi ∈ C for
some v ∈ V and i ∈ [m−1], we have v ∈ Si, and thus for all i ≥ j, it follows that v ∈ Sj , and thus vj ∈ C.

Next, (ii) is satisfied by C ⊆ N if and only if the corresponding sets S1, . . . , S` satisfy δ−(Si) = ∅: C
does not satisfy (ii) if and only if there exist (v, w) ∈ U and i ∈ [m− 1] such that wi ∈ C, but vi /∈ C. The
latter is equivalent to w ∈ Si and v /∈ Si, i.e., δ−(Si) 6= ∅.
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Finally, consider a set C satisfying (i) above. We show that the corresponding sets S1, . . . , S` then
satisfy constraint (ii) of CTC problems if and only if C also satisfies (iii) above. To start with, note that by
the previous arguments, we know that because C satisfies (i), we have S` ⊆ . . . ⊆ S1. Consequently,

|{i ∈ [`] : v ∈ Si}| = max{i ∈ [m− 1] : vi ∈ C} ∀v ∈ V ,

hence a constraint of the form |{i ∈ [`] : v ∈ Si}| − |{i ∈ [`] : w ∈ Si}| ≤ ba for some a = (v, w) ∈ A is
satisfied if and only if max{i ∈ [m − 1] : vi ∈ C} − max{i ∈ [m − 1] : wi ∈ C} ≤ ba, which in turn is
guaranteed to hold if and only if C satisfies (iii) above, as desired. This proves Claim 49.

Claim 50. L is a lattice.

To prove this claim, we show that for any C1, C2 ∈ L, we also have C1 ∩ C2 ∈ L and C1 ∪ C2 ∈ L.
We do so by showing that the intersection and union satisfy (i) to (iii) above. Note that all three conditions
are of the form “If a ∈ C, then b ∈ C”, for different choices of a, b ∈ N . It is generally true that if such
conditions hold for two sets C1 and C2, then they also hold for C1 ∩ C2 and C1 ∪ C2: If a ∈ C1 ∩ C2, then
a ∈ C1 and a ∈ C2, hence also b ∈ C1 and b ∈ C2, and thus b ∈ C1 ∩ C2. Also, if a ∈ C1 ∪ C2, then there
is ε ∈ {0, 1} such that a ∈ Cε, hence also b ∈ Cε, and thus b ∈ C1 ∪ C2. This proves Claim 50.

As already indicated above, let f : L → Z be defined as follows: For C ∈ L, if S1, . . . , S` is the
corresponding solution of the relaxation of the CTC problem, then f(C) =

∑m−1
i=1 c(δ+(Si)). In other

words, f assigns to each C ∈ L the objective value of the corresponding CTC solution.
We claim that for any two sets C,D ∈ L, we have f(C) + f(D) = f(C ∩D) + f(C ∪D). To this end,

observe that if S1, . . . , S` ⊆ V correspond to C and T1, . . . , T
′
` ⊆ V correspond to D, we may introduce

S`+1 = . . . = Sm−1 = ∅ and T`′+1 = . . . = Tm−1 = ∅ and then obtain

f(C) + f(D) =

m−1∑
i=1

c(δ+(Si)) + c(δ+(Ti)) =

m−1∑
i=1

c(δ+(Si ∩ Ti)) + c(δ+(Si ∪ Ti))

= f(C ∩D) + f(C ∪D) ,

where the middle inequality exploits that χδ
+(Si) +χδ

+(Ti) = χδ
+(Si∩Ti) +χδ

+(Si∪Ti), which holds because
δ−(Si) = δ−(Ti) = ∅ for i ∈ [m − 1] due to the fact that S1, . . . , S` and T1, . . . , T`′ are feasible solutions
for the relaxation of the CTC problem and thus satisfy constraint (i) of that problem type.

Finally, define γ : C → Z by γ(vi) = α(v) for all v ∈ V and i ∈ [m − 1]. This implies that for any
C ∈ L and a corresponding solution S1, . . . , S` of the CTC problem’s relaxation,

γ(C) =
m−1∑
i=1

γ(C ∩ Si) =
∑̀
i=1

α(Si) ,

and hence γ(C) ≡ r (mod m) if and only if
∑`

i=1 α(Si) ≡ r (mod m).
Altogether, we obtain that C is an optimal solution of the CCSM problem given by N , L, f and γ if and

only if the corresponding sets S1, . . . , S` form an optimal solution of the CTC problem with chain structure
S` ⊆ . . . ⊆ S1 and ` ≤ m− 1. Observing that the CCSM problem can be obtained from the CTC problem
in strongly polynomial time (recall that m is assumed to be a constant), and that transforming a CCSM
solution to a CTC solution is immediate, finishes the proof.

Finally, combining Corollary 44 and Lemmas 45 and 48, we can conclude Theorem 40.
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Proof of Theorem 40. Given a CCTU problem, by Corollary 44 it is enough to solve the associated CTC
problem. By Lemma 46, this problem has an optimal solution with chain structure and at most m − 1
cuts—which is precisely the type of problem that can be strongly polynomially reduced to a congruency-
constrained submodular minimization problem by Lemma 48. Note that in these reductions, the modulus m
of the involved congruency-constraints is invariant, and m is a constant prime power by assumption. Hence,
the final congruency-constrained submodular minimization problem is one with constant prime power mod-
ulus. Such problems can be solved in strongly polynomial time by Theorem 47.

4.3 Matrices stemming from particular constant-size matrices

To complete the study of base block CCTU problems, we now cover CCTU problems with constraint ma-
trices that fall into case (ii) of Theorem 14. In other words, we study matrices that can be obtained from the
two matrices 

1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1

 and


1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

 (16)

by repeatedly appending unit vector rows or columns, appending a copy of a row or column, and inverting
the sign of a row or column. More generally, our arguments apply to any constraint matrices that can be
obtained from constant-size matrices by repeatedly applying the aforementioned operations. More formally,
let us introduce the following notion of a core of a totally unimodular matrix.

Definition 51. Let T be a totally unimodular matrix. A submatrix of T is a core of T if it is a smallest
possible submatrix of T that can be obtained by iteratively deleting

(i) any row or column with at most one non-zero entry, or
(ii) any row or column appearing twice or whose negation is also in the matrix.

It can be observed that up to row and column permutations and sign changes of rows and columns, every
totally unimodular matrix has a unique core, which we denote by core(T ). Still, let us remark that we do
not need uniqueness for our arguments and working with any core would be enough for us. In the context
of CCTU problems, we show the following theorem.

Theorem 52. CCTU problems with modulus m and a constraint matrix T that has a core of constant size
can be solved in strongly polynomial time

(i) by a randomized algorithm if the objective is unary encoded and m is constant, or
(ii) by a deterministic algorithm if m is a constant prime power.

In particular, Theorem 52 shows that CCTU problems with constant prime power modulus and constraint
matrices that fall into case (ii) of Theorem 14 can be solved in strongly polynomial time. Theorem 52
immediately follows from the following more concrete lemma by solving each of the mO(`) many CCTU
problems using Theorem 35 or Theorem 40.

Lemma 53. Consider a CCTU problem with modulus m and constraint matrix T , and let ` be the number
of columns of core(T ). The CCTU problem can be reduced to mO(`) many CCTU problems, with constraint
matrices of size linear in the size of T , that are network matrices and transposes of network matrices at the
same time.

Proof. Assume that we are given a normalized CCTU problem, which has the form

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn≥0

}
,
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where T is a matrix that is obtained as follows: Start from the matrix C = core(T ) that has `many columns,
and repeatedly append unit rows or columns, append a copy of a row or column, and invert the sign of a row
or column. In this process, we say that a row or column stems from C if it either is a row or column of C, or
it was obtained by copying a row or column that stems from C. Thus, we may rewrite the inequality system
in the form (

T 11 T 12

T 21 T 22

)(
x1

x2

)
≤
(
b1

b2

)
, (17)

where T 11 comprises the rows and columns of T that stem from C, and the remaining matrix as well as the
variables x and the right-hand side b are split accordingly. Note that while T is achieved as a construction
starting from the TU matrix C, we could also start from the totally unimodular matrix obtained from C
by appending a ` × ` identity matrix, and then perform the same operations to obtain a totally unimodular
matrix of the form  S 0

T 11 T 12

T 21 T 22

 . (18)

Here S has ` many rows s>i for i ∈ [`] where, without loss of generality, the support of s>i comprises
precisely those columns that stem from column i of C in the construction. Our approach is to guess the
` many scalar products s>i x

1 of an optimal solution x∗ = (x1 x2), and thereby reduce the problem to an
easier one.

To this end, note that the rows (s>i 0) are TU-appendable to the constraint matrix T because the matrix
in (18) is TU. Thus, because we work with a normalized problem, we know that there exists an optimal
solution x∗ = (x1 x2) of the CCTU problem such that s>i x

1 ∈ {−m + 1, . . . ,m − 1} (see Theorem 11).
Consequently, it is enough to consider (2m − 1)` many combinations of values that these scalar products
may admit. Once we fix those values, we also know the value of T 11x1: Indeed, it is easy to see that every
row t of T 11 is a linear combination of the rows si, and hence t>x is a linear combination of s>i x. Thus, for
any guess σ = (σ1, . . . , σ`) of the ` many scalar products s>1 x

1, . . . , s>` x
1, and after computing τ = T 11x1,

we may rewrite the system (17) in the form
S 0
−S 0
0 T 12

T 21 T 22

(x1

x2

)
≤


σ
−σ
b1 − τ
b2

 . (19)

We claim that the new constraint matrix is a network matrix and the transpose of a network matrix at the
same time. To this end, observe that the matrix S 0

0 T 12

T 21 T 22

 (20)

can be obtained by performing the same steps as we perform to obtain the matrix in (18), but replacing the
entries of C with zeros in the starting matrix. This makes the starting matrix being a network matrix and the
transpose of a network matrix at the same time, and this property is invariant under the operations that we
perform when constructing the matrix. Thus, the matrix in (20) is a network matrix and the transpose of a
network matrix at the same time, and hence, so is the constraint matrix in (19).

To sum up, we reduce a CCTU problem with a constraint matrix that has core with ` columns, to
(2m− 1)` many CCTU problems with constraint matrices that are a network matrix and the transpose of a
network matrix at the same time. Also note that the size of the new constraint matrix is linear in the size of
the original constraint matrix. This proves the lemma.
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We remark that instead of guessing all ` many scalar products in the proof of Lemma 53, we could also
guess all but four of them: This would guarantee that the resulting constraint matrix of the reduced problems
has a core that consists of at most 4 rows, and hence does not fall into case (ii) of Theorem 14, and we can
fall back to another case for solving the reduced problems. In particular, when applying Lemma 53 to a
constraint matrix T falling into case (ii) of Theorem 14, guessing the scalar product of a single row would
be enough.

5 Further details of our approach to R-CCTUF problems

In this section, we fill in details and formal proofs supplementing the overview of our approach toR-CCTUF
problems given in Section 2.

5.1 Seymour’s decomposition of TU matrices

Theorem 14 is, up to the constraints nA, nB ≥ 2, one naturally equivalent way of stating Seymour’s de-
composition theorem for TU matrices (see, for example, [Sey80] or [Sch98]). The version presented in
Theorem 14 is a variation thereof that additionally guarantees lower bounds on the number of rows nA and
nB of the blocks A and B, respectively, obtained in 1-, 2-, and 3-sums, namely nA, nB ≥ 2. Similar bounds
were achieved by Artmann, Weismantel, and Zenklusen in [AWZ17]: They lower bound the number of rows
kA and kB of the two blocks A and B by 2—hence applying their theorem to the transpose of a TU matrix
gives the version that we need.

Although not exploited in our results, we remark that the method presented in [AWZ17] in fact allows for
obtaining the lower bounds on the number of columns and the number of rows of A and B simultaneously,
i.e., it can be guaranteed that in any 1-, 2-, and 3-sum, both matrices are at least 2× 2 matrices.

5.2 Patterns

Recall that if the constraint matrix of the R-CCTUF problem that we consider is a 1-, 2-, or 3-sum, the
problem can be written in the form(

A ef>

gh> B

)
·
(
xA
xB

)
≤
(
bA
bB

)
γ>AxA + γ>BxB ∈ R (mod m)

xA ∈ ZnA , xB ∈ ZnB ,

as also given in (1). After fixing α = f>xB and β = h>xA, the above problem splits into an A-problem
and a B-problem as in (2) (whose only link is through the original congruency constraint, which translates
into rA + rB ∈ R). Also recall that we let Π ⊆ Z2 denote all pairs (α, β) for which both the A-problem
and the B-problem are feasible, and that by Lemma 16 we know that if the initial problem is feasible, then
it is also feasible for a pair of scalar products (α, β) ∈ Π that additionally satisfy `0 ≤ α + β ≤ u0,
`1 ≤ α ≤ u1, `2 ≤ β ≤ u2 for bounds `i, ui that we can determine in strongly polynomial time, and that
satisfy ui − `i ≤ m− |R|. For this reason, we defined a narrowed down version of Π, namely

Πnarrowed := Π ∩ {(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2} , (21)

and only look for solutions with scalar products (α, β) ∈ Πnarrowed. We also remind the reader that a
narrowed pattern associated to the problem is given by π : Πnarrowed → 2{0,...,m−1}, where π(α, β) is the set
of residues rB ∈ {0, . . . ,m− 1} for which the B-problem is feasible.
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The shape of pattern supports

In what follows, we prove the following lemma on the shape of Πnarrowed.

Lemma 54. In the above setup, we can in strongly polynomial time determine `′i, u
′
i for i ∈ {0, 1, 2} with

u′i − `′i ≤ m− |R| such that

Πnarrowed = {(α, β) ∈ Z2 : `′0 ≤ α+ β ≤ u′0, `′1 ≤ α ≤ u′1, `′2 ≤ β ≤ u′2} .

We emphasize that the main contribution of Lemma 54 is not to find new bounds `′i, u
′
i (they will simply

be the tightest bounds such that Πnarrowed is contained in the resulting set), but that there are no holes within
the shape given by the bounds. That is, there are no (α, β) satisfying the bounds, but such that there is no
feasible solution of our R-CCTUF problem with scalar products (α, β). It turns out that Π has the same
property in the following sense, and Lemma 54 will follow from that.

Lemma 55. For Π ⊆ Z2 defined as above, conv(Π) is a polyhedron with Π = conv(Π) ∩ Z2 and edge
directions in D := {±( 1

0 ),±( 0
1 ),±

(
1
−1

)
}. Hence, there is an inequality description of conv(Π) only

consisting of upper and/or lower bounds on α, β, and α+ β.

We remark that when we refer to edge directions v of an integral polyhedron (with rational extremal rays
in case of unboundedness), then we always choose v to be integral, i.e., v ∈ Zn, and such that the greatest
common divisor of its coordinates is 1. In other words, a vector v ∈ Zn is an edge direction of an integral
polyhedron if there exist integral points x1 and x2 that lie on the same edge of P such that x1 = x2 + v, and
the greatest common divisor of all components of v is 1.

Proof of Lemma 54. From Lemma 55 and (21), it follows immediately that Lemma 54 holds for

`′0 = min{α+ β : (α, β) ∈ Πnarrowed} and u′0 = max{α+ β : (α, β) ∈ Πnarrowed} ,
`′1 = min{α : (α, β) ∈ Πnarrowed} and u′1 = max{α : (α, β) ∈ Πnarrowed} , and

`′2 = min{β : (α, β) ∈ Πnarrowed} and u′2 = max{β : (α, β) ∈ Πnarrowed} .

To see that we can determine `′i and u′i in strongly polynomial time, we exploit that by Observation 27,

AxA + ef>xB ≤ bA
gh>xA + BxB ≤ bB

`0 ≤ h>xA + f>xB ≤ u0

`1 ≤ f>xB ≤ u1

`2 ≤ h>xA ≤ u2

is an inequality system with a totally unimodular constraint matrix. Here, the last three constraints precisely
encode the constraints (α = f>xB, β = h>xA) ∈ Πnarrowed, so pairs in Πnarrowed correspond to feasible
solutions of the above system, and vice versa. Due to total unimodularity, we can find integral solutions
of this system minimizing or maximizing the linear functions α = f>xB , β = h>xA, and α + β =
f>xB + h>xA by solving the corresponding relaxations using the approach of Tardos [Tar86] in strongly
polynomial time, and the corresponding optimal values are precisely the values `′i and u′i for i ∈ {0, 1, 2}
that we are looking for, and we have u′i − `′i ≤ ui − `i ≤ m− |R| for all i ∈ {0, 1, 2}.

To prove Lemma 55, we will observe that Π can be seen to essentially be a projection of the set of
feasible solutions of the relaxation of the initial R-CCTUF problem. The following result will provide the
necessary properties to conclude Lemma 55.
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Theorem 56. Let T ∈ {−1, 0, 1}k×n be a totally unimodular matrix, let b ∈ Zn, and let I ⊆ [n] be a
subset of the column indices. Then, the axis-parallel projection Q ⊆ RI of P := {x ∈ Rn : Tx ≤ b} on the
variables (xi)i∈I has the following property: For any edge direction v ∈ ZI of Q, and any w ∈ Zn that is
TU-appendable to T and supported on I , we have w>I v ∈ {−1, 0, 1}.

Here, for a vector w ∈ Rn and a subset I ⊆ [n], we denote by wI the restriction of w to the coordinate
indices in I . Generally, note that for I = [n], Theorem 56 is a statement about edge directions of polyhedra
that are defined by totally unimodular matrices, characterized in terms of TU-appendable vectors. This
shows another use of the concept of TU-appendable vectors and gives a result that might find independent
applications.

Proof of Theorem 56. Assume for the sake of deriving a contradiction that Q has an edge direction v ∈ RI
such that there exists a vector w ∈ Zn that is supported on I and TU-appendable to T such that w>I v /∈
{−1, 0, 1}. Let x1, x2 ∈ ZI lie on an edge of Q such that x1 = x2 + v, and observe that there exists
λ ∈ (0, 1) such that y := (1− λ)x1 + λx2 = x1 + λv is not integral, but satisfies w>I y = η for some η ∈ Z,
for example λ = 1/|w>

I v|.
Now let y be a preimage of y under the axis-parallel projection from P to Q, and observe that y is a

fractional solution of the system
Tx ≤ b
w>x = η

,

which has a totally unimodular constraint matrix and integral right-hand sides, which implies that it describes
an integral polyhedron. Thus, y can be written as a convex combination y =

∑k
i=1 λizi of integral vectors

zi ∈ {x ∈ Zn : Tx ≤ b, w>x = η}, with coefficients λi ∈ (0, 1) such that
∑k

i=1 λi = 1. Let zi ∈ ZI be
obtained from zi through axis-parallel projection to RI . Hence, zi ∈ Q∩ZI , w>I zi = η, and y =

∑k
i=1 λizi.

Thus, we expressed y as a convex combination of points zi ∈ Q. But recall that y lies on an edge of Q,
and the only way to express such a point as a convex combination of others with non-zero coefficients is
to use points from the same edge only, hence all zi lie on the same edge. However, as the edge direction
is v and w>I v 6= 0, the point y is the only point on the edge satisfying w>I x = η, so we must have zi = y
for all i ∈ [k]. This contradicts that zi are integral, while y is not. Thus, our assumption was wrong and
Theorem 56 follows.

Proof of Lemma 55. Note that Π contains precisely those pairs (α, β) ∈ Z2 for which there exist (xA, xB) ∈
ZnA × ZnB such that (xA, xB, α, β) is a solution of the system

A ef> 0 0
gh> B 0 0

0 f> −1 0
h> 0 0 −1



xA
xB
α
β


≤
≤
=
=


bA
bB
0
0

 . (22)

Let P be the polyhedron defined by (22), and let T be the constraint matrix in (22). Observe that T is
totally unimodular by Observation 27. This has several implications: First, Q := conv(Π) is precisely the
projection of P to the variables (α, β). Moreover, every integral point in this projection has an integral
inverse image, hence Π = conv(Π) ∩ Z2. Finally, by Theorem 56 applied with I containing the indices of
the variables α and β, we obtain that all edge directions v ∈ Z2 ofQ satisfy that for any integral vectorw that
is TU-appendable to T with support on the last two columns only, we have w>I v ∈ {−1, 0, 1}. Obviously,
the unit vectors w ∈ {±eα,±eβ} (i.e., the vectors that are all zero except for ±1 entries in corresponding to
the variables α and β, and hence correspond to wI ∈ {±( 1

0 ),±( 0
1 )}, respectively) are TU-appendable, and

we claim that w = ±(eα + eβ) (corresponding to wI = ±( 1
1 )) are, as well.
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Assuming this claim, the conclusion is immediate: We know that all edge directions v ∈ Z2 of Q are
such that w>I v ∈ {−1, 0, 1} for all wI ∈ {±( 1

0 ),±( 0
1 ),±( 1

1 )}. This leaves v ∈ {±( 1
0 ),±( 0

1 ),±
(

1
−1

)
}

as the only possible feasible edge directions, and hence the polyhedron Q can be described by inequalities
bounding α, β, and α+ β from above and/or below, as claimed by Lemma 55. Thus, we conclude the proof
by showing the claim. To this end, define the three matrices

T ′ :=


A ef> 0 0
gh> B 0 0

0 f> −1 0
h> 0 0 −1
0 0 1 1

 , T ′′ :=


A ef>

gh> B
0 f>

h> 0

 , and T ′′′ :=


A ef> 0 0
gh> B 0 0

0 f> −1 0
h> 0 0 −1
h> f> 0 0

 .

The matrices T ′′ and T ′′′ are auxiliary matrices we use in the following. To show the claim we need to
show that T ′ is totally unimodular. Indeed, this will show TU-appendability of both ( 1

1 ) and
(−1
−1

)
because

changing the sign of a row preserve total unimodularity of a matrix. To this end, consider any square
submatrix S = T ′IJ of T ′, for two index subsets I and J . If I does not contain all of the last three rows,
we can perform a Laplace expansion of the determinant along unit rows and columns, which will suffice to
get rid of the last two columns and the last row of T ′ (if they are present in S), and get that the determinant
of S equals the determinant of a square submatrix of T ′′ in absolute value. But T ′′ is totally unimodular
due to Observation 27, and hence the determinant of the submatrix that we are considering is in {−1, 0, 1}.
If, on the other hand, S = T ′IJ contains all of the last three rows, we know that its determinant is equal to
the determinant of the submatrix of S′ = T ′′′IJ , where T ′′′ is obtained from T ′ by adding the penultimate
and third to last row to the last one. This operation does not change determinants, i.e., det(S) = det(S′).
But T ′′′ is totally unimodular by Observation 27, and hence det(S′) ∈ {−1, 0, 1}. In both cases, we obtain
det(S) ∈ {−1, 0, 1}, so T ′ is totally unimodular.

An averaging lemma and linear patterns

In the proof of Theorem 56, one key idea was to average two integral solutions x1 and x2 to obtain a
fractional solution that has an integral scalar product with some TU-appendable vector w, and then de-
compose that fractional solution into other feasible vectors that have the same integral scalar product with
w. This idea can also be exploited to obtain the following result. Here, for an R-CCTUF problem of
the form given in (1) (or its relaxation), we say that an R-CCTUF solution (or solution to its relaxation)
x = (xA, xB) ∈ ZnA × ZnB is a solution for (α, β) ∈ Z2 if f>xB = α and h>xA = β.

Lemma 57 (Averaging Lemma). Consider the relaxation of an R-CCTUF problem of the form given in (1).
Let x1 and x2 be solutions for (α1, β1) and (α2, β2), respectively. Then, there exist solutions x3 and x4 for
(α3, β3) and (α4, β4), respectively, such that x1 + x2 = x3 + x4, as well as⌊

α1 + α2

2

⌋
≤ α3, α4 ≤

⌈
α1 + α2

2

⌉
,

⌊
β1 + β2

2

⌋
≤ β3, β4 ≤

⌈
β1 + β2

2

⌉
, and⌊

α1 + β1 + α2 + β2

2

⌋
≤ α3 + β3, α4 + β4 ≤

⌈
α1 + β1 + α2 + β2

2

⌉
.

(23)

Proof. Consider the linear inequality system

AxA + ef>xB ≤ bA
gh>xA + BxB ≤ bB⌊

1
2(α1 + β1 + α2 + β2)

⌋
≤ h>xA + f>xB ≤

⌈
1
2(α1 + β1 + α2 + β2)

⌉⌊
1
2(α1 + α2)

⌋
≤ f>xB ≤

⌈
1
2(α1 + α2)

⌉⌊
1
2(β1 + β2)

⌋
≤ h>xA ≤

⌈
1
2(β1 + β2)

⌉
(24)
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and note that the claim of the lemma is that this system has two integral solutions x3 and x4 with x1 + x2 =
x3 + x4. To find these solutions, let T and q be such that Tx ≤ q is the system (24), and observe that T is
totally unimodular by Observation 27. Then, the system{

Tx ≤ q
T (x1 + x2 − x) ≤ q

(25)

also has a totally unimodular constraint matrix, and z := 1
2(x1 + x2) is a (potentially fractional) solution

of it. Because the bounds in the inequality constraints are all integral, we conclude that the linear system
in (25) also has an integral solution x3. Additionally, by symmetry it is immediate that x4 := x1 + x2 − x3

is another integral solution. In particular, we thus found x3 and x4 that are feasible for (24), and they satisfy
x1 + x2 = x3 + x4, as desired.

The above averaging lemma gives us a tool to analyze (narrowed) patterns π : Πnarrowed → 2{0,...,m−1},
because if the difference of (α1, β1) and (α2, β2) is large enough, the inequalities in Lemma 57 will make
sure that (α3, β3) and (α4, β4) are different from (α1, β1) and (α2, β2), and hence also the solutions x3

and x4 are different from x1 and x2. Still, the relation x1 + x2 = x3 + x4 allows us to draw conclusions
about feasible residues in π(α3, β3) and π(α4, β4), and in particular relate them to residues in π(α1, β1)
and π(α2, β2). We start by applying these ideas to narrowed patterns π that satisfy |π(α, β)| = 1 for all
(α, β) ∈ Πnarrowed. Again, we use the notation

D :=

{
±
(

1
0

)
,±
(

0
1

)
,±
(

1
−1

)}
to denote the set of potential edge directions of conv(Πnarrowed).

Lemma 58. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1}, and let d1, d2 ∈ D, (α, β) ∈ Z2 such
that (α, β) + ε1d1 + ε2d2 ∈ Πnarrowed for all ε1, ε2 ∈ {0, 1}, and let rε1,ε2 ∈ {0, . . . ,m − 1} be such that
π((α, β) + ε1d1 + ε2d2) = {rε1,ε2} for all ε1, ε2 ∈ {0, 1}. Then r1,1 − r0,1 ≡ r1,0 − r0,0 (mod m).

Proof. We first observe that we can assume without loss of generality that either d1 = d2, or

{d1, d2} ∈
{{(

1
0

)
,

(
0
1

)}
,

{(
1
0

)
,

(
1
−1

)}
,

{(
0
1

)
,

(
−1
1

)}}
.

Indeed, the above situation can always be achieved by changing the sign of d1 and/or d2. Changing the sign
of d1 can be done by choosing (α′, β′) = (α, β) + d1 and the directions d′1 = −d1 and d′2 = d2, as we have
{(α′, β′) + ε1d

′
1 + ε2d

′
2 : ε1, ε2 ∈ {0, 1}} = {(α, β) + ε1d1 + ε2d2 : ε1, ε2 ∈ {0, 1}}, and the statement that

we want to show transforms accordingly. Analogously, we may also change the sign of d2.
Now let x1 be a solution for (α1, β1) = (α, β), and let x2 be a solution for (α2, β2) = (α, β) + d1 + d2.

Applying Lemma 57 to these solutions, we obtain that there exist solutions x3 and x4 for (α3, β3) and
(α4, β4), respectively, such that x1 + x2 = x3 + x4, and the inequalities in (23) are satisfied. On a case-
by-case basis, it is immediate to see that with the above assumptions, the inequalities in (23) imply that
(α3, β3), (α4, β4) ∈ {(α, β) + d1, (α, β) + d2}. Moreover, because x1 + x2 = x3 + x4 also implies
(α1, β1) + (α2, β2) = (α3, β3) + (α4, β4), we must even have {(α3, β3), (α4, β4)} = {(α, β) +d1, (α, β) +
d2}. We thus assume without loss of generality that (α3, β3) = (α, β) + d1 and (α4, β4) = (α, β) + d2.

By definition, we then have r0,0 = γ>Bx
1
B , r1,0 = γ>Bx

3
B , r0,1 = γ>Bx

4
B , and r1,1 = γ>Bx

2
B . The equality

x1 + x2 = x3 + x4 also implies x1
B + x2

B = x3
B + x4

B , and hence

r1,1 − r0,1 ≡ γ>Bx2
B − γ>Bx4

B = γ>Bx
3
B − γ>Bx1

B ≡ r1,0 − r0,0 (mod m) ,

as desired.

40



In what follows, for any (α1, β1), (α2, β2) ∈ Z2, we define

D(α1,β1),(α2,β2) :=

(α, β) ∈ Z2 :
min{α1 + β1, α2 + β2} ≤ α+ β ≤ max{α1 + β1, α2 + β2}

min{α1, α2} ≤ α ≤ max{α1, α2}
min{β1, β2} ≤ β ≤ max{β1, β2}

 .

In particular, if (α1, β1), (α2, β2) ∈ Πnarrowed for some domain Πnarrowed of a narrowed pattern, then by
Lemma 55, we always also have D(α1,β1),(α2,β2) ⊆ Πnarrowed. Also, if (α3, β3) ∈ D(α1,β1),(α2,β2), then
D(α1,β1),(α3,β3) ⊆ D(α1,β1),(α2,β2).

Moreover, we define a distance notion for two pairs (α1, β1), (α2, β2) ∈ Z2 as follows: Consider the
graphG on Z2 where two points x, y ∈ Z2 are connected by an edge if and only if x−y ∈ D, and define the
distance between (α1, β1) and (α2, β2) to be the length of a shortest path in G that connects the two points.
It is easy to see that such a shortest path has all intermediate points within D(α1,β1),(α2,β2). Concretely, if
(α1, β1) and (α2, β2) are at distance t, there are d1, . . . , dt ∈ D such that

(i) (α1, β1) +
∑`

i=1 di ∈ D(α1,β1),(α2,β2) for all ` ∈ [t], and
(ii) (α1, β1) +

∑t
i=1 di = (α2, β2).

Lemma 59. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1} and a subset Π0 ⊆ Πnarrowed of the
form

Π0 =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
with |π(α, β)| = 1 for all (α, β) ∈ Π0, and let r(α, β) ∈ {0, . . . ,m−1} be such that π(α, β) = {r(α, β)}.
Then, for every d ∈ D, there exists rd ∈ {0, . . . ,m−1} such that for any (α, β) ∈ Π0 with (α, β)+d ∈ Π0,

r((α, β) + d)− r(α, β) ≡ rd (mod m) .

Proof. Fix d ∈ D. To derive the lemma, it is enough to show that for all (α1, β1), (α2, β2) ∈ Π0 with
(α1, β1) + d, (α2, β2) + d ∈ Π0, we have

r((α1, β1) + d)− r(α1, β1) ≡ r((α2, β2) + d)− r(α2, β2) (mod m) . (26)

Note that if the distance between (α1, β1) and (α2, β2) is 0, there is nothing to show. Moreover, if that
distance is 1, then a corresponding shortest path connecting (α1, β1) and (α2, β2) consists of a single step
d′ ∈ D, i.e. (α2, β2) = (α1, β1) + d′, and (26) follows from applying Lemma 58 to (α1, β1) and the
directions d, d′ ∈ D.

More generally, let us assume by induction that (26) holds whenever the distance of (α1, β1) and (α2, β2)
is less than t, for some t ≥ 2, and take two such pairs of distance equal to t. Then, a corresponding shortest
path connecting the two points can be represented by d1, . . . , dt ∈ D. Let (α′, β′) = (α1, β1) + d1. By
applying Lemma 58 to (α1, β1) and the directions d, d1 ∈ D, we obtain

r((α1, β1) + d)− r(α1, β1) ≡ r((α′, β′) + d)− r(α′, β′) (mod m) . (27)

Note that this invocation of Lemma 58 requires (α1, β1) + d + d1 ∈ Πnarrowed, which holds because of
the following: A shortest path P connecting (α1, β1) and (α2, β2) is inside D(α1,β1),(α2,β2), and shift-
ing the whole path by d gives a shortest path connecting (α1, β1) + d and (α2, β2) + d that is inside
D(α1,β1)+d,(α2,β2)+d ⊆ Πnarrowed. Thus, in particular, because (α′, β′) is on P , (α′, β′)+d = (α1, β1)+d+d1

is on the shifted path, and thus in Πnarrowed.
Additionally, because (α′, β′) and (α2, β2) are of distance at t− 1, the inductive assumption gives that

r((α′, β′) + d)− r(α′, β′) ≡ r((α2, β2) + d)− r(α2, β2) (mod m) . (28)

Together, (27) and (28) imply the desired (26), thus completing the inductive step.
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Corollary 60. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1} and a subset Π0 ⊆ Πnarrowed of the
form

Π0 =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
with |π(α, β)| = 1 for all (α, β) ∈ Π0, and let r(α, β) ∈ {0, . . . ,m−1} be such that π(α, β) = {r(α, β)}.
Then, there exist r0, r1, r2 ∈ {0, . . . ,m− 1} such that for all (α, β) ∈ Π0,

r(α, β) ≡ r0 + r1α+ r2β (mod m) .

Proof. Fix (α0, β0) ∈ Π0. Then for any (α, β) ∈ Π0, there exists t ∈ Z≥0 and d1, . . . , dt ∈ D such that
(i) (α`, β`) := (α0, β0) +

∑`
i=1 di ∈ Π0 for all ` ∈ [t], and (ii) (αt, βt) = (α, β). Now observe that we can

write

r(α, β) = r(α0, β0) +

t−1∑
i=0

r((αi, βi) + di)− r(αi, βi) .

By Lemma 59, we know that for every d ∈ D ∩ {d1, . . . , dt}, there exists rd ∈ Z such that r((αi, βi) +
d) − r(αi, βi) ≡ rd (mod m) for all i ∈ [t] with di = d. Observe that by definition, we must also have
r−d ≡ −rd (mod m), hence by aggregating terms in the above sum, we obtain

r(α, β) = r(α0, β0) + a · r( 1
0 ) + b · r( 0

1 ) + c · r( 1
−1

) , (29)

where the coefficients a, b, c ∈ Z satisfy(
α
β

)
=

(
α0

β0

)
+ a ·

(
1
0

)
+ b ·

(
0
1

)
+ c ·

(
1
−1

)
. (30)

The latter equation follows from aggregating terms in the sum in (α, β) = (α0, β0) +
∑t

i=1 di. We now
distinguish two cases:
Case 1: One constraint in Π0 is tight for all points in Π0.

In this case, two among the three coefficients a, b, and c will be zero for any choice of (α, β) ∈ Π0.
If c = 0 is one of the zero coefficients, then (30) implies that a = α − α0 and b = β − β0, and (29)
gives that for all (α, β) ∈ Π0 we have

r(α, β) = r(α0, β0) + (α− α0) · r( 1
0 ) + (β − β0) · r( 0

1 ) ,

which is linear in α and β, as required. Otherwise, a = b = 0 and (30) implies that c = α − α0, and
hence by (29),

r(α, β) = r(α0, β0) + (α− α0) · r( 1
−1

) ,

which is of the desired form, as well.
Case 2: No constraint in Π0 is tight for all points in Π0.

This implies that there is a pair (α′, β′) ∈ Π0 such that either

(i)
(
α′
β′

)
,
(
α′
β′

)
+ ( 1

0 ),
(
α′
β′

)
+ ( 0

1 ) ∈ Π0, or

(ii)
(
α′
β′

)
,
(
α′
β′

)
− ( 1

0 ),
(
α′
β′

)
− ( 0

1 ) ∈ Π0.

In the first case, we get

r( 1
−1

) ≡ r ((α′, β′) + (1, 0))− r ((α′, β′) + (0, 1))

=
(
r ((α′, β′) + (1, 0))− r (α′, β′)

)
−
(
r ((α′, β′) + (0, 1))− r(α′, β′)

)
≡ r( 1

0 ) − r( 0
1 ) ,
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and in the second case, we get

r( 1
−1

) ≡ r ((α′, β′)− (0, 1))− r ((α′, β′)− (1, 0))

=
(
r(α′, β′)− r ((α′, β′)− (1, 0))

)
−
(
r(α′, β′)− r ((α′, β′)− (0, 1))

)
≡ r( 1

0 ) − r( 0
1 ) .

Note that this gives the same relation among the different vectors rd in both cases. Using this in (29)
together with the fact that (30) implies a + c = α − α0 and b − c = β − β0, we obtain that for all
(α, β) ∈ Π0, we have

r(α, β) ≡ r(α0, β0) + a · r( 1
0 ) + b · r( 0

1 ) + c ·
(
r( 1

0 ) − r( 0
1 )

)
= r(α0, β0) + (α− α0) · r( 1

0 ) + (β − β0) · r( 0
1 ) (mod m) ,

which is again a relation of the desired form.

Proof of Theorem 18

We actually prove a slightly more general version of Theorem 18, in order not only to apply it to linear
patterns π, but also to linear sub-patterns of a pattern π. To this end, let us formally repeat the definition of
sub-patterns.

Definition 61. Let π : Πnarrowed → 2{0,...,m−1} be a narrowed pattern stemming from anR-CCTUF problem
of the form given in (1). We say that π̃ : Π̃→ 2{0,...,m−1} is a sub-pattern of π if the following holds:

(i) Π̃ ⊆ Πnarrowed.
(ii) There are `i, ui ∈ Z for i ∈ {0, 1, 2} such that

Π̃ =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

(iii) π̃(α, β) ⊆ π(α, β) for all (α, β) ∈ Π̃.

Moreover, we say that a solution x = (xA, xB) of an R-CCTUF problem of the form given in (1) is
covered by a sub-pattern π̃ if γ>xB ∈ π̃(α, β) for α = f>xB and β = h>xA.

Theorem 62. Consider an R-CCTUF problem of the form given in (1), let π be an associated narrowed
pattern, and let π̃ be a linear sub-pattern of π with domain given by Π̃ = {(α, β) ∈ Z2 : `0 ≤ α + β ≤
u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2}, where `i, ui ∈ Z for i ∈ {0, 1, 2}. Then, we can in strongly polynomial
time determine r0, r1, r2 ∈ {0, 1, . . . ,m− 1} such that the R-CCTUF problem

AxA + ey1 ≤ bA
h>xA − y2 = 0

`0 ≤ y1 + y2 ≤ u0

`1 ≤ y1 ≤ u1

`2 ≤ y2 ≤ u2

γ>AxA + r1y1 + r2y2 ∈ r0 +R (mod m)
xA ∈ ZnA

y1 , y2 ∈ Z

(31)

has a feasible solution if and only if the originalR-CCTUF problem has one that is covered by π̃. Moreover,
a solution of one problem can be transformed into one of the other in strongly polynomial time.
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Proof. By Corollary 60, there exist r0, r1, r2 ∈ {0, . . . ,m − 1} such that r(α, β) := −r0 + αr1 + βr2

has the following property for each (α, β) ∈ Π̃: If xB is a solution of the B-problem for (α, β), then
γ>BxB ≡ r(α, β) (mod m). We claim that Theorem 62 holds for this choice of r0, r1, and r2.

To see this, first let (xA, xB) ∈ ZnA+nB be a solution of the original R-CCTUF problem that is covered
by π̃, i.e., a solution with scalar products (α, β) ∈ Π̃. We claim that (xA, α, β) is a solution of (31). Indeed,
feasibility for the original problem gives

AxA + ef>xB ≤ bA
gh>xA + BxB ≤ bB
γ>AxA + γ>BxB ∈ R (mod m) ,

and the first constraint is equivalent to AxA + eα ≤ bA. Moreover, h>xA − β = 0 is satisfied by definition
of β, and the constraints in the third, forth, and fifth line of (31) are satisfied by (y1, y2) = (α, β) because
(α, β) ∈ Π̃. Finally, the congruency constraint is satisfied because γ>AxA − r0 + αr1 + βr2 = γ>AxA +
r(α, β) ≡ γ>AxA + γ>BxB ∈ R (mod m) is equivalent to γ>AxA + r1α+ r2β ∈ r0 +R (mod m).

On the other hand, for any solution (xA, α, β) of (31), we get that (α, β) ∈ Π̃ due to the constraints
in (31), and hence any solution xB of the relaxation of the B-problem satisfies γ>BxB ≡ r(α, β) (mod m).
From the same arguments as before, it follows that (xA, xB) is feasible for the original R-CCTUF problem.

To conclude the proof, observe that transforming the solution of the original problem to a solution of (31)
only requires the computation of α and β. For the other way round, we need to compute a feasible solution
to the relaxation of the B-problem, which can be done in strongly polynomial time using the algorithm of
Tardos [Tar86].

Proof of Theorem 18. Because π is a linear pattern by assumption, we can apply Theorem 62 with π̃ = π,
and Theorem 18 immediately follows.

More properties of patterns and a proof of Lemma 21

After having studied linear patterns and sub-patterns so far in this section, we now focus on non-linear
patterns π, i.e., patterns that have at least one pair (α, β) with |π(α, β)| ≥ 2 in their domain. The first
lemma below shows how the property of having |π(α, β)| ≥ 2 propagates over the domain of a pattern,
again using our averaging lemma, Lemma 57.

With the ultimate goal of this subsection being to prove Lemma 21, we first show Lemma 64, which
showcases one important and repeatedly used situation in which Lemma 21 holds. We remark at this point
that the requirement |R| ≥ m − 2 stated in Lemma 21 is only due to Lemma 64. Hence, future attempts
of overcoming this barrier using the ideas presented here will have to exploit setups beyond the one in
Lemma 64. In contrast, the assumption in Lemma 21 of m being a prime number is exploited in several
places.

Also, we remark that in this part, we aim at providing tools for analyzing (narrowed) patterns in a
slightly more general setup than what we actually need. More precisely, in our concrete case it would be
enough to analyze narrowed patterns that are contained in a rectangular box of scalar product pairs (α, β)
of dimensions 3 × 3 (this follows by Lemma 16, for example, and our assumption |R| ≥ m − 2). Still, we
aim for the slightly more general presentation of our methods, which may be useful in potential future work
on these topics, in particular when dropping the assumption |R| ≥ m− 2.

We start by observing that Lemma 21 trivially holds in the case where the pattern π is linear, as we
can then choose π̃ = π. In case of a non-linear pattern, we know that there is at least one pair (α, β) of
scalar products in the domain of the pattern such that |π(α, β)| ≥ 2. If there exists a solution for such scalar
products (α, β), item (ii) of Lemma 21 applies, so having many (α, β) with |π(α, β)| ≥ 2 is desirable.
Luckily, the subsequent lemma proves that such (α, β) cannot appear in a very isolated way.
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Lemma 63. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1}, let (α, β) ∈ Πnarrowed and d ∈ D
such that (α, β) + d, (α, β) + 2d ∈ Πnarrowed. If |π(α, β)| ≥ 2, then |π((α, β) + d)| ≥ 2, as well.

Proof. Let x1 and y1 be feasible solutions of the relaxation of the underlying problem for scalar products
(α, β) with different residues, i.e., γ>Bx

1
B 6≡ γ>By1

B (mod m), and let x2 be any solution of the relaxation of
the problem for scalar products (α, β) + 2d.

Applying the averaging lemma (Lemma 57) to the solutions x1 and x2, and to the solutions y1 and x2,
we obtain solutions x3, x4 and solutions y3, y4, respectively, such that x1 + x2 = x3 + x4 and y1 + x2 =
y3 + y4. Moreover, the inequalities (23) in Lemma 57 state that all of x3, x4, y3, and y4 are solutions for the
scalar products (α, β)+d. Consequently, {(γ>Bx3

B mod m), (γ>Bx
4
B mod m), (γ>By

3
B mod m), (γ>By

4
B mod

m)} ⊆ π((α, β) + d). To get that |π((α, β) + d)| ≥ 2, note that these residues satisfy

γ>Bx
1
B + γ>Bx

2
B ≡ γ>Bx3

B + γ>Bx
4
B (mod m) , and γ>By

1
B + γ>Bx

2
B ≡ γ>By3

B + γ>By
4
B (mod m) ,

and hence, because γ>Bx
1
B 6≡ γ>By

1
B , at least two of the residues among (γ>Bx

3
B mod m), (γ>Bx

4
B mod m),

(γ>By
3
B mod m), and (γ>By

4
B mod m) must be distinct, which proves the lemma.

Even non-linear patterns π might have several (α, β) in their support that satisfy |π(α, β)| = 1. In
Lemma 21, such squares may be covered by a linear sub-pattern, but it turns out that in general, there is no
sub-pattern covering all pairs (α, β) with |π(α, β)| = 1. The following lemma describes a configuration
that allows for dealing with such pairs in a different way.

Lemma 64. Consider an R-CCTUF problem of the form given in (1) with prime modulus m and |R| ≥
m − 2. Let π : Πnarrowed → 2{0,...,m−1} be an associated narrowed pattern, and let (α, β) ∈ Z2 and d ∈ D
with

(α, β), (α, β) + d, (α, β) + 2d ∈ Πnarrowed , |π(α, β)| = 1 , and |π((α, β) + d)| ≥ 2 .

If the problem has a solution with scalar products (α, β), one of the following holds:
(i) (α, β) satisfies case (i) of Lemma 21.

(ii) There is a solution with scalar products (α, β) + d, i.e., (α, β) + d satisfies case (ii) of Lemma 21.

Proof. Assume that (α, β) does not satisfy case (i) of Lemma 21, i.e. it is not true that for any solution xA
of the A-problem for scalar products (α, β), there exists a solution xB of the B-problem such that (xA, xB)
is feasible for the original problem. Recall that given a feasible solution xA of the relaxation of the A-
problem and a feasible solution xB of the relaxation of the B-problem for the same scalar products (α, β),
the combined solution (xA, xB) is feasible for the original problem if and only if it satisfies the congruency
constraint γ>AxA + γ>BxB ∈ R (mod m). As |π(α, β)| = 1 by assumption, r = (γ>BxB mod m) is the
same for all feasible solutions xB of the relaxation of the B-problem. Consequently, the only reason why a
combined solution (xA, xB) can be infeasible is that γ>AxA 6∈ R− r (mod m). On the other hand, because
by assumption, the problem has a feasible solution with scalar products (α, β), there must also be another
solution x′A with γ>Ax

′
A ∈ R− r (mod m).

Define πA : Πnarrowed → 2{0,1,...,m−1} such that πA(α′, β′) denotes, for every (α′, β′) ∈ Πnarrowed, the
set of residues γ>AxA that can be achieved by solutions of the relaxation of the A-problem with scalar
products (α′, β′). Hence, πA is defined identically to π, with the only difference that πA captures attainable
residues in the A-problem instead of the B-problem. Hence, by symmetry between the A-problem and B-
problem, properties holding for π and the B-problem also hold for πA and the A-problem. In particular, the
previous argument showed that |πA(α, β)| ≥ 2, and by definition of Πnarrowed, we know that the relaxation
of the A-problem is feasible for all (α′, β′) ∈ Πnarrowed. Thus, applying Lemma 63 to πA, we obtain that
|πA((α, β) + d)| ≥ 2, as well.
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The residues that a solution (xA, xB) of the relaxation of the original problem can achieve for scalar
product (α, β)+d are given by the set πA((α, β)+d)+π((α, β)+d). By the Cauchy-Davenport Inequality
(Lemma 20), which we can apply as m is a prime number by assumption, we have

|πA((α, β) + d) + π((α, β) + d)| ≥ min{m, |πA((α, β) + d)|+ |π((α, β) + d)| − 1} ≥ min{m, 3} .

As the setR of target residues satisfies |R| ≥ m−2, we conclude that at least one of the achievable residues
is a target residue, and hence there exists a solution of the problem with scalar products (α, β) + d.

To prove Lemma 21, we distinguish two cases based on whether the interior of the pattern domain is
empty or not, where interior is defined as follows.

Definition 65. For a set Π ⊆ Zn of the form

Π =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
(32)

with `i, ui ∈ Z for i ∈ {0, 1, 2}, we say that (α, β) ∈ Π is in the interior of Π if none of the constraints
in (32) are tight for (α, β). Else, we say that (α, β) is on the boundary of Π.

In fact, for non-linear patterns π whose support has non-empty interior, we show that any pair (α, β)
with |π(α, β)| = 1 is part of a configuration of the type described by Lemma 64, leading to the following.

Lemma 66. Consider a non-linear narrowed pattern π for a feasible R-CCTUF problem as given in (1)
with prime modulus m and |R| ≥ m − 2. If the domain of π has non-empty interior, then (i) or (ii) in
Lemma 21 holds.

To prove this lemma, we study the structure of patterns more closely. We start with an observation,
where again, D := {±( 1

0 ),±( 0
1 ),±

(
1
−1

)
} denotes the set of all potential edge directions of the convex hull

of a pattern domain.

Observation 67. Let Π ⊆ Zn be of the form

Π =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
(33)

with `i, ui ∈ Z for i ∈ {0, 1, 2}. Then (α, β) ∈ Π is in the interior of Π if and only if (α, β) + d ∈ Π for all
d ∈ D.

Lemma 68. Consider a narrowed pattern π : Πnarrowed → 2{0,...,m−1} such that there exists (α1, β1) ∈
Πnarrowed with |π(α1, β1)| ≥ 2. Then, for every (α2, β2) ∈ Πnarrowed \ {(α1, β1)}, there exists d ∈ D such
that (α2, β2) + d ∈ D(α1,β1),(α2,β2) and |π((α2, β2) + d)| ≥ 2.

Proof. For any two pairs (α, β), (α′, β′) ∈ Z2, denote

∆((α, β), (α′, β′)) := max{|α− α′|, |β − β′|, |(α+ β)− (α′ + β′)|} .

We prove that Lemma 68 holds by induction on ∆ = ∆((α1, β1), (α2, β2)). For the base case, note that
∆ = 1 implies that there exists d ∈ D such that (α1, β1) = (α2, β2) + d, so there is nothing to show. Thus,
assume that Lemma 68 holds if ∆ < t for some t ∈ Z≥2, and consider a situation with ∆ = t. Let x1 and y1

be two solutions for scalar products (α1, β1) with γ>Bx
1
B 6≡ γ>By

1
B (mod m). These solutions exist because

by assumption, |π(α1, β1)| ≥ 2. Additionally, let x2 be a solution for scalar products (α2, β2). Applying
the averaging lemma (Lemma 57) to x1 and x2, and to y1 and x2, we obtain solutions x3, x4 and y3, y4,
respectively, where x1 + x2 = x3 + x4 and y1 + x2 = y3 + y4. Observe that the inequalities (23) leave only
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one option for each of (α3, β3) and (α4, β4), and both of these are within D(α1,β1),(α2,β2). In particular, they
satisfy

∆((α3, β3), (α2, β2)) ≤ dt/2e and ∆((α4, β4), (α2, β2)) ≤ dt/2e .

We claim that either |π(α3, β3)| ≥ 2 or |π(α4, β4)| ≥ 2, which allows us to apply the inductive assumption,
thus finishing the proof.

To show the claim, assume for the sake of deriving a contradiction that |π(α3, β3)| = |π(α4, β4)| = 1.
Without loss of generality, let x3 and y3 be solutions for (α3, β3), while x4 and y4 are solutions for (α4, β4).
Then, by the assumption, γ>Bx

3
B ≡ γ>By3

B (mod m), and γ>Bx
4
B ≡ γ>By4

B (mod m). Thus, we also obtain

γ>Bx
1
B + γ>Bx

2
B = γ>Bx

3
B + γ>Bx

4
B ≡ γ>By3

B + γ>By
4
B = γ>By

1
B + γ>Bx

2
B (mod m) ,

but this contradicts the choice of x1 and y1 such that γ>Bx
1
B 6≡ γ>By1

B (mod m).

Lemma 69. Consider a non-linear narrowed pattern π : Πnarrowed → 2{0,...,m−1}. Then, for every (α, β) in
the interior of Πnarrowed, we have |π(α, β)| ≥ 2.

Proof. Because the pattern π is non-linear, there exists (α1, β1) ∈ Πnarrowed such that |π(α1, β1)| ≥ 2.
Consider any (α, β) different from (α1, β1) in the interior of Πnarrowed. Then by Lemma 68, there exists
d ∈ D such that (α, β) + d ∈ Πnarrowed and |π((α, β) + d)| ≥ 2. Because (α, β) is in the interior of
Πnarrowed, we also have that (α + β) − d ∈ Πnarrowed. Consequently, applying Lemma 63, we obtain that
|π(α, β)| ≥ 2, as well.

Having the above at hand, we are now ready to prove Lemma 66.

Proof of Lemma 66. If the problem has a solution for scalar products (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2,
then case (ii) of Lemma 21 holds. Thus, assume that this is not the case, i.e., the problem only has solutions
for scalar products (α, β) ∈ Πnarrowed with |π(α, β)| = 1.

By Lemma 69, there is a scalar product (α′, β′) in the interior of Πnarrowed with |π(α′, β′)| ≥ 2. Applying
Lemma 68 to (α′, β′) and (α, β), we obtain that there exists d ∈ D such that (α, β) + d ∈ D(α,β),(α′,β′) ⊆
Πnarrowed and |π((α, β)+d)| ≥ 2. Note that because (α′, β′) is in the interior of Πnarrowed, we have (α′, β′)+
d ∈ Πnarrowed, and thus also D(α,β),(α′,β′)+d ⊆ Πnarrowed. As (α, β) + d ∈ D(α,β),(α′,β′), it is also true that
(α, β) + 2d ∈ D(α,β),(α′,β′)+d, so we conclude that (α, β) + 2d ∈ Πnarrowed.

Observe that (α, β) and d thus satisfy the assumptions of Lemma 64. Because we assumed that there
are no scalar product pairs satisfying case (ii) of Lemma 21, Lemma 64 implies that here, (α, β) satisfies
case (i) of Lemma 21.

To prove Lemma 21, it remains to deal with patterns whose domain has empty interior, which is covered
by the statement below.

Lemma 70. Consider a non-linear narrowed pattern π for a feasible R-CCTUF problem as given in (1)
with prime modulus m and |R| ≥ m− 2. If the domain of π has empty interior, Lemma 21 holds.

Before proving Lemma 70, we first observe structural properties of pattern domains with an empty
interior. The possible shapes of such domains is very restricted. In particular, the subsequent lemma shows
that they are either flat, or contained in small shapes Π

(a,b)
0 and Π

(a,b)
1 for a, b ∈ Z given by

Π
(a,b)
1 :=

(α, β) ∈ Z2 :
a ≤ α ≤ a+ 2
b ≤ β ≤ b+ 2

a+ b ≤ α+ β ≤ a+ b+ 2


and Π

(a,b)
2 :=

(α, β) ∈ Z2 :
a ≤ α ≤ a+ 2
b ≤ β ≤ b+ 2

a+ b+ 2 ≤ α+ β ≤ a+ b+ 4

 ,
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Figure 2: Shapes Π
(a,b)
1 (left) and Π

(a,b)
2 (right).

as depicted in Fig. 2.
In what follows, we define D⊥ := {±( 1

0 ),±( 0
1 ),±( 1

1 )}, which is a set of vectors orthogonal to the
potential edge directions D of the convex hull of a pattern support (see Lemma 55).

Lemma 71. Let Π ⊆ Zn be of the form

Π =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
(34)

with `i, ui ∈ Z for i ∈ {0, 1, 2}, and assume that Π has empty interior. Then at least one of the following
holds:

(i) A direction in D⊥ is a flat direction of width at most 1 for Π.
(ii) There are a, b ∈ Z and i ∈ {1, 2} such that Π ⊆ Π

(a,b)
i .

Proof. Assume that item (i) does not hold, i.e., the three directions ( 1
0 ), ( 0

1 ), and ( 1
1 ) are all of width at

least 2, and let (α0, β0) ∈ arg max(α,β)∈Π (α− β). Starting from a general Π of the form in (34), there are
three cases to distinguish:
Case 1: (α0, β0) = (u1, `2) and the edge directions at (α0, β0) are d1 = ( 0

1 ) and d2 =
(−1

0

)
.

This implies that (α0, β0) + d1, (α0, β0) + d2 ∈ Π, hence we must have `0 ≤ α0 + β0 − 1 and
u0 ≥ α0 + β0 + 1. Also note that because ( 1

0 ), ( 0
1 ) are directions of width at least 2, we must also

have `1 ≤ α0 − 2 and u2 ≥ β0 + 2. But this implies that (α0 − 1, β0 + 1) is in the interior of Π,
contradicting the assumption.

Case 2: (α0, β0) = (u1, `0 − u1) and the edge directions at (α0, β0) are d1 = ( 0
1 ) and d2 =

(−1
1

)
.

Because of the width 2 assumption, we must have `1 ≤ u1−2 = α0−2 and u0 ≥ `0+2 = α0+β0+2.
Also, we must have u2 ≥ β0 + 2. If u2 = β0 + 2, we obtain Π ⊆ Π

(α0−2,β0)
2 ; if u2 > β0 + 2, then

(α0 − 1, β0 + 2) is in the interior of Π, which is a contradiction.
Case 3: (α0, β0) = (u0 − `2, `2) and the edge directions at (α0, β0) are d1 =

(−1
0

)
and d2 =

(−1
1

)
.

Because of the width 2 assumption, we must have u2 ≥ `2+2 = β0+2 and `0 ≤ u0−2 = α0+β0−2.
Also, we must have `1 ≤ α0 − 2. If `1 = α0 − 2, we obtain Π ⊆ Π

(α0−2,β0)
1 ; if `1 < α0 − 2, then

(α0 − 2, β0 + 1) is in the interior of Π, which is a contradiction.

Proof of Lemma 70. When dealing with patterns and showing that Lemma 21 holds, observe the follow-
ing: If there exists a solution for scalar products (α, β) ∈ Πnarrowed with |π(α, β)| ≥ 2, then item (ii) of
Lemma 21 applies, so we can assume from now on that any scalar products (α, β) ∈ Πnarrowed for which
there is a solution satisfy |π(α, β)| = 1. To this end, we exploit two options: The first one is that such
squares are contained in configurations of the type described by Lemma 64; the second one is to find a lin-
ear sub-pattern that has the corresponding (α, β) in its domain and thus covers potential solutions for these
scalar products. We distinguish three cases based on the shape of the narrowed pattern domain Πnarrowed,
which cover all the options by Lemma 71:
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Case 1: There is a direction of width 0 for Πnarrowed in D⊥, but Πnarrowed 6⊆ Π
(a,b)
i for any a, b ∈ Z and

i ∈ {1, 2}.
Case 2: There is no direction of width 0 but one of width 1 for Πnarrowed in D⊥, and Πnarrowed 6⊆ Π

(a,b)
i for

any a, b ∈ Z and i ∈ {1, 2}.
Case 3: There are a, b ∈ Z and i ∈ {1, 2} such that Πnarrowed ⊆ Π

(a,b)
i .

In case 1, observe that Πnarrowed is bounded, hence there exist (α0, β0) ∈ Πnarrowed, d ∈ D and t ∈ Z≥0

such that
Πnarrowed = {(α0, β0) + id : i ∈ {0, . . . , t}} ,

and because Πnarrowed 6⊆ Π
(a,b)
i for any a, b, and i, we must have t ≥ 3. Because the pattern is non-linear,

there exists (α1, β1) ∈ Πnarrowed with |π(α1, β1)| ≥ 2. We claim that |π((α0, β0)+id)| ≥ 2 for all i ∈ [t−1].
To see the claim, we first show that |π((α0, β0) + d)| ≥ 2. If (α0, β0) 6= (α1, β1), we may apply

Lemma 68 to (α0, β0) and (α1, β1) to obtain that |π((α0, β0) + d)| ≥ 2. If, on the other hand, (α0, β0) =
(α1, β1), then apply Lemma 68 to (α0, β0) + 2d and (α1, β1), which also gives |π((α0, β0) + d)| ≥ 2.
Finally, applying Lemma 68 once again to (α0, β0) + (i + 1)d and (α0, β0) + d for i ∈ {2, . . . , t − 1},
we get that |π(α0, β0) + id)| ≥ 2. Thus, the only potential scalar product pairs with |π(α, β)| = 1 are
(α, β) ∈ {(α0, β0), (α0, β0) + td}. These (α, β) are part of a configuration as described by Lemma 64,
hence we get that if there is a solution for such (α, β), then either item (i) or (ii) of Lemma 21 holds.

In case 2, we note that the condition on a flat direction of width 1 implies that there exists (α, β) ∈
Πnarrowed and two directions d1, d2 ∈ D with d1 6= d2 and d1 6= −d2 such that

Πnarrowed ⊆ {(α0, β0) + id1 + εd2 : i ∈ Z, ε ∈ {0, 1}} .

Define Π0 := Πnarrowed ∩ {(α0, β0) + id1 : i ∈ Z}, and Π1 := Πnarrowed ∩ {(α0, β0) + id1 + d2 : i ∈ Z}.
If |Π0| < 3 or |Π1| < 3, then Πnarrowed ⊆ Π

(a,b)
i for some a, b ∈ Z and i ∈ {0, 1}, which we excluded

in this case. Thus, |Π0| ≥ 3 and |Π1| ≥ 3. Observe that because the pattern π is non-linear, for at least
one ε ∈ {0, 1}, there exist (α, β) ∈ Πε with |π(α, β)| ≥ 2, and hence we may apply the analysis from
case 1 to such Πε to see that if there is a solution for scalar products in Πε, then one of items (i) or (ii) of
Lemma 21 applies. If not both Πε fall into the previous case, then there is one remaining, say Πε′ , such that
for all (α, β) ∈ Πε′ , |π(α, β)| = 1. Then π̃ := π|Πε′

is a linear sub-pattern of π, hence if there is a solution
covered by π̃, then item (iii) of Lemma 21 applies. This completes the analysis of case 2.

Finally, we deal with case 3 on a case-by-case basis, by going through potential narrowed pattern domain
shapes that are contained in sets of the form Π

(a,b)
0 or Π

(a,b)
1 for some (a, b) ∈ Z2, presented here by

increasing size of |Πnarrowed|.
– |Πnarrowed| ≤ 3: If Πnarrowed = {(α0, β0) + id : i ∈ {0, 1, 2}} for some (α0, β0) ∈ Z2 and d ∈ D, then

the arguments from case 1 apply. Otherwise, restricting π to the subset of all (α, β) ∈ Πnarrowed with
|π(α, β)| = 1 gives a sub-pattern π̃ for which Lemma 21 follows immediately.

– |Πnarrowed| = 4: Because we require Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {0, 1}, the only

possible shapes of Πnarrowed are the ones given in Fig. 3.
Now in any of these three cases, let x1 and x2 be solutions of the relaxation of the R-CCTUF problem
for scalar products (α, β) located in the pattern Πnarrowed as indicated in Fig. 3. Applying the aver-
aging lemma (Lemma 57) to x1 and x2, we obtain solutions x3 and x4, and by the inequalities (23)
in Lemma 57 and the property that x1 + x2 = x3 + x4, we may assume that x3 and x4 are solutions
for scalar products located in the pattern Πnarrowed as indicated in Fig. 3, as well.
Now observe that the residues γ>Bx

i
B satisfy γ>Bx

1
B + γ>Bx

2
B = γ>Bx

3
B + γ>Bx

4
B , and hence the sub-

pattern π̃ that maps (α, β) ∈ Πnarrowed to the residue γ>Bx
i
B , where xi is the solution for (α, β), is a

linear sub-pattern. More importantly, it is a linear sub-pattern that covers all (α, β) ∈ Πnarrowed with
|π(α, β)| = 1, and hence Lemma 21 follows.
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Figure 3: Narrowed pattern domains if |Πnarrowed| = 4 and Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {0, 1}.

– |Πnarrowed| = 5: Again, requiring Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {0, 1}, we can

immediately enumerate the possible shapes of Πnarrowed, giving the list in Fig. 4.

x y′

y

x′

α

β

x′ y′

y x

α

β

x′

y

x y′

α

β

x′

y

y′ x

α

β

x y

y′ x′

α

β

x′ y

x

y′

α

β

Figure 4: Narrowed pattern domains if |Πnarrowed| = 5 and Πnarrowed ⊆ Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {0, 1}.

Observe that each of the six pattern domains in Fig. 4 contains a segment of the form {(α0, β0) +
id : i ∈ {0, 1, 2}} for some (α0, β0) ∈ Πnarrowed and d ∈ D, namely the segments marked in gray in
Fig. 4. If for some (α, β) on such a segment, we have |π(α, β)| ≥ 2, then the arguments of case 1
apply, and they show that if there is a solution with scalar products on the segment, then either item (i)
or (ii) of Lemma 21 applies. The remaining scalar products (i.e., those not covered by the segment)
can then be treated as in the case |Πnarrowed| ≤ 3.
Thus, let us assume that for all (α, β) that are marked gray in Fig. 4, |π(α, β)| = 1. This implies
that at least one of the other two (α, β) in the pattern (marked with x and y in Fig. 4) must satisfy
|π(α, β)| ≥ 2. In fact, we claim that in this case, both of the other two have that property. This is
enough to conclude because then, if there exist solutions for these scalar product pairs, item (ii) of
Lemma 21 applies. Hence, restricting π to the subset of all (α, β) ∈ Πnarrowed with |π(α, β)| = 1
(i.e., those in the segment) gives a sub-pattern π̃ for which Lemma 21 follows immediately.
To see the claim, we first assume that the pair (α, β) marked with an x in Fig. 4 satisfies |π(α, β)| ≥ 2.
Let the pair marked x′ be (α′, β′), and apply Lemma 68 to (α, β) and (α′, β′) to obtain that there exists
d′ ∈ D such that (α′, β′) + d′ ∈ Πnarrowed and |π((α′, β′) + d′)| ≥ 2. By assumption, (α′, β′) + d′

can thus not be within the gray segment, and in all cases, it is immediate to see that (α′, β′) + d must
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correspond to the spot in the pattern marked with y in Fig. 4. The same argument works with the roles
of x and x′ interchanged with y and y′, so the claim follows.

– |Πnarrowed| = 6, i.e., Πnarrowed = Π
(a,b)
i for some (a, b) ∈ Z2 and i ∈ {1, 2}. Note that in such

domains, every (α, β) is contained in a boundary segment of the form {(α0, β0) + id : i ∈ {0, 1, 2}}
for some (α0, β0) ∈ Πnarrowed and d ∈ D. As the pattern is non-linear, at least one of these segments
contains (α, β) such that |π(α, β)| ≥ 2. Hence, the arguments of case 1 apply again, and if there
is a solution with scalar products in that segment, then item (i) or (ii) of Lemma 21 applies. The
remaining three scalar products (i.e., those not covered by the segment) can then be treated as in the
case |Πnarrowed| = 3.

To finish the proof, observe that in every case where a linear sub-pattern π̃ was identified, this could be done
in strongly polynomial time in the size of the underlying R-CCTUF problem.

Proof of Lemma 21. If π is linear, we may choose π̃ = π, and item (iii) of Lemma 21 applies. For non-linear
π, by Lemma 66 we have that Lemma 21 holds if the domain of π has non-empty interior, and by Lemma 70
it holds for domains with empty interior.

5.3 Proof of Theorem 22

We can (after potentially permuting rows and columns of the constraint matrix such that A and B change
their roles) assume that the matrix B has at most as many columns as A, i.e., p = min{nA, nB} = nB .
Furthermore, by Lemma 16, we can in strongly polynomial time determine `i, ui ∈ Z with ui−`i ≤ m−|R|
for i ∈ {0, 1, 2} such that if the R-CCTUF problem has a solution, then it has one with `0 ≤ α + β ≤ u0,
`1 ≤ α ≤ u1, and `2 ≤ β ≤ u2. By Lemma 54, we can even choose these `i and ui for i ∈ {0, 1, 2} such
that the corresponding narrowed pattern π : Πnarrowed → 2{0,...,m−1} has domain

Πnarrowed =
{

(α, β) ∈ Z2 : `0 ≤ α+ β ≤ u0, `1 ≤ α ≤ u1, `2 ≤ β ≤ u2

}
.

For each (α, β) ∈ Πnarrowed, we can now in strongly polynomial time compute the following:
– A solution xα,βA for the relaxation of the A-problem for scalar products (α, β).
– Exactly tα,β := min{|π(α, β)|,m − ` + 1} solutions xα,βB,i of the relaxation of the B-problem with

pairwise different residues rα,βi := γ>Bx
α,β
B,i for i ∈ [tα,β].

Note that computing the solutions xα,βA boils down to obtaining optimal vertex solutions to linear programs
with a constraint matrix with bounded entries, which we can do in strongly polynomial time using the
framework of Tardos [Tar86]. For fixed (α, β), computing the solutions xα,βB,i can be done by solvingm−`+1
manyB-problems with scalar products (α, β), i.e., by recursively calling our procedure, where we start with
the full set RB,1 = {0, . . . ,m − 1} of feasible target residues to get a solution xα,βB,1, and then iterate using
RB,i+1 = RB,i\{rα,βi }, until we havem−`+1 many different residues, or we arrive at an infeasible problem.
In the latter case, we computed π(α, β) = {rα,βi : i = 1, . . . , tα,β}, while in the first case, we just obtained
a subset of π(α, β). Also note that each of the solutions xα,βB,i is obtained from an R-CCTUF problem with
p variables, modulus m, and at most ` many target residues, and we solved at most m− `+ 1 ≤ 3 of them
for each (α, β) ∈ Πnarrowed. As |Πnarrowed| < (m− `+ 1)2, this procedure needed less than 3(m− `+ 1)2

many recursive calls in total, in accordance with the claim in Theorem 22.
Now invoke Lemma 21. We can directly check whether case (i) applies by going through all (α, β) ∈

Πnarrowed with |π(α, β)| = 1. If case (i) applies for some (α, β) ∈ Πnarrowed, the combination (xα,βA , xα,βB,1)
must be a solution to the R-CCTUF problem.

If case (ii) of Lemma 21 applies, we can find a solution as follows: For (α, β) ∈ Πnarrowed with
|π(α, β)| ≥ m − ` + 1, we can in fact immediately find a solution because by construction, all combi-
nations (xα,βA , xα,βB,i ) for i = 1, . . . ,m− `+ 1 are feasible for the relaxation of the R-CCTUF problem, and
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then have pairwise different residues γ>Ax
α,β
A + γ>Bx

α,β
B,i . But in this case, one of them must have a residue

in the set R that has size `, thus giving a feasible solution. If on the other hand 1 < |π(α, β)| ≤ m− `, we
reduce the problem to the modified A-problem

AxA ≤ bA − αe
h>xA = β
γ>AxA ∈ R′ (mod m) ,

whereR′ = R−π(α, β). This problem has a solution if and only if the originalR-CCTUF problem has one:
Note that any solution xA of its relaxation can be combined with any solution xB of the relaxation of the B-
problem to obtain a solution (xA, xB) that is feasible for the relaxation of the original R-CCTUF problem.
Moreover, the residues in R′ are precisely those that allow us to obtain a combined solution (xA, xB) that
also satisfies the original congruency constraint. Since m is a prime number and |π(α, β)| > 1, Lemma 20
guarantees that |R′| ≥ |R| + 1 = ` + 1. To sum up, if case (ii) of Lemma 21 applies, we either find a
feasible solution in strongly polynomial time, or we construct at most |Πnarrowed| ≤ (m− `+ 1)2 many new
R-CCTUF problems with n − p variables, modulus m, and at least ` + 1 target residues such that at least
one of them has a feasible solution that, as seen immediately from the above discussion, can be transformed
to a solution of the initial problem in strongly polynomial time.

If the above strategy to obtain a solution in case (ii) of Lemma 21 fails, we know that case (iii) of
Lemma 21 applies. In this case, we know that the problem has a solution that is covered by the linear sub-
pattern π̃. Applying Theorem 62, we reduce the problem to an R-CCTUF problem with n−p+ 2 variables,
modulus m, and ` target residues, with the additional property that the inequality system has an equality
constraint. This equality constraint allows for applying Theorem 19 to eliminate one variable and obtain an
equivalent R-CCTUF problem with n − p + 1 variables, modulus m and ` target residues. It remains to
observe that a solution of this problem can be immediately transformed back to a solution of the intermediate
problem, and that solution can, by Theorem 62, be transformed back to a solution of the original problem in
strongly polynomial time.

Altogether, after solving less than 3(m−`+1)2 manyR-CCTUF problems with at most p variables and
further strongly polynomial time operations, we can either obtain a feasible solution, or construct a family
F of problems that have the properties claimed by Theorem 22.

5.4 Proof of Theorem 19

By performing a pivoting operation (see Definition 13) on the element α, we obtain a new TU matrix which
has A−αaia>2 as a submatrix. Hence, the latter is also TU. Moreover, the two systems are equivalent since

Ax + a1y ≤ b
a>2 x + αy = β

⇐⇒ Ax+ a1α(β − a>2 x) ≤ b
y = α(β − a>2 x)

⇐⇒ (A− αa1a
>
2 )x ≤ b− αβa1

y = α(β − a>2 x)
,

where we use that α ∈ {−1, 1} since the matrix is TU and α 6= 0. This completes the proof.

5.5 Proof of Theorem 23

Consider an R-CCTUF problem

Tx ≤ b, γ>x ∈ R (mod m), x ∈ Zn ,

where T falls into case (iv) of Theorem 14, and assume without loss of generality that the desired pivoted
matrix arises from T by pivoting on the element in the first row and column.
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Observe that due to Lemma 25, we can determine u ∈ Z such that the initial R-CCTUF problem is
feasible if and only if

Tx ≤ b, y1 ≤ u, γ>x ∈ R (mod m), x ∈ Zn (35)

is feasible. Let T :=
(
ε p>

q C

)
, and let Q ∈ Zn×n be the unimodular matrix that corresponds to the column

operations such that the first row of TQ is equal to the vector (1, 0, . . . , 0). Then, if e1 denotes the first
n-dimensional unit vector,

(
T
e>1

)
Q =

ε p>

q C
1 0

Q =

 1 0
εq C − εqp>
ε −εp>

 .

Thus, substituting x = Qy and observing that x ∈ Zn if and only if y ∈ Zn, we can rewrite the system
in (35) as  1 0

εq C − εqp>
ε −εp>

 y ≤
(
b
u

)
, (γ>Q)y ∈ R (mod m), y ∈ Zn , (36)

which is of the desired form.

A Detecting unboundedness of CCTU problems

Lemma 72. A CCTU problem is unbounded if and only if it is feasible and its relaxation is unbounded.
Moreover, given a feasible solution x0 ∈ Zn to an unbounded CCTU problem min{c>x : Tx ≤ b, γ>x ≡
r (mod m), x ∈ Zn}, one can efficiently determine a vector v ∈ Zn such that x0 + k · v is feasible for any
k ∈ Z≥0 and c>v < 0.

Proof. If a CCTU problem is unbounded, then it obviously has a feasible solution and its relaxation is
unbounded. To show the other direction, consider a feasible CCTU problem

min
{
c>x : Tx ≤ b, γ>x ≡ r (mod m), x ∈ Zn

}
whose relaxation is unbounded. Thus, there exists a point x0 ∈ Zn that is feasible for the problem, and
a direction r ∈ Zn with c>r < 0 such that for any point x that is feasible for the relaxation, x + r is
feasible for the relaxation, as well. This implies that xk = x0 + mkr satisfies Txk ≤ b, xk ∈ Zn, and
γ>xk ≡ γ>x0 ≡ r (mod m) for all k ∈ Z>0, and thus every such xk is feasible for the CCTU problem.
As c>xk = c>x0 +mkc>r → −∞ for k →∞, we conclude that the CCTU problem is unbounded.

Moreover, note that if the relaxation is unbounded, then one can obtain in polynomial time a vector
r ∈ Zn as described above, i.e., with c>r < 0 and Tr ≤ 0. Hence, the vector v := m · r can be computed
efficiently and has the properties claimed by the lemma.

We remark that Lemma 72 extends to R-CCTUF problems and their optimization counterparts, as well.
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