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Abstract

We investigate the class of graphs defined by the praperty that every
induced subgraph has a vertex which is either simplicial (its neighbours
form a clique) or co-simplicial (its non-neighbaours form an independent
set). Tn particular we give the list of minimal forbidden subgraphs for
the subclass of graphs whose vertex-set can be emptied out by first re-
cursively eliminating simplicial vertices and then recursively eliminating
co-simplicial vertices.
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1 Introduction

In a graph G, a vertex z is simplicial if its neighbourhood N(z) induces a
complete subgraph of G. A graph is triangulated if it does not contain as an
induced subgraph a chordless cycle of length at least four (a hole). A famous
theorem of Dirac [2] states that every triangulated graph has a simplicial vertex.
Tet us also say that a vertex is co-simplicial 1if its non-neighbours form an
independent subset of vertices, and that a graph is co-triangulated if it does
not contain the complement of a chordless cycle on at least four vertices (an
antihole). Dirac’s theorem says equivalently that every co-triangulated graph
has a co-simplicial vertex. Qur purpose is to investigate the larger class of
graphs, which we will call SC, defined as follows: a graph G is in SC if and
only if every induced subgraph H has a vertex which is either simplicial or co-
simplicial in H. The problem of characterizing the class SC was raised in [4]
(where these graphs are called quasi-triangulated; see [1]) and in [6] (where they
are called good).

Suppose that (G is a graph in SC and has n vertices. So there exists an ordered
sequence @ = vy, v, ..., U, of its vertices such that, for every j, vertex u; is
simplicial or co-simplicial in the induced subgraph G; = Glvj,vj41, ..., Un];
accordingly we say that v; is a C-vertex or an S-vertex in ¢ (some ambiguity
may arise as a vertex can be both simplicial and co-simplicial). We call any such
o an SC elimination sequence for (7. Note that the existence of such a sequence
characterizes the class SC; indeed, if H 1s any induced subgraph of (¢ and j 1s
the smallest index with respect to & such that v; € H, then v; is also a simplicial
or co-simplicial vertex of H. From the algorithmic point of view, it 1s easy to
determine if a vertex is simplicial or co-simplicial, thus testing membership in
the class SC and finding an SC elimination sequence is a polynomial task.

Given an SC elimination sequence @, a switch in o is an integer j such that v; is
an S-vertex and v;4¢ is a C-vertex in 7, or vice-versa. A graph in SC may admit,
many different SC elimination sequences, and they do not necessarily have the
same number of switches. Naturally, sequences with the fewest switches are more
interesting. Define SC; as the class of SC graphs which admit an SC elimination
sequence with at most i switches. So we have SCy C SCy C -+ (we will see in
Theorem 4 that these inclusions are all strict) and SC = | J{SC; | i > 0}.

Finding a sequence with a minimum number of switches is easy: first remove
simplicial vertices as long as one can find any; then remove co-simplicial vertices
from the remaining graph as long as one can find any, etc. This is an optimal
procedure because if a vertex  is simplicial (resp. co-simplicial) in G then it
remains simplicial (resp. co-simplicial) whenever any number of vertices different,
from x have been removed. This procedure can be applied on any graph G =
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(V, F). Tf the procedure stops without eliminating all the vertices, the subgraph
induced by the remaining vertices has no simplicial vertex and no co-simplicial
vertex, therefore (¢ is not in the class SC. On the other hand, if the procedure
succeeds in eliminating all the vertices, then the number of switches in the
resulting elimination sequence is certainly the smallest 7 such that G is in SC;.
Testing if a vertex is simplicial (resp. co-simplicial) can be done in time O(|V|?).
Thus the above elimination procedure can be done in time O(|V[*). Tt follows
that testing membership in the class SC and in each class SC; 1s solvable in
polynomial time.

Clearly, SCy is the class of graphs that are triangulated or co-triangulated. One
of our initial questions was whether SC is equal to SC; for some fixed 7 (perhaps
for i = 1). Tt turns out that this is false; the answer is given in Theorem 3.

Since the class SC as well as each class SC; (i > 0) is hereditary (i.e., every
induced subgraph of a graph in the class is also in the class), each such class
can be characterized by a family of minimal forbidden induced subgraphs. Any
hole or antihole on at least five vertices 1s such a forbidden induced subgraph
for SC and for each class SC; (i > (), because it is a graph with no simplicial or
co-simplicial vertex, and it is minimal because the removal of any vertex yields
a graph in SCy. Thus one of the main questions is, for each class SC or SC;
(7 > 0) to determine the minimal forbidden induced subgraphs other than holes
and antiholes. Tn Section 2 we give a complete characterization of the class
SCy by the family of all its minimal forbidden induced subgraphs: we actually
find that the minimal forbidden subgraphs other than holes and antiholes form
a finite family. Unfortunately, a similar situation does not hold for the whole
family SC (see Theorem 3). Our research leads us to believe that finding the
minimal forbidden induced subgraphs for a given class SC; with i > 2 is very
complicated.

Let us recall some classical definitions and results. We say “see” and “miss”
instead of “is adjacent to” and “is not adjacent to”. The subgraph of a graph
(G induced by a subset of vertices A is denoted by G[A]. A graph is called
weakly triangulated if 1t contains no hole or antihole of length at least five. The
following lemma will be very useful.

Lemma 1 (Hayward [5]) let (G be a weakly triangulated graph, and C' be any
mimimal cutset of G. Let Cy,..., C} be the connected components of the graph
G[C). Then for each j =1,...,t, each connected component of G — C contains
a vertexr that is adjacent to all of C;.

Tet us also recall more formally the theorem of Dirac.
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Theorem 1 (Dirac [2]) Let G be a triangulated graph. Then either G is a
clique or (G contains two non-adjacent simplicial vertices.

2 A characterization of the class SC;

Consider the following property (P) of a graph (: Every induced subgraph H
of (7 either has a simplicial vertex or is co-triangulated. Tt 1s clear that G is in
SCy if and only if either (G or (7 has this property.

Theorem 2 A graph has property (P) if and only it is weakly triangulated and
it does not contain any of the graphs in Figures 1, 2, 3 as induced subgraph.

The proof of Theorem 2 is given below, after Lemma 5 and its proof. Tt follows
from Theorem 2 that a graph ' is not in SCy if and only if either G is not
weakly triangulated, or (3 is weakly triangnlated and both G and G contain an
induced subgraph from Figures 1, 2, 3.

[T XX

Figure 1: Minimally bad graphs on six vertices

Clearly, any graph in SC must be weakly triangulated. Below we will say that a
graph (7 is bad if it is weakly triangulated but does not. have property (P). So,
a minimally non-SCy graph is either a hole or antihole of length at least five,
or a minimally bad graph or its complement. Tn other words, in order to prove
Theorem 2, it suffices to determine the list of minimally bad graphs. To do this
we will first look at the minimal cutsets of a bad graph .

Tt is a routine matter to check that the graphs displayed in Figures 1, 2, 3 are
minimally bad.

We will often use without further reference the facts expressed in the following
remarks, whose proofs are obvious.

Remark 1 If (' is a minimal cutset of (7, each vertex in ' has a neighbour in
each component of G — (.
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Figure 2: Minimally bad graphs on seven vertices

Remark 2 Call a graph H sufficient if it contains a 2K, and every vertex of
H lies in a square. Then every sufficient graph is bad. Thus a minimally bad
graph cannot contain a proper induced subgraph that is sufficient.

Lemma 2 If G is minimally bad graph that has a clique cutset C', then G is
one Of the ngphs D07 E07 E17 E77 E87 E97 E107 F07 R F12'

Proof. Without loss of generality, we may assume that ' 1s a minimal cutset of
G (possibly ' = ). Tet A and B be two components of G — . Tf the subgraph
G[CU A] contained no square, then it would be triangulated, thus by Theorem 1
there would be a simplicial vertex » of G4 in A, and v would also be a simplicial
vertex of (7, a contradiction to the minimality of (G. So G[C'U A] contains a
square S4. Similarly, the subgraph G[C' U B] contains a square Sg. The fact
that C'1s a clique implies that at least two adjacent vertices of the square Sy
are in A; likewise, at least two adjacent vertices of Sg are in B. Therefore the
subgraph of ¢ induced by the union of the two squares is sufficient, and so this
subgraph is all of . Write S4 = 1234 and Sg = 5678, where 13 and 24 are the
non-adjacent pairs in S4, and 57 and 68 are the non-adjacent pairs in Sg. We
distinguish between three cases.

Case 1: The square S, does not intersect C'.
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Figure 3: Minimally bad graphs on eight vertices

Suppose that the square Sg does not intersect . Then the eight vertices of the
two squares induce the graph Fj and thus G = F, (and here C' = ).

Suppose that the square Sg meets ' af exactly one vertex. Thus |[C] > 1.
This vertex may then see some vertices of S4. A straightforward case analysis
of these unsettled adjacencies shows that (G either contains F7 (contradicting
minimality) or is Fy (contradicting |C] > 1), or is one of Fy, Fy, Fy.

Now suppose that the square Sg meets C' at exactly two vertices. Thus [(C'] > 2.
These two vertices may both see some vertices of S4. A straightforward case
analysis of these unsettled adjacencies shows that (¢ either contains one of Cj,

Cs, Do, E7, Es, Eg, Ein (contradicting minimality), or is one of Fy, Fy, Fy
(contradicting |C'| > 2), or is one of F3, Fu, Fg, Fz, Fs.
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Case 2: The square S, intersects C' in one verter.

Assume that S4 has vertex 1 € ' and vertices 2,3,4 € A. By Case 1 and by
symmetry, we may assume that Sg has at least one vertex in (.

First suppose that Sgp has exactly one vertex in (', say h € C. Tf 1 =5, G
is the graph F7. Assume 1 # 5. Thus |C] > 2. Fach of 1,5 may see some
vertices in the opposite square. Observe that if 5 sees 3 then it must see 2
and 4, for otherwise (7 — 4 or (7 — 2 is sufficient, a contradiction. On the other
hand, if 5 misses 3 then it must miss at least one of 2,4, for otherwise G — 1 1s
sufficient. Hence, the set N(5) N {2,3,4}is one of §, {2} or {4}, or {2,3,4}. Tn
fact the case N(5)N{2,3,4} = (} is excluded as C'is a minimal cutset. Tikewise,
N(1) N {6,7,8} is one of {6}, {8},{6,7,8}. Combining these cases we see that
G is either one of Fy, Fy, Fy (contradicting |C'| > 2) or one of Fs, Fg, Fy.

Now, suppose that Sg has two vertices, say 5,6, in (; thus 7,8 € B. Tf 1 = 5,
then 6 can see any of 2, 3,4, and consequently (G either contains Dy (contradict-
ing minimality) or is one of F7, Fg, Fg, F1g. Now let us assume that the three
vertices 1,5, 6 are distinct. By Remark 1, vertex 1 has a neighbour among 7, 8.
Tf 1 sees exactly one of them, say 1 sees 7 and not 8, it is easy to check that the
graph (G — 6 is sufficient, contradicting the minimality of G. Thus, 1 must see
both 7 and 8.

Just as above, observe that if 5 sees 3 then 5 must see 2 and 4, for otherwise
G — 4 or (G — 2 1s sufficient. On the other hand, if 5 misses 3 then it also misses
at least one of 2,4, for otherwise (¢ — 1 is sufficient. Moreover, by Remark 1,
vertex h must have a neighbour in {2,3,4}. So, the set. N(5)N{2,3,4} is one of
{2}, {4}, {2,3,4}. The same holds about vertex 6. By symmetry (of the pair
5,6 and of the pair 2, 4), this yields four possibilities: (a) Both 5,6 see all of
2,3,4; then (G is the graph Fyy. (b) One of 5,6 sees all of 2,3, 4, while the other
sees 2 and misses 3 and 4; then (3 is the graph Fiq1. (c) Both 5,6 see 2 and miss
3 and 4; then G is F7. (d) 5 sees 2 and misses 3,4, while 6 sees 4 and misses 2
and 3; then (G contains C on vertices 5,2,3,4,6, a contradiction.

Case 3: The square S, intersects C' in two vertices.

By Cases 1 and 2 and by symmetry, we may also assume that the square Sp
intersects C'in two vertices. We may assume Sy N = {3,4} and SpNC =

{5,6}.
Suppose that {3,4} = {5,6}. Then (7 is the graph Djy.

Suppose that [{3,4}N{5,6}| = 1,say 5 =3 and 4 # 6. Thus |C] > 3 and 46 is

an edge. Since (' is a minimal cutset, 4 must see at least one of 7,8. Actually
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vertex 4 must see 8, for otherwise it sees 7 and G — 6 is sufficient. Tikewise, 6
must see 2. If none of 16,47 are edges, then (G —3 is the graph Dy, contradicting
minimality. Tf one or two of 16,47 are edges, (G is the graph Fj or the graph
Fy.

Now suppose that {3,4} N {5, 6} = . Since C' is a minimal cutset, each of the
vertices 5,6 must have a neighbour in {1,2}, and each of the vertices 3,4 must
have a neighbour in {7,8}. Tf 6 sees 2 and not 1 then G — 3 is sufficient, a
contradiction. So, by symmetry, 6 must see both 1,2. Similarly, 5 sees both
1,2, and the two vertices 3,4 see both 7,8. Then G is the graph Fy,. This
completes the proof of Lemma 2. O

A strong cutset of a graph (7 is a cutset (' of (¢ such that (G — (' has at least
two components of size at least two. We then say that C'is a minimal strong
cutset 1f it 18 a strong cutset and 1t does not strictly contain another strong
cutset of (7. Wote that every bad graph contains a 2K5, because a 2 Ko-free bad
graph would be co-triangulated, which 1s impossible. Taking one 2K in a bad
graph and calling ' the set consisting of all the other vertices, we see that (' is
a strong cutset. Therefore we have:

Lemma 3 Fvery bad graph has a strong cutset.

Minimal strong cutsets may be different from minimal cutsets: every minimal
strong cutset contains a minimal cutset, but the converse does not necessarily
hold; however, strong cutsets have a desirable property expressed in the next
lemma. For a cutset (' of (7, let us say that a component R of G — (' is special
if it has size at least two and every vertex of C' has a neighbour in R.

Lemma 4 For every manimal strong cutset C' of a graph (G, there exist at least
two special components in G — C'.

Proof. T.et Ry, Ry be any two components of (7 — (' of size at least two. Sup-
pose indirectly that they are not both special, i.e., some vertex # € (' has no
neighbour in one of Ry, R, say in Ry. Then consider ¢/ = (' —x. Qbserve that
Ry is a connected component of (G — ('’ and that another connected component,
RY, of G — (' contains Ry. Thus (7 is a strong cutset of (7, contradicting the
minmimality of C'. O

Call J a graph with five vertices s,t, u, v, w where su, sw, tu, tw, uv, vw are edges,
st,uw, sv are non-edges, and 1v is optionally an edge or not. See case (iii) in
Figure 4. We will always write J = (5,1, u, v, w) in this order.
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Lemma 5 Tlet G be a weakly triangulated minimally bad graph with no clique
cutset, let C' be a minimal strong cutset of G, and let R be any special component
of G — C. Then one of the following three situations must occur:

(i) RUC contains a square that has one edge in C' and one edge in R, or

(ii) R U C contains a diamond whose two non-adjacent vertices are in C' and
the other two vertices are in R, or

(ii1) RUC contains the graph J = (s,t,u,v,w) with 5,1 in C' and u,v,w in R.

a
@]

@ (i) (iii)
Figure 4: (The dashed line in the J graph indicates an optional edge.)

Proof. We first, observe that ' itself is not a clique, for otherwise any minimal
cutset included in " would be a clique cutset of (7, contradicting the hypothesis.

Let 2 be a vertex in R with the most neighbours in (. T.et S be a special
component of (G — (' different from R (S exists by the preceding lemma). Tet
H be the subgraph of (¢ induced by RUC'US. Since R, S are special, (' is a
minimal cutset of A, and R, S are the two components of H — C.

First suppose that = does not see all vertices of (C. Since R is connected and
special, there exists a path P = »zqzq .- 22z from # = 25 to a vertex z in
C'—N(z), with zy,..., 2 € R. Let us choose a shortest such path. There exists
a vertex a € C'N N(x) — N(xg), for otherwise 2, would have more neighbours
than 2 in C'. Let j be the largest subscript such that ax; is an edge; so 0 < j < k.
Suppose that az is not an edge. By Lemma 1 applied to the graph H, there is a
vertex b € S adjacent to both a and z. But then b, a, 2;, ... 21, 2z induce a hole.
Thus, az is an edge. Tt follows that j = k—1, for otherwise a, 2;, ... 2y, 2z induce
a hole. So we obtain the situation (i), with the square formed by a, z, 24, 25 _1.
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Now suppose that x sees all vertices of (/. The graph G — 2 must be connected,
for otherwise x would be a cutpoint of (7. Note that (' is a cutset of G — x. Tet
D C C be a minimal cutset of G—=z. This 1 is not a clique, for otherwise DU{z}
would be a clique cutset of (7; so there are two non-adjacent vertices s,1 € .
Since S is another special component of G — (7, the subset SU(C' — D) induces a
connected subgraph and thus is included in one component of G — (DU {z}); so
there is a component R’ of G — (DU {x}) that lies entirely in R — 2. By Lemma
1, there exists a vertex z € R’ C R — x such that zs, 2zt are edges. Since R is
connected there 1s a shortest path P = xqxy -+ 2, from 2 = 24 to z = 2, in R.
As before, note that there is a vertex b € G — C'— R that sees both s,t. Tf k < 2,
it is easily seen that C'U R contains either a diamond (induced by s,#, zq, 21)
or the graph J (induced by s,1, zq, 21, 25) as desired for (ii) or (iii). So assume
that k& > 3. Tf 21 sees both s, then s,#, 2q, 21 induced the desired diamond for
(i1). Thus, we may assume that 215 is not an edge. Now, sz5 must be an edge,
for otherwise s, 2q, 2, ..., 2; form a hole, where j is the smallest subscript such
that sz; is an edge (j > 1). Tf tx5 is an edge, then the vertices s,%, 20, 21, 22
induce the graph .J as desired for (iii). Now assume f24 is not an edge. Then
tay is an edge, for otherwise, there is a hole on , 2, 21, 29, 23 ..., 2; for some
j > 3. Now, there is a C5 with vertices b, s, 29, 21,1, a contradiction. 0O

Proof of Theorem 2. As we observed above, all graphs in Figures 1-3 are
bad; so we only need prove the “if” part of Theorem 2. Consider a minimally
bad graph (G. We may assume that (7 is weakly triangulated, for otherwise
(7 is a hole or anti-hole. By Lemma 2, we may assume that (G has no clique
cutset. By Lemma 3, (G has a minimal strong cutset (. This (' is not a clique,
for otherwise any minimal cutset included in C would be clique cutset of (.
Consider two special components A, B of G — C'. By the choice of ', C'is now
a minimal cutset, of the induced subgraph G[C'U A U B]. By Lemma 5, each of
the sets AU, BUC must contain one of the graphs described in (i), (ii), (iii).
Thus there are six cases to consider.

Case 1: Both AU C, BUC contain a square as in (i).

Let us assume that there 1s a square on vertices 1,2,3,4 with 1,2 € A and
3,4 € (', and that there is a square on 5,6,7,8 with 5,6 € " and 7,8 € B.
Since the subgraph of (¢ induced by the two squares is sufficient, it follows that
the vertex-set of G is {1,2,3,4,5,6,7,8}.

Subcase 1.1: {3,4} = {5,6}. Here (G is the graph Dy.
Subcase 1.2: 3 =5 and 4 # 6. Since C is not a clique, 4 misses 6. By Lemma

1, each of A, B contains a vertex adjacent to both 4,6. These two vertices can
only be 1 and 7. Then 6 must see 2, for otherwise (7 — 4 1s sufficient. Tikewise,
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4 sees 8. Thus, (7 is the graph Fs.

Subcase 1.3: {3,4YN{5,6} = 0. Since C' is not a clique cutset, by symmetry we
may assume that 3 misses 5. By Lemma 1, there is a vertex in A that sees both
3,5; this vertex can only be 2. Then 5 must see 4, for otherwise Lemma 1 is
contradicted (as no vertex in A sees 3,4,5). By symmetry, 3 must see both 6, 8.
Then 5 must see 1, for otherwise (G — 3 is sufficient, a contradiction. Tikewise,
3 must see 7. Tf 6 misses 4 then, by LLemma 1, 1 must see 6, and 7 must see
4. But then G — {2,8} is bad, a contradiction. So 6 sees 4. Tf 4 sees 7 but not
8, then G — 6 is sufficient, a contradiction. Tf 4 sees 8 but not 7, then G — 5 1s
sufficient. Hence, by Remark 1, 4 sees both 7,8. By symmetry, 6 sees both 1, 2.
Now (7 18 the graph Fi4.

Case 2: AUC contains a square as in (i), and BUC' contains a diamond as in
(ii).

Let the square be on vertices 1,2,3,4 with 1,2 € A and 3,4 € (', and wher
13 and 24 are the non-edges; let the diamond be on 5,6,7,8 with 5,6 € C
and 7,8 € B, where 5,6 is the non-edge of the diamond. By Lemma 1, there
is a vertex » € A adjacent to both 5,6. Since the subgraph of G induced by
S={1,2,3,4,5,6,7,8, x} is sufficient, (G has no other vertex than those in S.

Subcase 2.1: {3,4} N {5,6} # M. Under this hypothesis and by symmetry we
may assume 3 =5 and 4 #£ 6.

Suppose that 2 sees 6 (thus 2z = 2, for otherwise G — 2 would be sufficient).
Vertex 4 sees 6, for otherwise T.emma 1 is contradicted, as no vertex of A 1s
adjacent to all of 3,4,6. Since (' is a minimal cutset, 4 must have a neighbour
in {7,8}. Tf 4 sees exactly one of 7,8, then (7 is F3 or F4. Tf 4 sees both 7,8,
then (G is Fx5 or Fg.

Now, suppose that 2 misses 6. Then 6 misses 1, for otherwise (¢ contains a Cf
on 6,1,2,3,7. Thus = & {1,2}. But then (¢ — 8 is sufficient, a contradiction.

Subcase 2.2: {3,4} N {5,6} = (0. Tet us first suppose that z = 2. So 1 misses
5 or 6, for otherwise (G — {3, 4} would be sufficient. Without loss of generality,
we assume that 1 misses 6. Tf 6 sees 4 then (¢ — 3 is bad, a contradiction. Thus
6 misses 4, but then TLemma 1 is contradicted because A contains no vertex

adjacent to all vertices in {4,5,6}. Similarly, we would be led to a contradiction
ife=1.

Thus, we have = ¢ {1,2}. Tt follows that each vertex in {1,2} has a non-
neighbour in {5,6}. Vertex 6 must have a neighbour in {1,2}, for otherwise
GG — 7 is sufficient. Similarly, 5 must have a neighbour in {1,2}. Without loss of
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generality, we may assume that 6 sees 2. Then 2 misses 5. Thus, 5 sees 1 and
therefore 1 misses 6. But now (7 contains a C's on vertices 1,2,6,7,5.

Case 3: AUC contains a square as in (1), and B U C' contains the graph .J as
in (14i).

Tet the square be on vertices 1,2,3,4 (13 and 24 are the non-adjacent pairs)
with 1,2 € A and 3,4 € C, and let the graph .J be J = (5,6,7,8,9) with 5,6 € C'
and 7,8,9¢€ B.

Suppose for a moment that {3,431 N {5,6} = @. By the definition of .7, we may
assume that 8 misses 6. But then (¢ — 5 is sufficient, a contradiction. So we
may assume that {3,4} N {4,5} # . Without loss of generality, assume 3 = 5
(and thus 4 # 6). Vertex 3 must see 8, for otherwise (G — 6 is sufficient. By the
definition of .J, 8 misses 6.

Suppose that 2 misses 6. By Lemma 1, there 1s a vertex # € A that sees both
3,6. Note that 2 ¢ {1,2}. Vertex 6 misses 1, for otherwise (G contains a Cl5 on
vertices 6,1,2,3,7. But then G—{7,8} is sufficient, a contradiction. So we may
assume that 2 sees 6.

Since the subgraph (¢ induced by S = {1,2,3,4,6,7,8} is sufficient, G has no
other vertex than those in 5. Vertex 4 must see 6, for otherwise Lemma 1 1s
contradicted, as no vertex in A sees all of 3,4,6. Then 6 sees 1, for otherwise
G — 3 is sufficient.

Since ' 18 a minimal cutset, 4 must see at least one of 7,8,9. Tf 4 sees 8 then it
must see 7 (respectively, 9), for otherwise (G —9 (respectively, G —7) is sufficient.
Then (7 is the graph Fy3. Now, assume that 4 misses 8. If 4 sees both 7,9 then
(G — 6 1s sufficient, a contradiction. Hence and by symmetry we may assume
that 4 sees 7 and misses 9. Thus (7 is the graph Fi5.

Case 4: AUC contains a diamond as in (ii), and BUC contains a diamond as
in (i1).

Let the vertices of the diamond in AUC be 1,2,3,4with 1,2 ¢€ A and 3,4 € C,
where 34 is not an edge. Tet the vertices of the diamond in BU (' be 5,6,7,8
with 5,6 € ' and 7,8 € A, where 78 is not an edge. By symmetry we can
distinguish three subcases.

Subcase 4.1: {3,4} = {5,6}. Here (G is the graph Dy.

Subcase 4.2: 3 =5 and 4 # 6. By Lemma 1, there are vertices » € A,y € B
that see all vertices in {3,4,6}. Since the subgraph of ( induced by S =
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{1,2,3,4,6,7,8,9,z,y} is sufficient, (G has no other vertex than those in S.

Suppose that y & {7,8}. Since B is connected, y sees one of 7,8, say y7 is an
edge. But then G — 8 is sufficient. So it must be that y € {7,8}. Similarly,
r € {1,2}. Without loss of generality, we may assume 2 = 2 (i.e., 2 sees 6), and
y =7 (i.e., T sees 4). Then 6 misses 1, for otherwise (G — 4 would be sufficient.
Tikewise 4 misses 8. Then 4 misses 6, for otherwise (7 contains a C's with vertices
4,1,3,8,6. Now (7 is the graph F.

Subcase 4.3: {3,4YN{5,6} = 0. By Lemma 1, there is a vertex z € A that sees
5 and 6, and there is a vertex y € B that sees 3 and 4. Since the subgraph of
G induced by S = {1,2,3,4,5,6,7,8,x,y} is sufficient, G has no other vertex
than those in S.

Suppose that 2 ¢ {1,2}. Since A is connected, x sees 1 (or 2), but then G — 2
(or GG — 1) is sufficient, a contradiction. So we may assume by symmetry that
r =2 (i.e., 2 sees b, 6). Likewise we may assume that y =7 (i.e., 7 sees 3,4).

Suppose that 4 misses 5. Then 8 misses 4, for otherwise (G — 6 is sufficient.
Similarly, 1 misses 5. Suppose 3 sees 6. If 3 sees 8 then 3 sees 5, for otherwise
(G — 6 18 sufficient. Tf 3 sees 5 then 3 sees 8, for otherwise (7 — 2 is sufficient.
Thus 3 sees 8 if and only if 3 sees 5. Similarly, 6 sees 1 if and only if 6 sees
4. By symmetry, this leads to three possibilities. (a) All of 35,38,61,64 are
edges: then (7 is the graph Fi4. (b) None of 35,38,61,64 are not edges: then G
is the graph Fis. (c) 35,38 are edges and 61,64 are non-edges (or vice-versa):
then (G is the graph Fy4. Now, we may assume that 3 misses 6. 1 must miss
6, for otherwise (G — 4 is sufficient. Similarly, 8 must miss 3. Now the only
potential edges are 35,46; if both are present in (G then there is a (s with
vertices 1,3,5,8,6,4; if both are absent then (7 is the graph Fyg; in the other
two cases, (7 1s the graph Fys.

Now, we may assume that 45 is an edge; by symmetry 35,36 and 46 are also
edges. Then it is straightforward to show that G either contains D; (contra-
dicting minimality) or is one of Fy7, Fig, Fio.

Case 5: AU C contains a diamond as in (ii), and B U C' contains the graph .J
as in (14i).

Let the vertices of a diamond in AUC be 1,2,3,4with 1,2 € A and 3,4 € C,
where 34 is not an edge. Tet the vertices of J = (5,6,7,8,9) in BUC be
5,6,7,8,9with 5,6 € C and 7,8 9 € B.

Subcase 5.1: {3,4} = {5,6}. Here (7 is the graph Fq1 or .
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Subcase 5.2:

{3,4}Nn {5,6}| = 1. Tet us assume that 4 =5 and 3 # 6.

By Lemma 1 there is a vertex o € A (respectively, y € B) that sees all vertices
in {3,4,6}. The vertex-set of G is {1,2,3,4,6,7,8,9,x, y} since these vertices
induce a sufficient subgraph.

Suppose = & {1,2}. Since A is connected, = sees 1 or 2; but then G — 2
(resp. G — 1) is sufficient, a contradiction. Thus we may assume by symmetry
that » = 2 (i.e., 2 sees 6).

Suppose y & {7,9}. Since B is connectd, y sees at least one vertex in {7,8,9}.
Tf y sees 9 (or 7) then G — {7,8} (or GG — {8,9}) is sufficient. Thus, y misses
7,9 and sees 8. By definition of .J, 8 misses 5 or 6; but then G — 7 is sufficient.
Thus we may assume that y = 7, 1.e, 7 sees 3.

Now vertex 6 misses 1, for otherwise (¢ — 3 is sufficient. Vertex 4 sees 8, for
otherwise (7 — 6 1s sufficient; thus 8 misses 6. Then 3 must miss 8, for otherwise
G —{6,9} is Dy. Then 3 misses 9, for otherwise (¢ — 6 is sufficient. Then 3
misses 6, for otherwise 1,3,6,9,4 induce a C5. But then G — {1,4} is sufficient
(it is a Dy), a contradiction.

Subcase 5.3: The vertices 3,4,5,6 are distinct.

As usual Lemma 1 ensures the existence of a vertex x € A (respectively, y € B)
that sees both 5,6 (respectively, both 3,4). As before, one can easily argue that
x = 2. By the definition of .J, we may assume that 8 misses 5. But then G — 6
is sufficient, a contradiction.

Case 6: AUC contains the graph J as in (iii), and BUC contains the graph .J
as in (14i).

Tet the graph Jin AUC be J = (4,5,1,2,3) with 1,2,3€ A and 4,5 € C. Tet
the graph J in BUC be J = (6,7,8,9,10) with 6,7 € (' and 8,9,10 € B. As
usual, we assume there is a vertex x in A seeing 6,7 and a vertex y in B seeing
4,5. For this part, we do not need to show » € {1,2,3} and y € {8,9,10}. We
only need x and y to show that certain subgraphs are sufficient.

Suppose {4,5} = {6,7}, with 4 = 6 and 5 = 7. By the definition of .J we may
assume that 2 misses 5. Tt follows that 9 sees 5 for otherwise (G — 4 is sufficient.
Hence 9 misses 4 by the definition of .J, and thus 2 sees 4, or else G — 5 1s
sufficient. So (7 is the graph Fig.

Next, suppose that [{4,5} N {6,7}| = 1. We may assume 5 = 6. Vertex 2 must
see b, for otherwise (G — 4 is sufficient. Then the definition of J implies that 2
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misses 4. Similarly, 9 must see 5 and miss 7. But now G — 5 is sufficient.

Finally suppose that {4,5}N{6,7} = @. By the definition of .7, we may assume
that 2 misses 5, and that 9 misses 6. Thus G—{4, T} is sufficient, a contradiction.
O

3 More on the class SC

We present here some further results concerning the graphs in the class SC.
First we show that it 1s not a subclass of weakly triangulated graphs obtained
by excluding a finite number of graphs.

For k > 3, we define two graphs @), and Ry as follows. To make @y, start from
a clique on k vertices vy, ..., v,. For each i, add two vertices a;, b; and three
edges v;a;, a;b;, b;v; 1 (all subscripts are understood modulo k); also add edges
from v; to all vertices a;,b; for j & {i—1,4,i4+ 1}. This yields the graph Qy.

To make Ry, start from a clique on k vertices vq,...,v,. For each i (again
modulo k), add vertices a;, b;, ¢; and five edges v;a;, v;b;, a;b;, bic;, c;v;44; also
add edges from v; to all vertices a;,b; for j & {i —1,i}.

Theorem 3 There erist infinitely many weakly triangulated graphs that are not
m the class SC and are minimal with that property.

Proof. Tt is a routine matter to check that the graphs Qr and R are weakly
triangulated, not in the class SC, and that they are minimal with this property.
O

Theorem 4 For each k > 1 there exists a graph i SC, — SCi_4.

Proof. For k = 1, the “domino” graph g is in SC; but not in SCy. For k& = 2,
the graph Fy is in SCq but not in SCy. For k& > 3, it is a routine matter to check
that the graph Qi — aq 18 in SCi_5 but not in SCi,_3. O

Lemma 6 Tlet (G be a weakly triangulated graph with no clique cutset. If GG is
mimamal non-SC, then every verter of G lies in a square.
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Proof. Tf (G is not connected then each component I of G must contain a
square, for otherwise D contains a simplicial vertex that remains simplicial in
G; now the minimality of (G implies that (G is exactly the union of two disjoint,
squares and we are done. Thus we may assume that (G is connected. Tet »
be any vertex in (7. Suppose that x is a universal vertex (i.e., 2 sees all of
G — r). By the minimality of (7, there is a simplicial or cosimplicial vertex »
in (G — x; but then it is easy to see that v would be a simplicial or cosimplicial
vertex of (7, a contradiction. So z is not, universal. So N(z) is a cutset, and it
containg a minimal cutset, C'. Note that one component A of (G — (' contains all
of {} U N(z2) — C'. By the hypothesis C'is not a clique, hence it contains two
non-adjacent vertices u, v. Let B be a connected component of G — ' such that
r ¢ B. But Lemma 1 there is a vertex y € B that sees both u,v. Now 2, u, v,y
induce the desired square. O

Lemma 7 If G has no 3Ky and every two 2K4’s meet in an edge, then all the
2K5’s meet in the same edge.

Proof. Assume if possible that there are three distinct sets of vertices ', 1) and
I, each inducing a 2K5 in (7 such that 2z and yw are edges of (', xzz and uv
are edges of 1D, and yw and st are edges of F.

Case 1: {u, v} N{y,w} # . Then F must meet D in xz since uv # yw
(otherwise €' = D). This implies F' = C, a contradiction.

Case 2: {u,v} N {y,w} = @ and similarly {s,#} N {x,2} = §. Since F must
meet 1) in an edge, we must have uv = st. Thus C, D, F induce a 3K5, a
contradiction. O

The following lemma is trivial and so we omit the proof.

Lemma 8 If (G has a 3K and every two 2Ky ’s meet in an edge, then GG has
no other 2Ky ’s than those induced by the 3K,. O

Theorem 5 If (G is a weakly triangulated graph such that any two squares meet
m a non-edge, then G is an SC graph.

Proof. By induction on the number of vertices. The induction hypothesis al-
lows us to assume that (G is minimal non-SC. Tf (G is not connected then each
component (' of (7 must contain a square, for otherwise (' contains a simplicial
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vertex which remains simplicial in G. But then (¢ would have two completely
disjoint squares, a contradiction. So, we may assume that (G is connected.

Now, suppose that (7 contains a clique cutset C'. Tet A, B be two components of
G —C. M G[AUC] does not contain a square then by Dirac’s theorem, there is
a simplicial vertex in A and this vertex remains simplicial in G. Thus G[AU (]
must contain a square; and similarly, G[B U (] must contain a square. Since
is a clique, these two squares cannot meet in a non-edge, a contradiction. We
may assume that (¢ contains no clique cutset.

Case 1: GG contains no 3K5. By Lemma 7, all Cy’s meet, in the same non-edge
xy. We may assume that (¢ contains a C4 axby; otherwise (7 is triangulated
and we are done. By LLemma 6, we may assume that each vertex u of (7 lies in a
square S(u). Since S(u) must meet azby at zy, u must see both x,y. But this
implies that # and y are cosimplicial in 5.

Case 2: (G contains a 3K5. Let F be the set of vertices inducing this 3K, in
(7. By Lemma 6 every vertex in (¢ lie in a square, but by Lemma 8 there is no
other square in (7, 1e. G = F'. (G 1s clearly in SC. O

The following theorem was used to prove Theorem 5. Tt is not needed anymore
but it seems to be interesting in its own right, as it has some other consequence
below.

Theorem 6 Fuvery non-empty minimal cutset of a co-triangulated graph con-
tains a co-simplicial verter.

Proof. Consider a non-empty minimal cutset ' in a co-triangulted graph G.
We use induction on the number of vertices in (.

Case 1: C'= {x}. Since at most one component is nontrivial in G—C, if 2 is not,
co-simplicial, we must have an edge yz in one component of G — C' with x not,
adjacent to both y and z. Now if w is a neighbor of z in any other component,
then z,y, z, w induce a 2K, in (7, a contradiction.

Case 2: (C is the join of two parts, say C7 and (5. Since (7 remains a minimal
cutset in (G — (5, by induction ' contains a co-simplicial vertex in G — (y
which remains co-simplicial in (.

Case 3: C'is connected. Since (G is weakly triangulated, by Lemma 1, each
component of (G — (' has a vertex joined to all the vertices of . Tf every
connected component of (G — (' is trivial, then, by the induction hypothesis
C' has a co-simplicial vertex, which clearly is also co-simplicial in . Tf one



This paper appeared in: Discrete Applied Mathematics 138 (2004), 117-132

component R of (G — (' is non-trivial, pick a vertex y € R joined to all of (U,
and consider the graph G — y. If C' contains a nonempty minimal cutset of
(¢ — y, then by the induction hypothesis it also contains a co-simplicial vertex,
which is also co-simplicial in (. We may assume now that G — y is disconnected
with exactly one non-trivial component. This non-trivial component contains
all vertices of G — R and possibly some vertices of R. Tet T be the set of all
isolated vertices in (G —y. Now (' is a minimal cutset of G —T. By the induction
hypothesis ' contains a co-simplicial vertex, which is also co-simplicial in 5.
O

A graph is perfectly orderable [3] if it admits a linear ordering v1 < vy < -+ < v,
on its vertices such that, for every induced subgraph H of (7, the greedy colour-
ing algorithm applied on H along that ordering produces an optimal colouring
of the vertices of H. Such an ordering is called a perfect ordering. A homo-
geneous set in a graph (7 is any subset of vertices S such that every vertex in
(G — S either sees all vertices of S or misses all vertices of §. Two simple facts
are worth recalling:

(1) If a graph G has a simplicial verter v and G — v is perfectly orderable, then
(7 1s perfectly orderable. Tndeed, it suffices to take any perfect ordering of G — v
and to add » last to obtain a perfect ordering of (G. Tikewise, if a graph G
has a co-simplicial verter v and G — v 1s perfectly orderable, then (G 1s perfectly
orderable. Putting v first and then adding a perfect ordering of G — v yields a
perfect ordering of G-

(2) Let G be a graph that has a homogeneous set S. Suppose that the graph
GG/S obtained by coniracting the set S into one vertexr is perfectly orderable,
and that the induced subgraph ([S] is perfectly orderable. Then G is perfectly
orderable. Tndeed, taking any perfect ordering of (/S and replacing the vertex
representing S by the vertices of S given in a perfect ordering of (G[S] yields a
perfect ordering of G-

Theorem 7 If in every induced subgraph of a graph GG each minimal cutset is
etther a clique or contains a co-simplicial verter, then (G is perfectly orderable.

Proof. We may assume that (¢ is connected and that it has no simplicial or co-
simplicial vertex v, for otherwise we can add » to any perfect ordering of G — v,
respectively last or first, as in fact (1) above. So every minimal cutset of 7 is
a clique. For any cutset ', let. f((') denote the smallest size of a component
of G — C. Picking a minimal cutset C' with smallest f(('), we show that the
component R of G — C of size f(C') is a homogeneous set; more precisely, every
vertex in (' is adjacent to every vertex in R. Now, the result follows from the
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existence of this homogeneous set, from fact (2) above, and from the induction

hypothesis. O

The class of graphs described in Theorem 7 contains all triangulated graphs and

all cotriangulated graphs. Can we characterize them?
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