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A 1.598 Approximation Algorithm for the Steiner Problem in Graphs

Stefan Hougardy *

Abstract

‘We present a general iterative framework for improving the
performance ratio of Steiner tree approximation algorithms.
By applying this framework to one specific algorithm we
obtain a new polynomial time approximation algorithm
for the Steiner tree problem in graphs that achieves a
performance ratio of 1.598 after 11 iterations. This beats
the so far best known factor of 1.644 due to Karpinski and
Zelikovsky [10]. With the help of a computer program we
estimate the limit performance of our algorithm to be 1.588.

1 Introduction

Given a graph G = (V,E), a subset T C V of
terminals and a length function ¢ : £ — R on the
edges of G, then the Steiner Tree Problem asks for a
shortest network connecting the vertices of T. The
Steiner tree problem appears in many different kinds
of applications. For example in the network routing
problem a communication server has to distribute the
same data to several nodes in a network by selecting a
minimum cost set of links that connect the server to all
nodes. Other examples of applications of Steiner tree
problems are the computation of phylogenetic trees in
biology or the routing phase in VLSI-design.

Two famous special cases of the Steiner tree prob-
lem in graphs are the Fuclidean Steiner tree problem
and the rectilinear Steiner tree problem. In both prob-
lems the task is to find a shortest network connecting
given points in the plane. The only difference in these
special cases is the metric used to measure distances. In
the Euclidean Steiner tree problem distances are mea-
sured by the Lo, i.e. the Euclidean metric, while in
the rectilinear Steiner tree problem distances are mea-
sured by the L; metric. These two special cases of the
Steiner tree problem have been studied intensely. How-
ever, Steiner tree problems arising in practical applica-
tions usually involve cost functions that do not satisfy
the L; or Ly metric. This motivates the study of the
Steiner tree Problem in graphs. Since in the Steiner
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tree problem in graphs we do not have any restrictions
on the length function for the edges in the graph, we
can model any Steiner tree problem in any metric by a
Steiner tree problem in graphs.

The Steiner tree problem is a well known NP-
complete problem even in the very special cases of Eu-
clidean or rectilinear metric. This fact rises the question
for provably good heuristics for these problems. Arora
[1] has shown that Euclidean and rectilinear Steiner
tree problems admit a polynomial time approximation
scheme, i.e., they can be approximated in polynomial
time up to a factor of 1 + € for any constant € > 0.

In contrast to these two special cases the Steiner
problem in graphs is known to be APX-complete [6][2],
which means unless P=NP there cannot exist a polyno-
mial time approximation scheme for this problem. Here
we will present a polynomial time approximation al-
gorithm for the Steiner tree problem in graphs which
achieves a performance ratio of 1.598. This beats the
so far best known factor of 1.644 due to Karpinski and
Zelikovsky [10]. The new idea of our algorithm is to
iteratively use a parameterized Steiner tree algorithm
to improve the solution found so far by the algorithm.
This is done by successively adding in a certain way ad-
ditional terminals to the set of terminals given in the
beginning. While this clearly worsens the value of an
optimal solution we prove that by choosing the optimal
sequence of parameters for the algorithm the perfor-
mance ratio decreases up to a certain point faster than
the quality gets worse. After 11 such iterations we al-
ready get a performance ratio of 1.598. By a computer
program we have numerically estimated the limit per-
formance for k iterations for £ — oo and it turned out
that this value is about 1.588.

2 Previous Results and our Contribution

There exist several different heuristics for the Steiner
tree problem in graphs. But only few of them have prov-
ably good performance ratios. Table 1 gives a survey on
such results. (The algorithm of Promel and Steger [11]
is a randomized algorithm, all other algorithms listed in
the table are deterministic algorithms. The performance
ratio 1.734 is the value that is obtained by applying the



result of Borchers and Du [5] to [4]. The value given in
[4] is 1.746). All performance ratios given in this paper
are rounded up to the third digit.

Year Performance Authors
Ratio
1980 2.000 Takahashi, Matsuyama [12]
1993 1.834 Zelikovsky [13]
1994 1.734 Berman, Ramaiyer [4]
1995 1.694 Zelikovsky [14]
1997 1.667 Promel, Steger [11]
1997 1.644 Karpinski, Zelikovsky [10]
1998 1.598 Hougardy, Promel [this paper]

Table 1: Steiner tree approximation algorithms

Takahashi and Matsuyama [12] were the first prov-
ing that the well known minimum spanning tree heuris-
tic achieves a performance ratio of 2. The minimum
spanning tree heuristic is based on the idea of greedily
adding a shortest connection between a pair of termi-
nals. This idea naturally extends to adding shortest
connections between k-tuples of terminals, for fixed k.
All approximation algorithms for the Steiner tree prob-
lem listed in Table 1 are based on this simple idea.

The present approach to get better performance
ratios for the Steiner tree problem in graphs is to
iteratively apply a series of algorithms to the output
of its predecessor. This way we obtain the 1.598
record performance ratio for the Steiner tree problem
in graphs. To achieve this ratio it is shown that only 11
iterations are necessary. This implies that the running
time of the algorithm only increases by a factor of 11
compared to the running time of the base algorithm
applied in each step.

This new approach provides a general framework
that can be applied to any known heuristic for the
Steiner tree problem in graphs to obtain a potentially
better algorithm. Besides the presentation of this gen-
eral framework the main contribution of our paper is to
show that by applying the new framework to one spe-
cific heuristic we obtain a provably good performance
ratio that outperforms all results known before.

3 Definitions and Notations

The Steiner tree problem in graphs is defined as follows:
Given a graph G = (V,E) with a length function
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c: E — R and a subset T C V of terminals of the
vertices of GG, find a shortest network connecting the
vertices in 7. Any network connecting the vertices
of T is called a Steiner tree for T. Without loss of
generality we assume that G is a complete graph and
the length of each edge between two vertices v and v
equals the length of a shortest path between u and wv.
In general, a Steiner tree contains not only the vertices
from T but also vertices from V — T. These vertices
are called Steiner points. The length of a Steiner tree
B is the sum of the lengths of all edges in the tree and
is denoted by d(B). The loss of a Steiner tree B is
the length of a minimum spanning forest in B such that
each component in the forest contains at least one vertex
from T'. The loss of a Steiner tree B is denoted by I(B).
Clearly, the loss of a given Steiner tree can be computed
in polynomial time by using a minimum spanning tree
algorithm.

For a given set T of terminals we denote by
MST(T) a minimum spanning tree for T and by mst(T)
its length. A Steiner minimal tree for a set T of termi-
nals, denoted by SMT(T) is a shortest possible Steiner
tree for T'. Its length is denoted by smt(T).

A Steiner tree is called full if all terminals are leaves
in the tree. If a Steiner tree is not full, it can be
decomposed into full components by splitting off the
terminals that are not leaves. A k-restricted Steiner
tree is a full Steiner tree with at most k terminals. By
the contraction of a set S of vertices we understand the
setting of all lengths to zero for edges between vertices
in S.

The performance ratio of an approximation algo-
rithm for the Steiner tree problem is an upper bound
on the length of the Steiner tree found by the algorithm
divided by the length of an optimal solution.

4 The Algorithm

Our iterative algorithm is based on the generalization
of the relative greedy heuristic which was suggested
by Karpinski and Zelikovsky [10]. Their algorithm
depending on k£ and on some constant « is denoted
by k-RGH(a). It works as follows: among all k-
restricted Steiner trees choose one tree B that minimizes
(d(B) + al(B))/(mst(T) — mst(T/B). Then put T :=
T/B. Here we denote by T'/B the set of terminals that
is obtained from T after contracting the terminals of
B. The algorithm stops when mst(T") = 0. The union
of all generated k-trees is the output of the algorithm.
Karpinski and Zelikovsky have shown that for £k — oo
the Steiner tree B generated by their algorithm satisfies



This paper appeared in: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms 1999, 448-453

d(B) + ad(B) < smt(T) (1+%)-

(4.1) : <1 +1n M)
(1+ %) smt(T)

We denote the algorithm k-RGH(a) in the limit
k — oo by RGH(a). In this paper we will only
make statements about the limit performance of our
algorithm. While the limit performance will not be
reached in polynomial time, one can get for any € > 0 a
polynomial approximation algorithm with a ratio that is
only by a factor of 1+e€ away from the limit performance.
All performance ratios in this paper that are given
as actual numbers are rounded up. Therefore, such
performance ratios can be reached in polynomial time.

Let @ = (a1,...,04) with g > ... > a = 0.
Then the iterated relative greedy heuristic for the vector
a, IRGH(&) for short, works as follows:

Algorithm TRGH(A)

To := terminals of G = (V, E)

for i :=1to k do
apply RGH(«;) to T;_1 to get a Steiner tree B;;
T; := T;-1U {Steiner points of B;}

output: a minimum spanning tree for T}

Note that this algorithm represents a general frame-
work for improving the performance ratio of Steiner tree
approximation algorithms. One can for example ap-
ply this framework to the algorithm IRGH(&) itself, to
obtain an even better approximation algorithm for the
Steiner tree problem. However, it is easy to see that the
performance ratio of such an algorithm can always be
beaten by IRGH(@) with a sufficiently large number of
iterations.

In the next section we analyze the performance ratio
of IRGH(&).

5 Analysis of the Algorithm

For a sequence a3 > as > ... > ap = 0 the algorithm
IRGH(&) applies iteratively algorithm RGH («;) for i =
1,...k to a given instance G = (V, E, ¢, T) of the Steiner
tree problem. Let s; denote the value of the optimum
solution before the ith iteration of the algorithm. We
may assume s; = 1. By d; we denote the length of

the solution tree returned in the ith iteration. Its loss
is denoted by ;. We have dy = mst and [p = 0. We
can bound the length of the optimum solution after i
iterations as follows:

i1
5; <si1+1li1 < le

Jj=1

(5.2)

The following lemma, gives a simple bound on the
length dj, of the Steiner tree returned after k iterations
in terms of the lengths of the Steiner trees that are
generated in all previous iterations.

LEMMA 5.1. The length dy, of the Steiner tree generated
by algorithm IRGH(@) after k iterations satisfies:

dp < Cj- (1+1ndk1>

(5.3) G

with C; defined for i =1,...,k as follows:

Cz' =

i1 (1 +1n %=t
J C;
1+ ?
=1

)_dj (1+%)

(5.4) 5

aj

Proof. First note that for any numbers 0 < z <y < ¢
we have z(1 +1n 2) < y(1+1n ). Now by using (4.1)
and (5.2) one can prove by induction (the details are
left out in this extended abstract):

(6.5) di+oa;-l; < Sz"(1+%)-

. <1 +In di
S; -

)

di—1
< ¢ (141
_C(+nc)

%

(5.6)

with the following bound for I;:

Ci- (1+mn%2) - d

Q;

(5.7) li <
By making use of aj = 0 we get the desired result. O

In the following we are going to compute a bound
for di that only depends on the vector & To do
so we have to compute the maximum of the function

Ck.(l—}—ln dg;l).
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4

The following fact will be used‘ se\{eral times < C (djp—1 + ag_1 - C)
throughout the proofs. Let f be a function in 2. Then di—1

205 (14 %) - d;
0 T f z 0 < wpog—1 |1+ z " +
8 — ((1+m=). = L4m=. = = j
69 5 ((1+13) 1) = frmfgs o
k—2
The next theorem now gives a bound on the length (5.14)  + 23 Chr (1 +In Ck—l)

dy, of the Steiner tree generated by algorithm IRGH(&) ) o

that only depends on &. Note that since we assume Usmg (5.8) we get as a necessary condition for a
s1 = 1 the value d;, is the desired approximation ratio Maximum of (5.14):

of our algorithm IRGH(&). ar 1 Cr 1

5.15 0O = - + +
(5.15) op—2  dp—2

THEOREM 5.1. The length dy, of the Steiner tree gener-

ated by algorithm IRGH(G) after k iterations satisfies: +1ln dp—2 <_a 1 ) ) (1 + O"gl)
k—1 k—2
k
2 .
(5.9) di < (04 + (1 + %) (1 +In - ﬂ)) H z; Let z;_1 be the solution of
2 =2 _ 1
’ (5.16) ap o Tk 1 —ap 1 = (1 n a’; 1) ‘In
with x; defined by Th-1
. Now (5.14) can be written as
o
1 -,--—-:(1 —’)-1—
(5 0) Qi1 Ti Qi + 2 n X; k—2 Cj (1 + In dé,_.l) — dj
dr < mp a1+ ! +
Proof. We have S = @j
0 1 d
(5.11) Ody 1 G = T * Gl (1 o 02_21) )
Therefore a necessary condition for a maximum of the Cr—1 ( di—2 ))
< zp-log1 —ag—7 +Ck-1-{1+1n
function C}, - (1 +1n dg—;l) is = Tk ( k=10 + % k=1 Cr_1
2001
< Oy | 7——+1
1 Ce 1 -lndkfl _ < 2 Cra (2+ak_1+ +
(5.12) 0
dr—1  ap—1 Ch 9 Chs
(o B2 )
Let xj be the solution of the equation 2+ o dp—2
1 dr—2 2+ op_1
(5.13) ap—1-xr, = In a . ((2 + ak—l)dk—Z + Q(Ik—zck—l)
In the following we will make use of the fact that the < Tp-Xp_1 <dk_2 +
quadratic form 27 Qz with Q being the (k—1) x (k—1)
matrix of the second partial derivations of (5.3) is =2 C; (1 +In dJC_—l) — d;
negative definit at the critical point. This can be shown +ap o |1+ I
by proving that @) is a diagonal matrix at the critical = aj
point with all entries being negative. The details of dix
these calculations are left out in this extended abstract. L k=3 G (1 +1n JC—J) —d;
Now by substituting equation (5.12) in (5.3) and using S TeTror| akz | T+ Z s
1 J
ar =0 we get J
dr—3
dy— + Cr—2({1+1In
dy < Ck-(l-i-ln él) “( Ck—2>>
k
< C ( 14 og—1 - C’k> The result stated in the theorem follows by induction. O
< Ck- —_—
di_1
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6 Numerical results

For a fixed value of k using (5.9) and (5.10) one can
easily optimize the values of ay,...,a, to obtain the
best possible bound for di. The following table lists
the performance ratio of our algorithm for some small
values of k for optimally chosen values of «;.

k ratio
T 1.694
2 1.644
3 1.626
4 1.616
5 1.611
6 1.607
7 1.604
11 | 1.598
12 | 1.597
oo | ~ 1.588

Table 2: Performance ratio of k-IRGH

Note that in the special case £k = 1 we obtain the
algorithm of Zelikovsky [14] while for £k = 2 we obtain
the algorithm of Karpinski and Zelikovsky [10]. In the
latter case ay has to be chosen as 0.436. For k = 3 one
has to choose a; = 0.698 and as = 0.248. In the case
k = 11 the sequence (ay,...,ax) looks as follows:

(1.365,1.026,0.792,0.615,0.474,

0.360,0.264,0.183,0.114,0.053, 0)

The last row in the table contains the limit perfor-
mance ratio that was obtained by using a computer pro-
gram that numerically estimates the performance ratio
of our algorithm for large values of k. We obtain that the
performance ratio behaves roughly as 1.588 + 0.114/k
which indicates that the limit performance ratio of our
algorithm lies at 1.588.

7 Concluding Remarks

We have presented a general iterative framework for im-
proving the approximation ratio of Steiner tree approx-
imation algorithms. By applying this framework to one
specific algorithm we obtain a new Steiner tree approx-

imation algorithm with a performance ratio of 1.598.
This beats the so far best known ratio of 1.644.

The number 1.598 is only an upper bound on the
performance ratio of the algorithm IRGH(&). We do
not know of any reasonable lower bound. That is we do
not even know any graphs where IRGH(&) can achieve
a performance ratio of 1.5. It is very likely that an
improved analysis of our algorithm yields an even better
bound on the performance ratio of IRGH(@).

The iteration framework presented here can also
be applied to other Steiner tree type problems. The
directed Steiner tree problem [7] and the group Steiner
tree problem [9] are examples of such problems which
have been studied recently.

The ratio 1.598 presented in this paper is still far
away from the best possible (unless P=NP) lower bound
which is currently 5601/5600 [8]. The interesting ques-
tion of the best possible performance ratio of a polyno-
mial time approximation algorithm for the Steiner tree
problem in graphs remains open.
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