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Wing-Triangulated Graphs are Perfect
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Abstract.  The wing-graph W(G) of a graph G has all edges of G as its vertices;
two edges of G are adjacent in W(G) if they are the nonincident edges (called
wings) of an induced path on four vertices in G. Hoang conjectured that if W(G)
has no induced cycle of odd length at least five, then G is perfect. As a partial
result towards Hoang’s conjecture we prove that if W(G) is triangulated, then G
is perfect.

1 Introduction

A graph G is perfect if for each induced subgraph H of G, the chromatic number of
H equals the largest number of pairwise adjacent vertices in H. Clearly, the chordless
cycles of odd length at least five (called odd holes) are imperfect and so are their
complements (called odd antiholes). Graphs not containing odd holes and odd antiholes
are called Berge. The Strong Perfect Graph Conjecture (SPGC) states that all Berge
graphs are perfect. This conjecture was posed by Berge [1] in 1960 and is still open.

A way to make progress in attacking the SPGC is to prove that all graphs in some
special class of Berge graphs are perfect. A classical example is the class of triangulated
graphs, namely graphs not containing a chordless cycle of length at least four. In [1] it
was shown that all triangulated graphs are perfect. The class of triangulated graphs
was extended to the class of weakly triangulated graphs by Hayward [2]. A graph is
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weakly triangulated if it contains neither a chordless cycle of length at least five nor
the complement of such a cycle. Hayward proved that all weakly triangulated graphs
are perfect.

Another class of Berge graphs for which the SPGC is known to be true is the class
of strict quasi-parily graphs. A graph is called strict quasi-parity if each noncomplete
induced subgraph contains an even pair, namely a pair of vertices such that each in-
duced path between these two vertices has even length. Strict quasi-parity graphs were
introduced by Meyniel [5]; he proved that they are perfect.

Several classes of perfect graphs are properly contained in the class of strict quasi-
parity graphs. Particularly, Hayward, Hoang and Maffray [3] proved that all weakly
triangulated graphs are strict quasi-parity.

In creating special classes of Berge graphs, Hoang [4] suggested considering the class
of wing-Berge graphs which is defined as follows. Given any graph G, construct the
wing graph W(G') by letting the vertices of W(G) be the edges of G; two edges of G
are adjacent in W(G) if they are the wings of some induced path on four vertices in G,
namely if they are the nonincident edges of that path. A graph G is called wing-Berge*
if W(G) contains no odd hole. Wing-Berge graphs are Berge (see Observation 1), and
Hoang conjectured that all wing-Berge graphs are perfect. See [4] for more information.

We call a graph wing-triangulated if its wing graph is triangulated. In this note
we show that the conjecture of Hoang is true for the case that the wing graph is
triangulated. This was proved by the third author in her Diploma-Thesis [6]; here
we will present a short proof of this result. More precisely, we shall prove a stronger
result: A wing-triangulated graph is weakly triangulated or contains an even pair. In
particular, all wing-triangulated graphs are strict quasi-parity.

All graphs considered here are finite, undirected and have no loops or multiple
edges. We denote by P, (resp. C},) a path (resp. cycle) on n vertices. For a graph G,
the set N(z) is the neighborhood of the vertex z, namely the set of all vertices in 7 that
are adjacent to z. The restriction of N(z) to some induced subgraph H of G, namely
the set of all vertices in H, that are adjacent to , is denoted by Ng(x). If two vertices
x and y in a graph are adjacent we also say that z sees y; otherwise we say that =
misses y. For an induced subgraph H we say that a vertex z is H -partial if it neither
sees nor misses all vertices of H. A domino is the graph with vertex set a,b,c,d, e, f

*Hoang [4] originally called these graphs wing-perfect, but wing-Berge seems to be a more appropriate
notion for this class of graphs. Moreover, in the definition of Hoang, the wing-graph of G has only
those edges of G as vertices that are wings in at least one P, of G. This differs from our definition in
the existence of some isolated vertices, which are unimportant with respect to perfectness.
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and edge set ab, be, cd, de, ef, fa,be. The complement of a graph G is denoted by G.

2 Main Theorem

By definition of a wing graph the following observations are immediate:

Observation 1

if H is an induced subgraph of G, then W(H ) is an induced subgraph of W(G).
W(Coks1) = Copyr, W(Caxya) = 2Ck1q for all integers k > 2.

no wing-triangulated graph contains a domino as an induced subgraph

)
)
iit) Cp, C W(Cy) for all integers k > 5.
)
)

no wing-triangulated graph contains a Cy,k > 7 or Ci,k > 5 as an induced
subgraph.

Proof. i) and i) follow immediately from the definition of a wing-graph. To prove iii)
let the vertices of C be labeled 0,...,k — 1. Then the k& Py’s in C are each of the
form ¢,7 — 2,74 1,7 — 1 which implies 7i7). The wing graph of a domino contains a Cg
and therefore iv) holds. v) follows immediately from ) and 7i7) a

Theorem 1 Wing-triangulated graphs are strict quasi-parity.
Proof. Let GG be a wing-triangulated graph with no even pair.
Claim 1 G contains neither Fy nor F, (see Figure 1) as an induced subgraph.

Assume to the contrary that GG is a wing-triangulated graph that contains no even
pair but contains F; or F, as an induced subgraph.

Let {a,b,c,d,e, f,g} be the vertex set for F;,i = 1,2 with edges as shown in Figure
1. All induced paths connecting the vertices ¢ and g in F; have length two. Therefore
there must exist a vertex x such that z sees ¢ and misses g¢.
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Figure 1: The graphs F; and F3.

Suppose that 2 sees a. Then z must also see d since otherwise G contains an
induced C’5. Moreover 2 must see e or else the edges za, ge, cb,de induce a Cy in W(G).
Now it follows that « must see b because otherwise the graph G contains an induced
C5. Considering the edges zc,ge,cb,af it follows that z must see f since otherwise
W(G) contains an induced C4. But now we get a contradiction: If f misses g then
the edges cd, ga, xc,ge, cb,af, gd, fz,bg,ef induce a Cyg in W(G); otherwise the edges
cx,ag,cd,gf induce a Cy in W(G).

Thus we have shown that z misses @ and by symmetry x misses e. The vertex =
cannot see f or else G contains an induced C5 (2 fedc or agdz f) if g misses f; or if ¢ sees
f then the edges zc,¢f,bc,af induce a Cy in W(G). Now z misses b since otherwise
zb, ge,be,af induce a Cy in W(G). By symmetry z also misses d. This shows that the
vertex x has besides ¢ no other neighbor on the Cg. But the edges zc, bg, fe,ba induce
a Cy in W(G) or the edges zc,ba,cd, gf,be,ed induce a Cg in W(G) depending on the
existence of the edge g f, a contradiction. &

For the following let C' = abede f be an induced Cgin G and let P = popy . .. p2xpak+1,
k > 1 be an odd induced path between py = @ and py;41 = ¢. The following six claims
finish the proof of the theorem.

Claim 2 The set of neighbors in C of any C-partial vertex is a subset of three consec-
utive vertices of C'.

Let « be a C-partial vertex that sees two opposite vertices of C, say a and d. Since
G must not contain a C'5 as an induced subgraph, we may assume using symmetry that
x sees also b. Now by Claim 1, z cannot see e. Thus  must see f. But then either G
contains a domino or F5 as an induced subgraph. Therefore no C-partial vertex can see
two opposite vertices of C'. This implies that = has at most three neighbors in C'. If z
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has exactly every second vertex of C' as a neighbor then GG contains a domino; otherwise
the neighbors of z in C' are contained in a subset of three consecutive vertices of C'. <

Claim 3 py # [ or poi # d.

Assume to the contrary that p; = f and pyp = d. The vertices b and e must each
have at least one neighbor in {p1,...,px} since otherwise the graph GG contains an odd
hole. Moreover any vertex p; with 1 < 7 < 2k is adjacent to at most one of the two
vertices b and e or else at least one of bp;ede an bp;efa is an induced C5 in G. Since
Do, - - -, P2k+1, b is an odd cycle in which the only possible chords start from b, it follows
that the vertex b forms an odd number of triangles with the vertices py,..., par41.

Let » and s with 0 < r < s < 2k + 1 be two indices such that e sees p, and p, but
no vertex p; with »r < ¢ < s. As b forms an odd number of triangles with P there must
exist some indices r and s such that the vertex b forms an odd number of triangles with
the vertices p,, ..., ps. Let u be the smallest index larger than r such that b is adjacent
to p, and similarly let v be the largest index smaller than s such that b is adjacent to
py. Then s — 7 is an even number since ep, ...ps is an induced cycle of length at least
five and v — w is an odd number since b forms an odd number of triangles with the
vertices py,...,py. But then one of ep,...p,b and ep;...pyb is an even induced path
in G and forms together with the vertices ¢,d or a, f an odd hole. <&

Claim 4 Ifed P andp; = f thenk =2, Np\¢(d) = 0, Np\c(b) = py and Np\¢(e) =
p2.

Since bpopy . . . p2r+1 is an odd cycle there must exist at least one chord of the form
bp;. Let 7 be the smallest value such that bp; is an edge. Then ¢+ = 2 or ¢+ = 4 as G
contains neither a C’s nor induced cycles of length greater than six.

Assume first that ¢ = 2. Then because of Claim 2 neither dp, nor cpy can be
an edge. This shows that & > 1. Now either the edges cd, ab, cpsg, bpy or the edges
bpak, fp2,be, fainduce a Cy in W(G) depending on whether bpy, is an edge or not. Thus
bpy cannot be an edge.

Now assume that bps is an edge, i.e., ¢ = 4. Then cpy must be an edge since
otherwise the edges pspa,bc, af, bps, cd,ba form an induced Cg in W(G) except when
exactly one of dpy or dps is an edge in G. But then the edges pspy, be, af, bpy, cd form
an induced C5 in W(G). At least one of the vertices d and e must see at least one of
the vertices p3 and p; or else the edges de, fa, paps, fe, ab, fp; induce a Cg in W(G).
We will show that eps is the only possible of these four edges.
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First note that eps cannot be an edge or else G contains a C5. The vertex e cannot
see ps since otherwise the edges eps, pab, paps, pac induce a Cy in W(G). If dp, is an edge
then the edges pad, cpa, de, cb show that dps must be an edge or else W((G) contains an
induced Cy4. But then the edges pad, bpa, cb, ed induce a Cy in W(G). Also dps cannot
be an edge since otherwise G contains the odd induced cycle dpsps fabe. This shows
that epy must be an edge. Finally note that dps cannot be an edge since G must not
contain an induced Cf.

Thus we have shown k = 2, Np\o(d) = 0, Np\¢(b) = ps and Np\c(e) = pa. <&

Claim 5 If PN C = {a,c} then k = 1, Np\¢(e) = 0 and either Np\o(f) = 0,
Np\o(d) = {p2} € Np\c(b) or Np\o(d) =0, Np\o(f) = {p1} € Np\c(b)

We may assume that at least one of the two vertices d and f has at least one
neighbor in {py,...,p2r}. Otherwise the odd path dPf is induced and contradicts
Claim 2 applied to d and f. Using symmetry we may assume that f has at least one

neighbor in {py,...,pr}.

Let ps be the neighbor with largest index of f on P — {a,c} and let p be the
neighbor with smallest index on P — {a, c} of b (b must have at least one such neighbor

or else bP is an odd hole).

Assume first that py < py, i.e., py appears first on P while going from a to ¢. The
only possible first neighbor p, of b is py since if bp; is an edge for 2 < ¢ < 2k then
the edges fa,cb,apy, bp; induce a Cy in W(G). Thus py = p1,pp = p2 and k = 1 since
otherwise G contains a hole. But now the edges fa,bpa, fp1, pac, pra,be induce a Cg in
W(G), a contradiction.

Now assume that ps > py. Since the edges ed, ba, cpai, bpy must not induce a Cy in
W(G) at least one of dpy, pyp2r and bpar must be an edge.

If dpy is an edge then Claim 2 implies that fp, is not an edge and p, # p;. Then
we must have p, = py or else the edges af, apy, bpy, be induce a Cy in W(G). But then
the vertices a, b, ¢, d, p1, pp induce a domino in G. Thus dpy cannot be an edge.

Now assume that dpjp is not an edge but pyp2i is an edge. Then we must have p, = p;
which implies k£ = 1 or else G contains a hole. By Claim 2 f is adjacent to p; and not
adjacent to py. Now ep; is not an edge because of Claim 2 and epy also is not an edge
because otherwise G contains a domino on the vertices e, f, p1,p2,b, ¢ or if bps is an
edge then Claim 2 forbids the edge epy;. Now dpy cannot be an edge or else G contains
a Cs. Thus we have shown k = 1, Np\¢(d) = § and Np\o(f) = {p1} C Np\c(b).
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Finally assume that neither dp, nor pypar is an edge but bpsyr is an edge. Then
py = p1 must hold or else the edges fa,bc,apy,bpoi induce a Cy in W(G). Since
Spar cannot be an edge because of Claim 2, the vertex f must also miss p; or else
the edges fp1,be,af,bpyy induce a Cy in W(G). Now b must see p; or else the
edges ef,ap1, fps,ab induce a Cy in W(G) (note that ps # py since otherwise ap-
plying Claim 3 to the path afps...parc we get a contradiction). But then the edges
ef,apy, fps,bp1,cd induce a C5 in W(G), since neither d nor e can be adjacent to p;
or py because of Claim 2. <&

Since we assumed that G does not contain an even pair, it cannot be weakly trian-
gulated thus by Observation 1 G must contain an induced Cg. Let €' = z1z5...x6 be
such an induced Cg in G. Then there must exist an induced odd path P between x4
and z3. Without loss of generality we may assume that the path P does not contain
the vertex wzs; otherwise consider the pairs {z1,25} or {z3,25}. By claims 3, 4 and
5 and by symmetry G contains an F3 or an Fj or an F5 as an induced subgraph (see
Figure 2).

Figure 2: The graphs F3, Fy and Fj.

In the following two claims, we will show that G' cannot contain F3 or Fy or Fj as
an induced subgraph and thus yield a contradiction. This finishes the proof.

Claim 6 G cannol contain an induced F5s.

Suppose that G contains an induced F3.

First we will show that any vertex different from xy and x5 that sees xg must also
see x1,...,25. Assume that there is a vertex z contradicting this claim. Then neither
the edges xq21, zg25, 21Y3, Te2z nor the edges xixg, 524, 262, x5y may induce a Cy in
W(G). Thus z must see at least one of the vertices z1,z3,y3 and at least one of the
vertices x5, x4, y1. If z sees x9 or y3 then it cannot see any of the vertices x5, x4,y or
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else we get a contradiction to Claim 2 with one of the three induced Cg’s contained in
F3. Thus z must see z; and by symmetry also z5. Claim 2 now yields that z cannot
have any other neighbor in F3. But then the edges x5z, z1ys, zers and z1z2 induce a
C4 in W(G). Thus the vertex z cannot exist. By symmetry the same holds for the
vertex zj.

As {x9, x4} is not an even pair, there exists an induced 9, z4-path @ of odd length.
As shown above any vertex adjacent to zg must also see zq,...,x5 which shows that
xg cannot belong to ¢). By Claim 3, at most one of z1,z5 belongs to ). If none of
x1,x5 belongs to ) then Claim 5 shows that there must exist a vertex seeing zs but
not for example xg, which we have shown above is not possible. Thus one of zy, x5
must belong to . Using symmetry we may assume that xz; belongs to ¢). But then
Claim 4 shows that there must exist a vertex that sees zg but not all of zy,...,25, a
contradiction as we have shown above. <&

Claim 7 G cannol contain an induced Fy or Fs.

Suppose that G contains an induced Fj or F5. By Claim 6 we know that G contains
no induced Fs.

Again we will show that any vertex different from 21 and z5 that sees zg must also
see x1,...,25. Assume that there is a vertex z contradicting this claim. Then Claim 2
implies that neither zy; nor zxs can be an edge. Since the edges zuzg, v122, T526, T1Y2
must not induce a Cy in W(G) we know that at least one of zzq, zz9, 2y must be an
edge. In any case Claim 2 implies that zz4 cannot be an edge. Also zy; is not an edge
or else zyz, Y124, 21Y2, Y123 induce a Cy in W(G). Similarly zz, is not an edge or else
the edges z6z, x2y1, 126, 2223 induce a Cy in W(G). Now we can conclude that za
must be an edge since above we observed that at least one of zxy, zzq, 2y, is an edge.
But then zzq, 2991, 2126, y1y2 induce a Cy in W(G).

Since the vertices x2, x4 may not form an even pair in G there must exist an odd
induced path between them. This path cannot contain xg since we just proved that
any vertex adjacent to xg must see all of z1,...,25. By Claims 3, 4, 5 and 6 this path
must be of length three and contains none of the vertices z3,z1, 25, g, ¥1, y2. Thus a
neighbor z of x4 exists that does not see z3. Then z must see x3 or y; or else the edges
2T4, Tols, T4Ts, T2y induce a Cy in W(G).

Assume first that zzs is an edge. By Claim 2 the vertex z sees neither z; nor
xg. Moreover z cannot see yo or else G contains an induced Cs. Thus z must see
y1 since otherwise the edges za4, y122, Y1Y2, 2126 induce a Cy in W(G). But then
2Y1, X221, Y124, 1Yz induce a Cy in W(G).
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Now assume that zzs is not an edge and therefore zy, is an edge. Then zy; must
be an edge or zyy, z2x1, Y124, 1y induce a Cy in W(G). But now Claim 2 shows that
z has no neighbor in {5, 26,21} and therefore W(G) contains an induced Cg formed
by the edges z5x4, 329, 21Y2, Y124, T1T2, Y2 2. <&

a
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