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Abstract. We present a new analysis of the greedy algorithm for the problem
of finding a minimum spanning subset in

�
-polymatroids. This algorithm has

a performance ratio of approximately ��� � , which is best possible for large
�

.
A consequence of this algorithm is a polynomial time approximation algorithm
with approximation ratio ��� � for finding minimum weight spanning subhyper-
graphs in � ���
	�� -restricted hypergraphs. This generalization of the well-known
set cover problem naturally arises when computing Steiner minimum trees. Other
applications of the algorithm include the rigidity problem in statics.

1 Introduction

Given a set 
 with � elements and a collection of weighted subsets of 
 , the set cover
problem asks for a minimum weight subcollection of these subsets that cover all ele-
ments of 
 . This problem is known to be NP-hard and a result of Feige [5] indicates
that set cover cannot be approximated in polynomial time better than ����� . Chvátal [3]
showed that a certain variant of the greedy algorithm yields an ������� -approximation
algorithm for � -set cover, i.e., the set cover problem where the size of all subsets is
bounded by � . Here, ������� denotes the � -th harmonic number, i.e., ��������� �"!#%$'&'(*),+ .
The result of Feige and the fact that ���-�.�/�0�%���21435� ( � imply that the greedy al-
gorithm is the best possible polynomial time approximation algorithm for set cover. A
straightforward reduction from the minimum vertex cover problem with bounded de-
grees [14] shows that � -set cover is APX-complete for every constant �7698 , while : -set
cover (also known as the edge cover problem) can be solved exactly in polynomial time.

The set cover problem can also be viewed as a problem in hypergraphs: Given a
hypergraph ; with weights on its edges, find a minimum weight subhypergraph of ;
that covers all vertices of ; . The minimum spanning sub(hyper)graph problem (MSS)
is a variant of this problem, where the subhypergraph is required to be connected. A
hypergraph is called � -restricted if the size of all hyperedges is bounded by � . In this<
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paper, we present a new analysis for the greedy �����?> ( � -approximation algorithm for
the minimum spanning subhypergraph problem in � -restricted hypergraphs ( � -MSS).
Note that our analysis naturally generalizes Chvátal’s analysis for the � -set cover prob-
lem, which is a special case of ���?1 ( � -MSS: An optimum solution to � -set cover for a
hypergraph ; is an optimum solution to ���@1 ( � -MSS in the hypergraph that is obtained
from ; by adding the same new vertex to all hyperedges in ; .

There is a close connection between the � -MSS problem and the problem of com-
puting Steiner minimum trees: Given a graph AB�C��DFE=GH� with terminal set 
JIKD a� -restricted hypergraph on the vertex set 
 can be generated by taking as hyperedges all
subsets of 
 of size at most � and weighting such a subset with the length of a Steiner
minimum tree for this subset. Note that for constant � , these weights can be computed in
polynomial time. A minimum spanning subgraph in that � -restricted hypergraph yields
a Steiner tree in A . It has been shown [4, 2] that for sufficiently large � the length of this
Steiner tree comes arbitrarily close to the length of a Steiner minimum tree. Therefore,
good approximation algorithms to the � -MSS problem yield also good approximation
algorithms for the Steiner tree problem. All recent approximation algorithms for solving
the Steiner tree problem [17, 19, 1, 20, 15, 9, 8, 16] are based on this approach.

The approximation algorithm for � -MSS uses a similar greedy strategy as Chvátal’s
algorithm for � -set cover. However, the analysis needs some new idea. The main reason
for this is that the connectedness of the subhypergraph – as required in a solution to� -MSS – is a global property that cannot be decided locally. By starting with an empty
subhypergraph and greedily adding hyperedges, the number of components decreases
by a certain amount. The reduction of the number of components is a map defined for
each set of hyperedges. This map has a well known combinatorial property: It is the
dimension function of a polymatroid. This shows that the � -MSS problem can be for-
mulated as the problem of finding a minimum spanning set in a certain polymatroid.
The general concept of polymatroids provides a natural way to shape the arguments
needed for the analysis of the greedy algorithm. An analysis based on linear program-
ming duality was given by Wolsey [18]. Our new analysis relies on the fact that each
polymatroid can be represented by a system of subsets of an appropriately chosen ma-
troid. The above mentioned result of Feige [5] implies that the approximation ratio of
the greedy algorithm for spanning sets in � -polymatroids and for � -MSS is best possi-
ble for large � . See also Fujito’s survey article [6] for a related LP-based dual greedy
algorithm with an incomparable performance ratio.

In the next section, polymatroids and the spanning set problem for them are in-
troduced. We also describe more formally how the spanning subgraph and set cover
problems reduce to it. As another application of polymatroid theory for which an ap-
proximation algorithm is useful, we sketch the problem of finding a minimum cost set
of joints in a bar and joint structure that make it rigid. The remaining sections contain
our new analysis of the greedy algorithm.
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2 Polymatroids and Applications

A polymatroid LB�M�-�NEPOQ� consists of a finite set � and a dimension function O . The
dimension function maps each subset of � to an integer. It is nonnegative, monotone
increasing, and submodular, i.e.RTS EPUVIW�JXHOY� S[Z UH�\1�OY� S[] U/�_^MOY� S �`1�OY�-U/�ba
If OY�dc*e\f,�?^g� for all eWh�� , then L is called a � -polymatroid. A ( -polymatroid is a
matroid.

A set
S I � is called a spanning set, if OY� S �T�VO����i� . Given a weight functionj X��lknm , the minimum spanning set problem is to find a spanning set

S
of L that

minimizes j � S �oXp� �rqtsvu j �xw`� .
Let ;M� ��D�EP�i� be a connected � -restricted hypergraph with edge weights j X��ykm . (That is, z e'z_^{� for e|h}� .) Then the � -restricted minimum spanning sub-

hypergraph problem ( � -MSS) is to:

Minimize �r~#�$.& j ��e # �
such that e & E�a�a�a�EPe ~ hN� ,� DFE�c*e & E�a�a�a�EPe ~ f,� is connected.

A minimum spanning tree for a graph can be found using the greedy algorithm in the
graphic matroid. In a similar way, polymatroids are related to the minimum spanning
subhypergraph problem.

The edge set of a minimum spanning tree is minimum-weight inclusion-maximal
circuit-free, as well as a minimum-weight spanning set. In hypergraphs, a minimum-
weight spanning edge set needs no longer be circuit free; a spanning tree might not
even exist. Hence the minimum spanning tree problem has two generalizations for hy-
pergraphs: one can search for an inclusion-maximal circuit-free set as well as for an
inclusion-minimal spanning set of hyperedges. Both problems have a counterpart for
polymatroids:

Firstly, one can ask for a minimum-weight inclusion-maximal circuit-free set in a
polymatroid. A subset

S
of a polymatroid is circuit-free if OY� S ��� �r� svu OY��eb� . This

can be used, e.g., to find a common independent set of � matroids, since the sum of �
matroid rank functions is the dimension function of a � -polymatroid. Korte and Haus-
mann [10] have shown that the greedy algorithm yields a � -approximation for the latter
problem. Secondly, one can look at minimum-weight spanning sets in polymatroids,
which is the subject of this paper.

The minimum spanning subhypergraph problem in ���H1 ( � -restricted hypergraphs
reduces to the minimum spanning subset problem in � -polymatroids in the following
way: Given a hypergraph ;��{��DFE=�i� , consider the complete graph A�����D�EPGH� ,G � ��� � � , on the same vertex set and denote its graphic matroid by ��G�E��t� . Note that the
set of graph edges contained in a hyperedge e has rank � ��� � � ��� �Bz e'zv> ( , the number
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of edges of a spanning tree for e . Therefore, we obtain a � -polymatroid �-�NEPOQ� if we
put O�� S ��Xp��� �Q� c � � � � z�e�h S f � for

S I"� . The spanning sets of the polymatroid�-�2E=O�� correspond one-to-one to those of the hypergraph ��DFE=�i� .
Another application of the spanning set problem in polymatroids is the problem of

finding a minimum cost set of joints in a bar and joint structure that make it rigid. We
sketch this problem here to give an application that is apparently different from the hy-
pergraph spanning set problem. We follow the exposition of Lovász and Plummer [12]
and refer the reader there both for details and for other applications of polymatroid
theory.

A bar and joint structure in dimension � is a graph A�� ��D�EPGH� , where DVI�m ! . It is
a model for the statics of buildings and other constructions. The vertices represent joints
and the edges represent bars connecting these joints. Such a bar and joint structure is
said to be rigid, if no m ! -motion other than translation and rotation is possible unless
bars are stretched or compressed. Two questions naturally arise: Can one tell whether a
given structure is rigid and, if not, how can it be fixed? Assume that we are able to “pin
down” every vertex in m ! at given cost. Obviously, pinning down every vertex makes
the structure rigid. Our algorithm can be used to approximate the minimum cost vertex
subset that needs to be pinned down:

Let �.��A5E=L�� denote the “degree of freedom” of A with L�I4D pinned down (then
rigidity means ���r� ). Let O���L���X����'�-A5E��v�t>/�'�-A5EPL�� . Then ��DFE=O�� is a � -polymatroid,
and spanning sets correspond one-to-one to vertex subsets whose pinning-down makesA rigid.

As already mentioned in the introduction, the � -set cover problem reduces to the����1 ( � -restricted minimum spanning subhypergraph problem by adding a common
point to all sets. An instance transformation in the reverse direction is unknown. How-
ever we can lift Chvátal’s analysis of the greedy algorithm for set cover to MSS.
The dimension of a set of hyperedges

S�� � is the maximal size of a forest � �� c � � � ��z*e h S f . Intuitively, the edges in � correspond to the points of a set cover in-
stance which are covered by

S
. This does not yield an instance transformation, because

there are many possibilities to choose � . Instead, we use the polymatroid properties to
“deform” the algorithmic solution incrementally into an optimal one, while keeping the
weights under control.

3 The Greedy Algorithm

We study the following variant of the greedy algorithm for the weighted spanning subset
problem in a polymatroid ���NE=O�� .
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GREEDY WEIGHTED SPANNING SET ���NE=O��
Init:

S¢¡ ��£
While O�� S �o¤�OY�-��� doS¥¡¦S[]"§�¨P©tª5« � ¬ j ��eY�O � S�] c,e`f � >�OY� S � c*e\f � �C­ ;

Output
S

.

In the rest of the paper we shall prove the following

Theorem 1. Let L��K���NE=O�� be a � -polymatroid, and let j X®�0klm . If ¯�°.± denotes
the output of GREEDY WEIGHTED SPANNING SET �-�2E=O�� and ²´³Fµ is a minimum
weight spanning set of L thenj �-¯�°'±���^¶�������.· j �¸²´³Fµ��Ya
In other words, GREEDY WEIGHTED SPANNING SET is an ������� -approximation.

4 Analysis

Let �JX��[OY�-�i� and assume that ¯�°'±0�¹c�º & E�a�a�a�E�º ~ f , »¼h¾½ , where º # is the + -th
element picked by the algorithm. We may assume without loss of generality that j is
nonnegative.

Helgason [7], McDiarmid [13], and Lovász [11] have shown that each polyma-
troid can be obtained from some matroid ¿¦�0��G�E��t� by the following construction:
An element e of the polymatroid corresponds to some À � I0G , such that OY� S �7�� �Q� � svu À � � . For simplicity we identify e and À � , i.e. we assume that e�I"G for alleÁhÁ� and that O�� S �F�"��� � S � for all

S I�� . Then Lg�g�-�2E=O�� is a � -polymatroid
for �Â� ª�§,Ã � svÄ ����eY� . In the following, we assume that L and ¿ are related in this
way.

Let 
bÅHX��JÀ�Å/X���� and for + � ( E�a�a�a�E=» let 
 # be the extension of 
 #xÆ\& to a basis
of À # X�� � c�º & E�a�a�a�EÇº # f . It is an essential property of matroids that this always works
and since ¯T°.± is a spanning set, 
JXp�V
 ~ is a basis of G . Let È # X��Mz 
 # z and denote
the elements of 
 by É�Ê , ËH� ( E�a�a�a�E=� , such that 
 #`Ì 
 #-Æ`& ��c�É�Í¸ÎxÏ®Ð¸Ñ & E�a�a�a�EPÉ�ÍdÎPf .

For the optimum solution let Ò I � ²´³oµ be another basis of G . For every ÓÂh2Ò
choose a ÔT��Ó\��hi²´³Fµ such that Ó�h2Ô´��Ó\� . Observe that, for all e2hi²´³oµ , Ô Æ`& ��eY� is
independent, and therefore ÕÕ Ô Æ`& ��eb� ÕÕ ^[����eY��^¹�ba (1)

In order to compare the two solutions we need a deformation Ö of 
 to Ò , i.e.Ö�X®
�×|Ò is a bijection such that, for every ËH�r�ØE�a�a�a�E�� ,Ò Ê X��¶Ò Ì Ö � c�É & E�a�a�a�E=É Ê f � ] c*É & E�a�a�a�EPÉ Ê f (2)
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is a basis for G . We define that deformation Ö incrementally: Let Ò\ÅNX��ÙÒ . For eachË � ( E�a�a�a�E=� there are two possibilities: If É�Ê7hÂÒ�Ê Æ`& then let ÖÚ�-É�Ê*��Xp�gÉ�Ê and Ò�Ê�Xp�Ò�Ê Æ`& . Otherwise, ÒYÊ Æ`& ] c*É�Ê*f contains a circuit Û . Since 
 is a basis, there exists anÓihÁÛ Ì 
 . Let ÖÚ�-É Ê ��Xp�4Ó and Ò Ê X��rÒ Ê Æ`& ] c*É Ê f Ì c,Ó.f . Then Ö is injective by (2),
and bijective for cardinality reasons.

The following piece of notation will be useful later: For + ����E�a�a�a�E�» , letÜ # Xp�¾Ò Í Î Ì 
 # �¾Ò Ì Ö���
 # �@��ÖÚ��
F� Ì Ö���
 # �@��ÖÚ��
 Ì 
 # �@��ÖÚ�dc*É Í Î Ñ & E�a�a�a�E=É*Ý�f,��a
For e9h"²´³oµ let

Ü # ��eb�5X�� Ü # Z Ô Æ`& ��eb� and Þ # ��eb�/X��|z Ü # ��eb��z . Observe that
Ü # ��eb�

is independent and, therefore, Þ # ��eY�ß���Q� Ü # ��eb��� . Since Ò is the disjoint union of theÜ #-Æ`&ÚÌ Ü # , we have

Ô Æ`& ��eb�2� àá ~#�$.& Ü #xÆ\& ��eY� Ì Ü # ��eb��a (3)

We now turn to the analysis of the algorithm. For + � ( E�a�a�a�E=» and eÂh
� defineâ #-Æ`& ��eb��Xp�����-À #xÆ\& ] eb�®>5�Q��À #-Æ`& � . Then the choice of º # in the algorithm is made such
that j �xº # �â #-Æ`& �ãº # � ^ j ��eb�â #-Æ`& ��eb� (4)

for all e2hÁ� . 
 # is a basis of À # and for e2hÂ²´³Fµ , 
 # ] Ü # ��eY��I¾Ò Í Î is independent.
Therefore,

���-À # �ä1
��� Ü # ��eY�=�Á�l����
 # �`1��Q� Ü # ��eb���Á�l����
 # ] Ü # ��eb����^å���-À # ] eb��E
where the last inequality follows from the monotonicity of � and Ô Æ`& ��eb��I¹e . This
shows that

Þ # ��eb�5�¹��� Ü # ��eY�=��^ â # ��eb��a (5)

To estimate j ��²´³oµ�� in terms of j �-¯T°.±H� , we distribute j �-¯T°.±�� among 
 , i.e. for all+ � ( E�a�a�a�E�» letj ��É Ê �_Xp� j �xº # �â #xÆ\& �xº # � � j �xº # �È # >iÈ #-Æ`& E Ë��¹È #xÆ\& 1 ( E�a�a�a�E�È # . (6)

6



Thenj �-¯T°.±��2� ~æ #�$.& j �ãº # �2� æç svè j �-É��� æé stê j � Ö Æ`& ��Ó\� � � æ� stë`ì�í æé stî Ï®Ð�ï ��ð j � Ö Æ\& ��Ó\� �� æ� stë`ì�í ~æ #�$.& æé s®ñ ÎxÏ®Ð ï ��ð¸ò ñ Î ï ��ð j � Ö Æ`& ��Ó\� � by (3)

� æ� stë`ì�í ~æ #�$.& � Þ #-Æ`& ��eY�ó>iÞ # ��eY��� j �ãº # �â #-Æ`& �ãº # � by (6)

^ æ� stë`ì�í j ��eY� ~æ #%$'& Þ #-Æ`& ��eY�ó>iÞ # ��eY�â #xÆ\& ��eY� by (4)

^ æ� stë`ì�í j ��eY� ~æ #%$'& Þ #-Æ`& ��eY�ó>iÞ # ��eY�Þ #xÆ\& ��eY� by (5) a
Using the bound ~æ #�$.& Þ #xÆ\& ��eb�'>�Þ # ��eb�Þ #-Æ`& ��eb� ^å� � Þ Å ��eY� � >Â� � Þ ~ ��eb� � EÞ ~ ��eY�@�r� , and that Þ Å ��eY�Ú^�� by (1), this impliesj �-¯T°.±H�Â^¢������� æ� stë`ì�í j ��eb�Á�ô�������ó· j ��²´³oµ���E
proving the theorem.
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