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Abstract. The Steiner tree problem is to find a shortest sub-
graph that spans a given set of vertices in a graph. This problem
is known to be NP-hard and it is well known that a polynomial time
2-approximation algorithm exists. In 1996 Zelikovsky [11] suggested
an approximation algorithm for the Steiner tree problem that is called
the relative greedy algorithm. Till today the performance ratio of this
algorithm is not known. Zelikovsky provided 1.694 as an upper bound
and Gröpl, Hougardy, Nierhoff and Prömel [6] proved that 1.333 is a
lower bound. In this paper we improve the lower bound for the per-
formance ratio of the relative greedy algorithm to 1.385.
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1 Introduction

The Steiner tree problem is to find a shortest subgraph that spans a given
set of vertices in a graph. Karp [8] has shown that this problem is NP-
hard. By a result of Bern and Plassmann [2] it follows from [1] that the
Steiner tree problem in graphs is even APX-complete. This means that
unless P=NP there exists some constant c > 1 such that no polynomial
time approximation algorithm for the Steiner tree problem can exist that
has a performance ratio smaller than c.
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It is well known that via the computation of a minimum spanning tree
one can get an approximate solution for the Steiner tree problem in graphs
that has at most twice the length of an optimal solution [5]. For a long
time no better approximation algorithm for the Steiner tree problem in
graphs was found until in 1990 Zelikovsky [10] suggested an algorithm with
a performance ratio of 11/6. Nowadays several approximation algorithms
for the Steiner tree problem are known that have a performance ratio better
than two. The currently best one is due to Robins and Zelikovsky [9] and
achieves a performance ratio less than 1.550.

In 1996 Zelikovsky [11] proposed an approximation algorithm for the
Steiner tree problem that is called the relative greedy algorithm. He proved
that this algorithm has a performance ratio better than 1.694. Till today it
is not known what the precise performance ratio of Zelikovsky’s algorithm is.
Better knowledge of this value is of great interest as it might turn out that
the relative greedy algorithm has a performance ratio below 1.550. Gröpl,
Hougardy, Nierhoff and Prömel [6] provided 1.333 as a lower bound for this
value. In this paper we will improve this lower bound to 1.385.

The paper is organized as follows. In Section 2 we introduce some general
notations and in Section 3 we present details of the relative greedy algorithm.
Section 4 contains our proof for the new lower bound. We close in Section
5 with some concluding remarks.

2 Preliminaries

Given a graph G = (V,E) with edge lengths w : E → R+ and a subset
R ⊆ V of terminals a Steiner tree is a tree in G that contains all vertices
of R. The length of a Steiner tree is the sum of the lengths of the edges
contained in it. A shortest possible Steiner tree is called a Steiner minimal
tree. We denote it by SMT and its length by smt.

An approximation algorithm with performance ratio c is an algorithm
that for all possible instances computes a solution that is at most by a factor
c larger than the optimal solution. All known approximation algorithms for
the Steiner tree problem that have a performance ratio better than 2 use the
concept of k-Steiner trees. This idea was introduced by Zelikovsky [10]. A
tree is full, if all leaves are terminals and all inner vertices are non-terminals.
If a tree is not full it can be decomposed into several full subtrees called full
components which are edge disjoint. If each of the full components has
at most k leaves, these components form a k-Steiner tree for this set of
terminals. A shortest possible k-Steiner tree is called a minimal k-Steiner
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tree and is denoted by SMTk and its length by smtk. Borchers and Du [3]
have shown that for large enough k the ratio between smt and smtk tends
to 1:

Theorem 1 (Borchers and Du [3]) For all instances of the Steiner tree

problem holds: smtk ≤
(

1 + 1
log k

)

· smt.

For a given graph G = (V,E) with edge lengths w : E → R+ and
terminals R ⊆ V we define the terminal distance graph as a complete graph
with vertex set R. The length of an edge in the terminal distance graph is
defined as the length of a shortest path between these two terminals in G.
A minimal spanning tree in the terminal distance graph is denoted by MST
and its length by mst. It is well known that mst ≤ 2 · smt holds [5]. By
replacing the edges of the MST in the terminal distance graph by the paths
in G that defined the edge lengths one gets a Steiner tree in G which is a
2-approximation of the Steiner minimal tree in G.

3 The Relative Greedy Algorithm

The main idea of the relative greedy algorithm (see Figure 1) is to start
with a Steiner tree that is obtained via the minimum spanning tree in the
terminal distance graph. This solution is successively improved by adding
certain Steiner minimal trees on at most k terminals of R and destroying
the resulting cycles. Note that for a constant number of terminals a Steiner
minimal tree can be computed in polynomial time [4].

Relative Greedy Algorithm G = (V,E), R ⊆ V
i := 0
while mst(R/t1, . . . , ti) 6= 0

choose ti+1 ⊆ R, |ti+1| ≤ k, so that

fi(ti+1) := smt(ti+1)
mst(R/t1 ,...,ti)−mst(R/t1 ,...,ti+1)

is minimal
i := i + 1

imax := i
return =

⋃imax

i=1 SMT (ti)

Figure 1: The relative greedy algorithm

For a subset ti of the terminals R we denote by SMT (ti) a Steiner
minimal tree for these terminals and by smt(ti) its length. For subsets
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t1, t2, . . . , ti of terminals we define mst(R/t1, . . . , ti) as the length of a min-
imal spanning tree in the terminal distance graph to which for each set
tj , 1 ≤ j ≤ i one has added edges of length 0 completely connecting the ter-
minals in tj . For a tuple ti+1 of terminals the difference mst(R/t1, . . . , ti)−
mst(R/t1, . . . , ti, ti+1) is the change in length that is obtained by adding
a Steiner minimal tree on terminals ti+1. The relative greedy algorithm
chooses in each iteration a tuple ti+1 that maximizes this difference in re-
lation to the length smt(ti+1), i.e. it chooses a tuple t that minimizes the
function

fi(t) :=
smt(t)

mst(R/t1, . . . , ti) − mst(R/t1, . . . , ti, t)
. (1)

The relative greedy algorithm outputs the union of the Steiner minimal
trees of the chosen tuples ti as the full components of the k-Steiner tree. We
denote by RGAk a solution returned by the relative greedy algorithm that
is obtained by considering tuples of size at most k and by rgak its length.
Zelikovsky [11] proved that the relative greedy algorithm has a performance
ratio of less than 1.694 for sufficiently large k.

4 Lower Bounds

In [6] a lower bound for the performance ratio of the relative greedy algo-
rithm arbitrary close to 4

3 was presented. First, we present a simpler example
yielding a lower bound of 41

30 − ε which is extended in a second step to get a
larger lower bound.

The fist instance Gk is shown in Figure 2. It contains 4k terminals
w1, . . . , w4k, three special vertices Ta, Tb, and Tc, 2k vertices y1, . . . , y2k

and k vertices z1, . . . , zk. Each terminal w4i−3 is connected to Ta and each
terminal w4i and the terminal w1 are connected to Tb by an edge of length x
(the value of x will be specified later). Moreover each vertex yi is connected
to the terminals w2i−1 and w2i by edges of length 1, the vertices zi are
connected to y2i−1 and y2i by edges of length 1/2 and the vertices zi are
connected to Tc by edges of length 1 for 1 ≤ i ≤ k.

Lemma 1 For every ε > 0 and x = 21
10 − ε it holds lim

k→∞

rga4k(Gk)
smt4k(Gk) = 41

30 − ε.

Proof. The value of x will be chosen in such a way that the relative
greedy algorithm is forced to choose the stars with centers Ta and Tb in the
first two steps. In all further steps it will select full components of size 2
only. The Steiner minimal tree consists of the binary tree with root Tc and
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Figure 2: Lower bound (Gk, k = 16)

has length 6k. In the following we will assume x > 2. This assumption is
justified later.

The dashed edges in Figure 2 form a minimum spanning tree in the
terminal distance graph and have length 7k + (k − 1) · 2x.

Let ta and tb denote the set of terminals that are connected to Ta and
Tb respectively. By tc we denote the set of all terminals in Gk. We want the
relative greedy algorithm to select the star with center Ta as the first full
component. This requires that the inequality

f0(ta) =
kx

(k − 1) · 2x
≤

(k + 1)x

(k − 1) · 2x + 3
= f0(tb) (2)

holds, which is true for k ≥ 2x
2x−3 . In addition it must be the case that

f0(ta) =
kx

(k − 1) · 2x
≤

6k

7k + (k − 1) · 2x
= f0(tc) (3)

which is true for k ≥ 12−2x
5−2x . Note that for no other subset of terminals the

function f0 can be smaller than f0(ta). This shows that the greedy algorithm
chooses the star with center Ta in the first step. For the second step, using
symmetry and monotonicity of the function fi, it is enough to consider the
subsets t1 = {w1, w2, w3, w4}, t2 = t1 ∪ {w4i−1|1 ≤ i ≤ k} ∪ {w4i|1 ≤ i ≤
k}, t3 = t2 ∪ {w4i−2|1 ≤ i ≤ k} and tb.
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The relative greedy algorithm chooses tb in the second step if

f1(tb) =
(k + 1)x

3k
≤ min (f1(t1), f1(t2), f1(t3))

= min

(

5

7
,
3.5 · k + 2.5

5 · k + 2
,
5 · k + 1

7 · k

)

=
7k + 5

10k + 4
for k ≥ 15. (4)

If ε > 0 and x is chosen as 21
10 − ε then for sufficiently large k the relative

greedy algorithm will choose ta and tb in the first two steps. In all remaining
steps the relative greedy algorithm chooses a full component of size two.
Therefore the total length of the Steiner tree returned by the relative greedy
algorithm is

k · x + (k + 1) · x + 2k · 2 = 4k + x + 2kx. (5)

Setting x = 21
10 − ε we get as the ratio between the solution found by the

relative greedy algorithm and the optimal solution:

4k + 21
10 − ε + 2k( 21

10 − ε)

6k
=

41

30
−

ε

3
+

21 − 10ε

6k
(6)

which tends to 41
30 − ε

3 for k → ∞. �
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Figure 3: Improved lower bound (Gk,l, k = 3, l = 8)
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The second lower bound is obtained by constructing an instance Gk,l

which places the instance Gk into a grid. The instance Gk,l consists of
an 4k × l grid of terminals where the last terminals of each column have
been identified as one terminal. For each column of terminals the graph
Gk − Tb − Tc is added, while the terminals of each odd row (except for row
4k − 1) and the identified terminal are connected alternately by stars with
center Bi and Ai (see Figure 3).

The edges which are incident to the vertices with degree k have weight
y. The identified edges with weight 0.5 in Gk have weight x. The weights
ai = ai(k, l, x, y) and bi = bi(k, l, x, y) of the edges incident to Ai resp. Bi

will be specified later but assume here that ai > 1+x+y, max{ai} < min{bi}
and the sequences ai and bi are monotone increasing. Every other edge has
weight 1. Let wi,j denote the terminal in the ith column and jth row and
N(Ai) the leaves of the star ai.

The idea is that in the instance Gk,l the solution of the relative greedy
algorithm consists of all stars with center Ai and Bi and all full components
of size two. The optimal solution consists of the vertical trees. This will be
proved in the following theorem.

Theorem 2 The performance ratio of the relative greedy algorithm is not
better than 1.385.

Proof.
Since bj > ai > 1 + x + y the minimum spanning tree has length

mst = ((6 + 2x)k + 2(1 + x + y)(k − 1)) l. (7)

The change in length of a minimun spanning tree after selection of a star
Ai ∪ N(Ai) is 2(1 + x + y)l. Now we have to find the minimizing vertical
component after the stars (A0 ∪ N(A0))∪ . . .∪ (Ai−1 ∪ N(Ai−1)) have been
selected. For a fixed h with 1 ≤ h ≤ l let Sh = {wi,h|1 ≤ i ≤ 4k}. For the
ith step, using symmetry and monotonicity of the function fi, it is enough
to consider the subsets Si,1

h = Sh\({w4j,h|1 ≤ j ≤ i} ∪ {w4j−1,h|1 ≤ j ≤ i})

and Si,2
h = {wj,h|4i + 1 ≤ j ≤ 4k}.

For the selection function of N(Ai) we get

fi(N(Ai)) =
l + 1

l
·

ai(k, l, x, y)

2(1 + x + y)
≤ min(fi(S

i,1
h ), fi(S

i,2
h ))

= min

(

(4 + 2x + y)k − (2 + x)i
mst

l − (4 + 2x)i
,
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(k − i)(4 + 2x + y)

(k − i)(6 + 2x) + (k − i − 1)(2 + 2x + 2y)

)

= fi(S
i,1
h ). (8)

Therefore we can specify the value of

ai(k, l, x, y) =
l

l + 1
·
2(1 + x + y) ((4 + 2x + y)k − (2 + x)i)

mst
l − (4 + 2x)i

. (9)

Notice that ai is monotone increasing. After all A-stars are selected the
argument for selecting the stars with center Bi is similar. Only the change
in length of a minimun spanning tree after selection of a star Bi ∪ N(Bi)
has changed and is 2 + 2x.

Again using monotonicity, the minimizing vertical component is

Si,3
h = {w4j+κ,h|j ≤ i < k − 1, 1 ≤ κ ≤ 2} ∪ {w4k,h, w4k−1,h}

after every A-star and the stars Bj ∪ N(Bj) with j < i < k − 1 have been
contracted. For the selection function of N(Bi) we get

fk−i+1(N(Bi)) =
l + 1

l
·
bi(k, l, x, y)

2 + 2x

≤ fk−i+1(S
i,3
h )

=
(k − i)(2 + x + y) + 2 + x

(k − i)(4 + 2x) + 2
. (10)

Therefore we can specify the value of

bi(k, l, x, y) =
l

l + 1
· 2(1 + x) ·

(k − i) · (2 + x + y) + 2 + x

(k − i) · (4 + 2x) + 2
. (11)

Notice for the last star Bk−1 ∪ N(Bk−1) the component Sk−1,3
h consists

of only four terminals and there is no edge with costs y in SMT (Sk−1,3
h ).

So we get

bk−1(k, l, x, y) =
l

l + 1
· 2(1 + x) ·

2 + x

3 + x
. (12)

Notice that bi is monotone increasing.
After every star Ai ∪ N(Ai) and Bi ∪ N(Bi) is selected the algorithm

has to choose full components of size two. This can only be satisfied if
4k < min((2 + 2x + y)k + 1, (3 + 2x)k), because otherwise the algorithm
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chooses the components {w2i,h|1 ≤ i ≤ 2k} ∪ {w4k,h} resp. {w4i+j,h|0 ≤ i <
k, 2 ≤ j ≤ 4}.

If every contraint is satisfied we get a lower bound for the performance
ratio of

4kl + (l + 1)
∑k−2

i=0 ai + (l + 1)
∑k−1

i=0 bi

(4 + 2x + y)kl
. (13)

This is the case for the values k = 5, l ≥ 15, x = 0.8688 and y = 0.063
and so we get a lower bound of 1.385383. �

5 Concluding Remarks

Further improvement on the performance ratio for the relative greedy algo-
rithm is still an open problem and the gap between our new lower bound
1.385 and 1.694 remains large. Especially it would be very interesting to
know whether the relative greedy algorithm has a performance ratio better
than 1.550.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof veri-
fication and hardness of approximation problems, J. ACM 45 (1998),
501–555.

[2] M. Bern, P. Plassmann, The Steiner problem with edge lengths 1 and
2, Inform. Process. Lett. 32 (1989), 171–176.

[3] A. Borchers, D.-Z. Du, The k-Steiner ratio in graphs, SIAM J. Comput.
26 (1997), 857–869.

[4] S. Dreyfus, R. Wagner, The Steiner problem in graphs, Networks 1
(1972), 195–207.

[5] E.N. Gilbert, H.O. Pollak, Steiner minimal trees, SIAM J. Appl. Math.
16 (1968), 1–29
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