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On the Py-Structure of Perfect Graphs
V. Overlap Graphs

CHiINH T. HOANG ' STEFAN HOUGARDY > FREDERIC MAFFRAY 2

Abstract. Given a graph G we define its k-overlap graph as the graph whose vertices are
the induced Ps’s of G and two vertices in the overlap graph are adjacent if the corresponding
Py’s in G have exactly k vertices in common. For k = 1,2, 3 we prove that if the k-overlap
graph of G is bipartite then G is perfect.

1 Introduction

A graph G is called perfect if for every induced subgraph H of G the chromatic number of H
equals the clique number of H. The notion of perfect graphs was introduced by Berge [1]. In
1960 he posed the famous Strong Perfect Graph Conjecture which is still open:

Strong Perfect Graph Conjecture A graph is perfect if and only if it does not contain an
odd cycle of length at least five or its complement as an induced subgraph.

An odd (resp. even) induced cycle of length at least five is called an odd (resp. even) hole.
Graphs that contain neither odd holes nor complements of odd holes are called Berge. Using
this terminology the Strong Perfect Graph Conjecture can be restated as: A graph is perfect if
and only if it is Berge.

Together with the Strong Perfect Graph Conjecture Berge also made a weaker conjecture
which has been proved by Lovasz [17] in 1972 and is nowadays called the Perfect Graph Theo-
rem.

Perfect Graph Theorem The complement of a perfect graph is perfect.

A P, is a path on four vertices. Two graphs G and H are called Ps-itsomorphic if there
exists an isomorphism between the vertices of G and H such that four vertices induce a P4 in
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G if and only if their images under this isomorphism induce a Py in H. In 1984 Chvatal [3]
conjectured that if a graph GG is Ps-isomorphic to a perfect graph then G is perfect.

Chvatal [3] showed that this conjecture is implied by the Strong Perfect Graph Conjecture
and it is easy to see that this conjecture implies the Perfect Graph Theorem. Therefore this
conjecture has been called the Semi Strong Perfect Graph Conjecture. Reed [20] proved this
conjecture in 1987 which is therefore nowadays called the Semi Strong Perfect Graph Theorem.

Semi Strong Perfect Graph Theorem If ¢ graph G is Py-isomorphic to a perfect graph
then G 1is perfect.

The validity of the Semi Strong Perfect Graph Theorem shows that the perfectness of a
graph depends solely on its Ps-structure. On the one hand this motivates to look for 'natural’
decomposition schemes that are derived from the Ps-structure of a graph. Such approaches
where made by Chvatal and Hoang in [6] and [14] which where generalized by Chvatal in [5].
The most general approach of this kind was made by Chvétal, Lenhart and Sbihi in [7]. They
proved that if the vertices of a graph GG can be colored by two colors such that every induced
P4 of GG is colored by one of certain possibilities, then G is perfect if and only if the two graphs
induced by the vertices of GG that received the same color, are perfect.

On the other hand the validity of the Semi Strong Perfect Graph Theorem suggests defining
classes of perfect graphs solely in terms of the Pys-structure. This was for example done by
Chvatal who conjectured that a graph G is perfect if its partner graph is bipartite (the partner
graph of a graph G is the graph whose vertices are the vertices of G, and two vertices @ and b
in the partner graph are adjacent if there are vertices z,y, z in G — {a, b} such that {a,z,y, z}
and {b,z,y, z} each induce a P4 in G). Hayward and Lenhart [13] proved that an even more
general statement holds: If the partner graph of G is triangle free then G is perfect.

In this paper we will define several new classes of perfect graphs which can be derived from
the Py-structure. Given a graph G we define its k-overlap graph as the graph whose vertices are
the induced P4’s of G and two vertices in the overlap graph are adjacent if the corresponding
Py’s in G have exactly k vertices in common. We will prove for k = 1,2, 3 that if the k-overlap
graph of a Berge graph G is bipartite then G is perfect. (Actually we are proving some stronger
statements). For k = 3 this generalizes results of Hayward and Lenhart on partner graphs [13].

The paper is organized as follows: The next section contains some basic definitions and
auxiliary results needed in the later sections. Sections 3, 4 and 5 contain our results for the 3-,
2- and l-overlap graphs. In Section 6 we compare our new classes of perfect graphs with the
known classes.

2 Notation and auxiliary results

Given two vertices z and y in a graph G we say that z sees y if z and y are connected by an
edge in G. If z does not see a vertex y then we say that z misses y. The neighborhood of a
vertex z is defined as the set of vertices that are adjacent to z and it is denoted by N(z).
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A path (resp. cycle) on k vertices is denoted as Py (resp. C). For a path on four vertices we
often will just list its set of vertices, e.g. abed stands for the path on vertices a, b, ¢ and d with
edges ab, be and cd. We will denote cycles of length five and six in a similar way. An induced
cycle of length at least five is called a hole. The complement of a hole is called an antihole.

Two vertices a and b of a graph G are called partners if there are vertices z,y,z in G—{a, b}
such that {a,z,y, 2} and {b,z,y, z} each induce a P, in G. The partner graph of a graph G is
the graph whose vertices are the vertices of (G, and whose edges are the pairs of vertices that
are partners in G.

A star-cutset C'in a graph G is a set of vertices such that G — C' is disconnected and there
exists some vertex v in C' that is adjacent to all other vertices in C'. Chvatal [4] proved that

no minimal imperfect graph contains a star-cutset.

Let S be a proper subset of the vertex set of a graph G. Then the vertices in G — S can be
partitioned into three classes: vertices that have no neighbor in S are called S-null; vertices that
are adjacent to every vertex in S are called S-universal; all other vertices are called S-partial.
Using this terminology a proper subset H of a graph G is called a homogeneous set if |H| > 2
and no vertex in G — H is H-partial. Lovasz [18] proved that

no minimal imperfect graph contains a homogeneous set.

A pair A, B of disjoint subsets of vertices of a graph G is called a homogeneous pair if i)
there are at least two vertices in G — A — B; ii) at least one of the two sets A and B contains
at least two elements and iii) no vertex in G — A — B is A- or B-partial. Note that every graph
on at least four vertices that contains a homogeneous set also contains a homogeneous pair.

Chvital and Sbihi [8] proved that

no minimal imperfect graph contains a homogeneous pair.

A vertex a is said to dominate a vertex b if N(b) C N(a)Ua. Two vertices a and b are called
a comparable pair of vertices if a dominates b or b dominates a. It is easy to see that

no minimal imperfect graph contains a comparable pair of vertices.

A graph is called weakly triangulated if neither the graph nor its complement contains an
induced cycle of length greater than four. Hayward [11] proved that

weakly triangulated graphs are perfect.

A K, is a complete graph on four vertices. Tucker [22] proved that in a minimal imperfect
Berge graph every vertex is contained in a K. Let w((G) denote the clique number of a graph
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G and let a(G) denote its stability number. Tucker’s result shows that the clique number of
a minimal imperfect Berge graph must be at least four. By the Perfect Graph Theorem the
same must hold for the stability number. Lovasz [17] proved that a minimal imperfect graph
G contains exactly w(G) - a(G) + 1 vertices. Therefore we know that

a minimal imperfect Berge graph has at least 17 vertices.

A recent result of Sebd [21] says that minimal imperfect graphs are 2w—2 (vertex-) connected.
Together with the above mentioned result of Tucker this shows that

minimal imperfect Berge graphs are 6-connected.

3 3-overlap graphs
The main result of this section is the following theorem:
Theorem 1 If the 3-overlap graph of a Berge graph G is triangle-free then G is perfect.

The 3-overlap graph of an odd hole or an odd antihole is an odd hole. Therefore we obtain
as a corollary that the perfectness of a graph G is already guaranteed if its 3-overlap graph is
bipartite. It is worth to note that this latter property can obviously be checked in polynomial
time.

Corollary 1 If the 3-overlap graph of G is bipartite then G is perfect.
To establish the correctness of Theorem 1 we will prove the following stronger result:

Theorem 2 If G is Berge and does not contain any of the three graphs Hy, Hs and Hjz or
their complements as an induced subgraph then G is perfect.

i

Hy Hy H3

Figure 1: Forbidden subgraphs
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Proof. If neither G nor G contains an induced cycle of length at least six then G is weakly
triangulated and therefore perfect. We thus may assume by symmetry that G contains an
induced cycle C' of length at least six.

Claim 1: If |C| > 6 then either G = C or C is a homogeneous set.

To prove this assume that G # C' and C' is not a homogeneous set. Then there must exist a
vertex z not belonging to C' that is partial on C. Let the vertices of C' be labeled a,b,¢,d, .. ..
Since z is partial on C' we may assume that z sees ¢ but does not see d. If z misses e and f
then fedcbz induces an Hy or Hz in G. Thus z must see at least one of e and f. If = sees f
then it also must see e because otherwise G contains an induced Cy. Therefore x must see e.
This shows that

z cannot have two consecutive non-neighbors on C. (*)

If  sees neither b nor f then by (*) g must be an edge. But then fgxedb induces an Ha. Thus
x must see at least one of f and b. By symmetry we may assume that x sees b.

Now if  does not see f then by (*) it must see g. But then depending on the edge za either
abzdef induces an Ho or abdegx induces an Hq. Therefore x must see f.

If 2 does not see g then by (%) it must see h. But then ghxech induces an H;. Therefore
must see g. By symmetry £ must also be adjacent to a. But now abrged induces an H;.

Therefore the vertex z cannot exist and this proves Claim 1. <&

Claim 2: If |C| = 6 then either |G| < 13 or G contains a homogeneous pair or a star-cutset.

Let us assume that G has at least 14 vertices and that G contains no homogeneous set. We
first consider all possible types of partial vertices for a Cs such that no induced Cs arises (see
Figure 2).

A partial vertex of type 1 or type 3 cannot occur since otherwise the graph G contains Hs as
an induced subgraph. If there is a partial vertex of type 2 or type 4 then G contains Hs as an
induced subgraph. Thus the only possible types of partial vertices of a Cg are 5, 6, 7, and 8.

If G contains only one Cg-partial vertex z then let A be the set of neighbors of z on the Cg
and let B be the remaining vertices of the Cs. Then the sets A and B form a homogeneous pair
as soon as (G contains at least 9 vertices. This shows that G contains at least two Cs-partial
vertices.

Now it is easy to see that a vertex of type 5 and a vertex of type 7 cannot occur simultane-
ously in G. If two such vertices exist then they must be adjacent because otherwise & contains
an induced C5. But if these two vertices are adjacent then G contains Hs.



This paper appeared in: Journal of Combinatorial Theory, Series B 67 (1996), 212-237

1) 2) 3) 4)
5) 6) 7) 8)
Figure 2: Possible types of partial vertices of a C

With a similar argument for the other combinations of two different partial vertices of types
5,6, 7, and 8 one obtains that there is only one such possible combination. This is a combination
of a partial vertex of type 6 with a partial vertex of type 8 that are adjacent and arranged as
shown in Figure 3. In all other cases G would contain a Cs or one of the graphs H.,H, or Hs
(In total there are 26 cases to check).

A B

Figure 3: The only possible combination of two different partial vertices.

But in the case of Figure 3 the graph GG would contain a homogeneous pair consisting of the
sets A and B defined as shown in the figure.

This shows that all Ce-partial vertices must be of the same type.
If all partial vertices of C' are of type 5 then let A and B be the disjoint sets consisting of
every second vertex of C'. Then since we assumed that G contains at least 14 vertices these two

sets form a homogeneous pair.

Let us assume now that all partial vertices are of type 6. Then there cannot exist two such
partial vertices that have the same neighbors on the Cs because otherwise G contains H; or
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H5 as an induced subgraph. This shows that there can be at most six partial vertices of type
6. Every Cg-universal vertex must see any vertex of type 6 since otherwise G contains H 3.
Similarly any Ce-null vertex must miss all type 6 partial vertices because otherwise GG contains
Hy. Thus there is a homogeneous set in (G consisting of the C's and all vertices of type 6.

Now assume that all partial vertices of C' are of type 7. There cannot exist two vertices of
type 7 that have the same neighbors on C' because otherwise G contains H3z resp. H, when
these two vertices are non-adjacent resp. adjacent. Therefore at most three partial vertices of
type 7 are possible.

If G does not contain any other vertex then |G| < 9 and we are done. Any C-universal
vertex must also see either all the partial vertices or none of them because otherwise GG contains
H, or Hjz as an induced subgraph. Now suppose that there exists a C-null vertex n that sees
some C-partial vertex p. If n sees any other C-partial vertex besides p then p must be adjacent
to these other vertices since otherwise G would contain a Cs. If n has no neighbor that is non-
adjacent to p then p together with all its neighbors except n forms a star-cutset that separates
n from the Cs. If n has a neighbor z that is non-adjacent to p then z must be a C-null or
a C-universal vertex. But then p,n,z and three appropriate vertices of the Cs induce an H;
resp. an H3. Therefore any C-null vertex sees none of the partial vertices.

This shows that setting A as the vertices of the C's and B as the set of all C-partial vertices
then A and B is a homogeneous pair in G.

Finally we have to show that it is not possible that all partial vertices are of type 8. There
cannot exist two partial vertices of type 8 that have the same neighbors on the Cs because
otherwise G contains H; or Hs as an induced subgraph. This shows that there can be at most
six partial vertices of type 8. Every Cs-universal vertex must see any vertex of type 8 since
otherwise G contains H;. Similarly any Cs-null vertex must miss all type 8 partial vertices
because otherwise GG contains H;. Thus G contains a homogeneous set consisting of the Cs and
all vertices of type 8.

This finishes the proof of Claim 2. <&

If G and G do not contain an induced cycle of length at least six then G is weakly triangulated
and therefore perfect. Otherwise by Claim 1 and 2 the graph G contains a homogeneous set or a
homogeneous pair or a star-cutset. Since no minimal imperfect graph contains a homogeneous
set or a homogeneous pair or a star-cutset and no minimal imperfect Berge graph with at most
13 vertices can exist, this concludes the proof of the theorem. a

The 3-overlap graphs of the graphs Hi-Hjs appearing in Theorem 2 all contain a triangle.
Therefore Theorem 1 is an immediate consequence of Theorem 2.

Since the partner graphs of Hi-H3 contain a triangle we get as a corollary of Theorem 2 the
following result that was proved by R. Hayward and W. Lenhart [13].
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Corollary 2 If the partner graph of a Berge graph G is triangle-free then G is perfect. ]

It is easy to see that the partner graph of a Cs or of a domino (the graph that is obtained by
identifying two C4’s in an edge) is not triangle free but their 3-overlap graph is. Thus Theorem
1 is stronger than the above corollary.

4 2-overlap graphs

Exactly the same statement that we proved in the last section for the 3-overlap graphs does
also hold for the 2-overlap graphs.

Theorem 3 If the 2-overlap graph of a Berge graph G is triangle-free then G s perfect.

As in the case for the 3-overlap graphs it is easy to see that the 2-overlap graph of an odd
hole or an odd antihole is an odd hole — with the only exception of the cycle on five vertices.
Therefore we get a similar corollary as in the last section which shows that the perfectness of
a Cs-free graph G is already guaranteed if its 2-overlap graph is bipartite. This again yields a
class of perfect graphs which can be recognized in polynomial time.

Corollary 3 If the 2-overlap graph of a Cs-free graph G is bipartite then G s perfect.

Proof of Theorem 3. First we observe that neither G nor G can contain a Cg, a domino, or
any of the nine graphs shown in Figure 4 since the 2-overlap graph of any such graph contains
a triangle.

As observed above the 2-overlap graph of an odd hole of length at least seven or an odd
antihole of length at least seven is an odd antihole. Since by assumption G does not contain a
Cs this implies that G is Berge.

If neither G nor G contains an induced cycle of length at least eight then G is weakly
triangulated and therefore perfect. We therefore may assume that such a cycle exists and we
choose C' to be the shortest induced cycle in G or G of length at least eight. By symmetry we
may assume that C' is contained in G.

Claim 1: Let x be any vertex of G — C that is partial on C. Then x has exactly one or two
consecutive neighbors on C'.
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Uil
S S

Figure 4: Graphs whose 2-overlap graph contains a triangle.

Assume that this is not true. If N(z) N C is stable then G contains a domino or Fy or C
was not the shortest induced cycle in G of length at least eight.

Therefore z must have two consecutive neighbors on C'. If 2 has exactly three neighbors
then F% is contained in GG or C' was not the shortest induced cycle in GG of length at least eight.

If z has more than three neighbors then GG contains a domino or F3 or C' was not the shortest
induced cycle in GG of length at least eight. This finishes the proof of the claim. <

Claim 2: If G does not contain a homogeneous set then all vertices of G —C must be C-partial.

All C-universal vertices must see all C-partial vertices since otherwise G contains Fy or Fy.
Similarly all C-null vertices must miss all C-partial vertices since otherwise GG contains Fy or
Fg. This shows that all vertices of G — C' must be C-partial since otherwise C' together with
all C-partial vertices forms a homogeneous set in G. <&

Claim 3: If G does not contain a homogeneous set then all C-partial vertices see exactly two
consecutive vertices of C' or G contains a comparable pair of vertices.

Assume that G contains neither a homogeneous set nor a comparable pair of vertices. By
Claim 1 we only have to rule out the case that a partial vertex sees exactly one vertex of C.

Suppose z is a C-partial vertex that sees exactly one vertex of C. We assume that the
vertices of C' are labeled a,b, ¢, ... and that z sees ¢. Since ¢ must not dominate z there must
exist a vertex y that sees  and misses ¢. Since G must not contain the graph Fj as an induced
subgraph, the vertex y must be adjacent to at least one of the four vertices a,b,d and e. By
Claim 1 and symmetry only three cases can occur: If y sees only a then G contains a C5. If y
sees only b then G contains F7. And finally if y sees a and b then G contains Fj. <&

Now assume that G contains no homogeneous set and no pair of comparable vertices. By
Claim 3 we know that all vertices in G — C' must see exactly two consecutive vertices of C'. Let
the vertices of C be labeled a,b,c,... and let x be a C-partial vertex which sees the vertices
¢ and d. Since GG does not contain a comparable pair of vertices there must exist a vertex y
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that sees z and misses d. Since G must not contain the graph Fg the vertex y must see at least
one of the vertices b, ¢ and e. By Claim 3 and symmetry there are only two cases to consider.
Either y sees @ and b or y sees b and c. It is easy to see that in both cases the 2-overlap graph
of GG contains a triangle.

Since no minimal imperfect Berge graph contains a homogeneous set or a comparable pair
of vertices this finishes the proof of the theorem. a

5 1l-overlap graphs

Let C' be a hole of length & > 7. If k is divisible by three then the 1-overlap graph of C' is
the disjoint union of three Cy/3. Otherwise the 1-overlap graph of ' is isomorphic to C'. This
implies that the 1-overlap graph of an odd cycle of length at least seven or its complement
contains always an odd cycle. Therefore if G is a Cs-free graph whose l-overlap graph is
bipartite then G is Berge. The main result of this section is that these graphs are perfect.

Theorem 4 If G contains no Cs and the 1-overlap graph of G is bipartite then G is perfect.

Proof. As already observed above the graph (7 is Berge. We will show that under the conditions
of the Theorem G or GG has at least one of the properties listed in Section 2 which a minimal
imperfect Berge graph cannot have. This proves the perfectness of G.

Let C be the shortest even hole of length at least six in G or G. Using symmetry we may
assume that C' is contained in G. If C' does not exist then G is weakly triangulated.

We will now distinguish three different cases for the length of C":

e |C| =28

Let the vertices of C' be labeled a,b,..., h. We will show that C' is a homogeneous set.
Assume not. Then there exists a C-partial vertex z. If 2 misses two consecutive vertices
on C, then we may assume by symmetry that = sees @ and misses b and ¢. Then zabc,
cdef and fgha are Py’s that form a triangle in the l-overlap graph, a contradiction (see
Figure 5a ).

So z does not have two consecutive non-neighbors, and we may assume by symmetry that
z misses b and sees a and ¢. Vertex x must also see e or f, so we get a Py with bcze or
bexf. In both cases this P4 forms in the 1-overlap graph a triangle with defg and ghab
(see Figure 5b ), a contradiction.

10
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a b
h C
X
g d
*
f €
a) b) c)

Figure 5: Triangles in the 1-overlap graphs.

o |C| > 8

First we will analyse the neighborhood structure of C-partial vertices. We may assume
that there is at least one C-partial vertex since otherwise C' would form a homogeneous
set.

Let x be a C-partial vertex and a,b be two consecutive vertices on C' such that x sees a
but does not see b. Then & must miss every vertex y of C' whose distances from a and from
b along C' are at least four, for otherwise bazy plus the two P4’s along C' whose endpoint
is y would form a triangle in the l-overlap graph (see Figure 5¢)), a contradiction.

Since the size of C'is at least 10 there are at least two vertices in C' having distance at least
four from a and b along C'. Thus z must have at least two consecutive non-neighbors.
But this means that the neighborhood of 2 on C' must be contained in a set of three
consecutive vertices of C'. Otherwise there would be an induced cycle in G of length at
least six and at most |C'| — 1, contradicting the choice of C'. Thus the neighborhood of
looks like one of the four cases shown in Figure 6.

We will now distinguish two subcases:

a) |[Cl=6k+4,6k+8, k>1
Let the vertices of C' be labeled vy, va,.... Let ()1 be the P4 on vertices zvivqvs, and,
iteratively, given @); ending at vertex v; of C let us define Q;41 as v;vj419; 42543
along C. If |C| = 6k + 8, then by going once around C' we see that Qopy1 =

V6k4+6V6k+7V6k+8V1, and 80 @Q1,...,Q2p41 are Ps’s that form an odd cycle in the
l-overlap graph. If |C| = 6k + 4, then by going twice around C' we see that Qag4+3 =
Vek4+6Vek+7V6k+8V1 and so Q1,...,Qar+3 are Py’s that form an odd cycle in the

1-overlap graph.
B) |C| =6k, k> 2
Let P, N and U denote the C-partial, C-null and C-universal vertices.

11
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Figure 6: Possible neighborhoods of a partial vertex.

o First we show that every vertex in U must see every vertex in P. Suppose this
is not the case. Let p be a partial vertex that is not adjacent to some vertex
u € U. Let a be a neighbor of p on C' and denote by z a vertex on C that has
distance at least four from a on C' (note that this vertex can not be adjacent to
p). Then pauz is a Py which, together with the two P4’s along C' whose endpoint
is a, yields a triangle in the l-overlap graph, a contradiction.

o Next we show that the set N must be stable. Suppose this is not the case.
Then take any component N1 of N. There must be a vertex  in P U U that is
partial on two adjacent vertices ny and ns of N7 since otherwise N1 would be a
homogeneous set. We assume that = sees n; and misses ny. Let y denote any
neighbor of z on C' then the P, nynizy and the two Ps’s on C that start at y
show that the 1-overlap graph of G would contain a triangle.

o Next we show that the set U cannot be empty. Assume the contrary. Let the
vertices of C' be labeled a,b,¢,d,e,... and let  be any vertex of P (If P is
empty then C is a homogeneous set). We may assume that z sees e and that if
z has any other neighbors on C then they are f and/or g. The set {d,e, f, g, h}
must not be a cutset of GG since otherwise GG is not 6-connected. Therefore there
must be a shortest path connecting z to the rest of the cycle C'. If this path has
length at least three then there exists a P4 intersecting C in only one vertex and
thus the 1-overlap graph of G would contain a triangle. Therefore the shortest
path connecting z to the set C'— {d, ¢, f, g, h} must have length two. Let zzv
be this path with z being a partial vertex and v being a vertex of C' different
from d, e, f,g,h. If v is none of the vertices b or ¢ then bede, efgh and vzre are
three P4’s intersecting in exactly one vertex (z cannot be adjacent to e since the
neighborhood of every partial vertex is contained in a set of three consecutive
vertices of C'). If v = b then abed, defg and vzae are three P,’s intersecting
each other in exactly one vertex (again z cannot be adjacent to ¢). Finally if
v = ¢ then if z is not adjacent to e then again abed, defg and vzze are three

12
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Py’s intersecting each other in one vertex. If z is adjacent to e then the three
Py’s xzede, zefg and abez will intersect each other in exactly one vertex. Thus
in any case the 1-overlap graph of G contains a triangle.

o To finish the proof of case 3) we note that if N is not empty then N U C would
form a star-cutset in G separating the two sets P and U (which are both non-
empty). Thus N must be empty. But since U is completely connected to PUC
the complement of G is disconnected.

o |C|=6

For the proof of this case we will make use of the following three lemmas which are proved
below.

Lemma 1 Let G be a Berge graph whose 1-overlap graph is bipartite. If G contains a Cg such
that no vertex of G is universal on this Cg then G contains a homogeneous set or a comparable
pair of vertices or a vertex of degree at most three.

Lemma 2 Let G be a Berge graph whose I-overlap graph is bipartite. If G contains a Cg and
a Cg-universal verter u that is partial on the Cg-partial vertices, then G contains a comparable
pair of vertices.

Lemma 3 Let G be a Berge graph whose I1-overlap graph is bipartite. If G contains a Cg
such that at least two vertices of G are not Cg-partial then G contains a homogeneous set or a
homogeneous pair or a comparable pair of vertices.

Now we can finish the proof of the case |C| = 6 by just combining these three lemmas
appropriately. Let C' denote the Cs and denote by P, U and N the C-partial, C-universal
and C-null vertices.

If U is empty then the proof follows immediately from Lemma 1. If the union of U and
N contains at least two elements then we are done because of Lemma 3.

Thus the only case we have to check is when N is empty and U contains exactly one vertex
u. By Lemma 2 vertex u must either be adjacent to all vertices of G — which implies that
the complement of GG is disconnected — or has exactly the vertices of C' as its neighbors.
But then the vertex u would not be contained in a clique of size four. O

Before proving the three lemmas we need to introduce the notion of a good set. Let C' =
abedef be an induced Cps in some graph G. Let H be a set consisting of the vertex b and of
(some) C-partial vertices in G that are adjacent to a and ¢ but do not see d, e or f. If H
contains at least three vertices and is not a clique, then we call H a good set for C. A graph
is said to contain a good set, if there exists some induced Cs for which a good set exists.

The following result will be an important tool in the proofs of Lemma 1 and Lemma 3.

13
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The good set argument If the I-overlap graph of a Berge graph G is triangle-free and G
contains a good set then G contains a homogeneous set.

Proof. Let C' = abedef be a Cs in G and let H be a maximal good set with respect to C' such
that every vertex of H sees a and ¢ but misses d, €, and f.

Denote by H' the vertices of a component of the complement of H with |H’'| > 2. Since H
contains at least two vertices and is not a clique such a component must exist. If the vertices of
H' form a homogeneous set in G then we are done. Otherwise there must exist a vertex 4, not
in H’, that is partial on two non-adjacent vertices of H’. Let z and y denote these non-adjacent
vertices and assume that 7 sees  but does not see y. Note that by the definition of H', vertex
1 cannot be a vertex of H. Let z be some vertex of H different from x and y. Now ¢ must see ¢
since otherwise there are the three P,’s izey, zede and efay. By symmetry ¢ must also see a.
Now i sees the vertices a and ¢ and since 7 is not a vertex of H it must also see at least one of
the vertices d, e and f.

If ¢ sees the vertex e then the three Pu’s eicy, dcxza and efaz would form a triangle in the
l-overlap graph of G. Therefore i cannot be adjacent to e but must see d or f. By symmetry
we may assume that ¢ sees d. But then the three P,’s ediz, efaz, and ayed show that the
l-overlap graph of G would contain a triangle. a

Proof of Lemma 1 Let C' = abedef denote the (g such that no vertex of GG is universal on
this Cs. We will show that the assumption that GG contains neither a homogeneous set nor a
comparable pair of vertices nor a vertex of degree at most three leads to a contradiction. Recall
from figure 2 the possible types of neighborhood along a Cg for a Cs-free graph. We are now
going to eliminate successively all these types.

Claim 1: No C-partial vertex is of type 8.

Let z denote a partial vertex that is of type 8, i.e. that sees exactly the vertices a, b, ¢, d and
¢ in C'. Then there must exist a vertex y that is adjacent to f and non-adjacent to z since
otherwise f is dominated by x. Now the five Py’s abed, xafy, cdef, bafy and fexc show that y
must be adjacent to at least one of the vertices a or b.

Let us first assume that y is adjacent to a. Then the five Py’s cxay, fexb, abed, exay and
bede show that cy or ey must be an edge. If cy is an edge then the vertices yfexc induce a Cs in
G which implies that y must be adjacent to e. This shows that in any case y must be adjacent
to e. But then the five P,’s abed, fexb, cxay, bafe and yexc show that y must also be adjacent
to e. Now the five Py’s fycx, eyab, cxaf, eych and defa imply that y must see the vertex b. By
symmetry y must also see d but now y is C-universal which contradicts the assumption of the
lemma.

Now assume that y is not adjacent to @ and, by symmetry, also not adjacent to e. As shown
above y must then be adjacent to b. But now the vertices ybzef induce a C5 in G. <&

Claim 2: No C-partial vertex is of type 6.

14
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Let z denote a partial vertex that is of type 6, i.e. that sees exactly the vertices a,¢,d and e in
C'. Then there must exist a vertex y that is adjacent to f and non-adjacent to z since otherwise
f is dominated by z.

Now looking at the five Py’s zafy, abed, fexe, dzab, and edef shows that ya must be an
edge in G. Then the five Py’s exay, abed, fexe, dxab, and cdef show that ye must be an edge.
This new edge now gives rise to the five Py’s ayed, exch, dxaf, bede, and czaf which show that
y must be adjacent to d.

This shows that y has four consecutive neighbors on C'. Therefore y must either be of type
8 or it must be C-universal. By Claim 1 and the assumption of the lemma both cases are
impossible. <&

Claim 3: No C-partial vertex is of type T.

Let z denote a partial vertex that is of type 7, i.e. that sees exactly the vertices a,b,d and e in
C'. Then there must exist vertices y and z such that y sees ¢ and not # and z sees f and not
x. If such vertices would not exist then # dominates ¢ or f.

First we analyze the case that y equals z. Then abcyf would form a C5 in G which implies
(using symmetry) that ya must be an edge. Now dzaye induces a Cs in G which shows that y
must be adjacent to d. By Claim 1 and the assumption of the lemma the vertex y cannot have
any other neighbor on C'. But now the five Py’s abed, fydz, fabe, bxdy and e fyc show that the
1-overlap graph of G contains a Cf.

Now assume that y and z are different vertices. The three Py’s xbcy, zafz and cdef show
that either yb or za must be an edge in G. By symmetry we may assume that yb is an edge.
Then the five P,’s abed, bxef,ycdx, fabe and exby show that y must be adjacent to d or e. If y
is adjacent to d then the five P,’s axdy, fabe, edyb, faxd, and bede show that y must have at
least one more neighbor on C'. But this cannot be possible because otherwise y is universal or
of type 8 or 6 which contradicts Claim 1 resp. Claim 2.

Thus we know that y cannot be adjacent to d and therefore must see e. Now since y must
be a partial vertex, the only possible case now is that y is of type 7 and therefore must see f,
but i1s non-adjacent to a and d. But now the five P,’s bede, cyfa, byed, fabe, and axey show
that the 1-overlap graph of G contains an induced Cj. <&

Claim 4: No C-partial vertex sees two opposite vertices (i.e., vertices at distance three) of C.
This is a simple observation, since the only partial vertices seeing two opposite vertices of C'
are of type 6, 7 or 8. But these cases are excluded by Claims 1-3. <&

Claim 5: No C-partial vertex is of type 5.

Let z denote a partial vertex that is of type 5, i.e. that sees exactly the vertices a,c and e in
C. Let y be a vertex adjacent to a and different from z, b and f. The vertex y must exist since
otherwise a has degree three. By Claim 4 y cannot be adjacent to d.
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Let us first assume that y does not see . Then the five Py’s yabe, cdef, exay, fabe, and
azed show that y must have at least one more neighbor on C'.

If y is adjacent to b then the five Py’s ybex, edef, exay, fabe and axed show that y must be
adjacent to ¢ (by Claim 4 y cannot be adjacent to €). But now the five Py’s yede, czaf, bede,
exay, and fabc show that the 1-overlap graph of G would contain a Cj.

Therefore y cannot be adjacent to b and by symmetry it is also non-adjacent to f. Thus we
can assume that y is adjacent to ¢. Now the five P,’s fayc, bede, exay, fabe, and axed show
that y must be adjacent to e. But then again we have five P,’s, namely fabe, azed, cyaf, exch,
and ayed which show that the 1-overlap graph of G contains a Cf.

Now we are studying the case when y is adjacent to . The five Py’s yzef, axed, yafe, yzed
and fabe show that y must have at least one other neighbor on C'. By Claim 4 we know that
y cannot be adjacent to d and using symmetry we may assume that y is adjacent to ¢ or b.

If y is adjacent to ¢ then by Claim 4 it is not adjacent to f. Now the five Ps’s yede, fabe,
yref, ayed and exab imply that y must see e. But then fabe, axed, eych, cxaf, and ayed show
that the 1-overlap graph of GG contains a Cj.

Therefore we know that y is not adjacent to ¢ and by symmetry also not adjacent to e.
Then we may assume that yb is an edge. But now the five Py’s yxed, exab, cdef, byze, and
fabc show again that the 1-overlap graph of G contains a Cf. O

Claim 6: No C-partial vertex is of type 4.

Let z denote a partial vertex that is of type 4, i.e. that is adjacent to a,b and ¢. Then there
must exist vertices y and z with y being adjacent to b but non-adjacent to z and z adjacent to
x and non-adjacent to b since otherwise either b dominates x or x dominates b.

Now the three P4’s zzby, axcd and e fab show that yz must be an edge. Then we find the
three P4’s cbyz, dexa and efab which imply that ¢ must be adjacent to y or z. By symmetry
we may assume that ¢ is adjacent to y. Now the five Py’s faby, dexa, efab, yexra and edef
show that y must see a (note that by Claim 4 y cannot see f). Since y cannot have any other
neighbor on C' we can apply the good set argument to the set {b, z,y} which shows that G
contains a homogeneous set. <&

Claim 7: No C-partial vertex is of type 3.

By the preceding claims we know that any C-partial vertex has at most two neighbors in C.
Let z denote a partial vertex that is of type 3, i.e. that is adjacent to a and ¢. Then there must
exist a vertex y that is adjacent to b and not adjacent to x since otherwise x dominates b. Now
the five Py’s ybex, bafe, axed, faby and cdef show that (using symmetry) y must be adjacent
to at least one of a and f.

If yf is an edge then we find the five Py’s abed, e fyb, cxaf, bede and zafe which imply that
ye must be an edge. But this contradicts Claim 4.
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Therefore we know that ya must be an edge. Now the five Py’s bede, zafe, ybez, edef and
cxay show that ye must be an edge. But this means that y has more than two neighbors on C'
contradicting the preceding claims. <&

Note, that so far we have shown by Claims 1-7 that any C-partial vertex may see only one
or two consecutive vertices of C'. We will make use of this fact in the proof of the following
claim.

Claim 8: No partial vertez is of type 2.

Let z denote a partial vertex that is of type 2, i.e. that is adjacent to @ and b. Let y be any
vertex adjacent to ¢ different from b and d and let z be any vertex adjacent to f different from
a and e. By Claim 4 the vertices y and z must be different. Now the three P,’s cdef, abcy and
zafz show that at least one of the three edges yb, za or zz must exist.

Let us first assume that zz is an edge. Then z must also be adjacent to e since otherwise ¢¢
would contain an induced C7. But now we have the five P,’s cdef, bafz, xzed, bafe and zxbe
— a contradiction.

Let us now assume that yb or za is an edge. By symmetry we may assume that za is an
edge in G. Now we find the three P4’s yede, zafe and zabe which imply that y must see d. Let
w denote any neighbor of e different from d and f. The vertex w must exist since otherwise e
has degree three. Then the three Py’s edew, zbcy and za fe show that w must be adjacent to d.
Now let u be a vertex that sees & but does not see a. Such a vertex must exist since otherwise
a would dominate . Now we have the three P,’s zabe, uzaf and edef which show that v must
be adjacent to f. But then the three Py’s edef, fuxrb and zabe force u also to be adjacent to b
which contradicts the above stated claims. O

So far we have shown by Claims 1-8 that every C-partial vertex has only one neighbor in
C'. Since every vertex of C' must have a partial vertex as its neighbor we can choose vertices z,
y and z with z being adjacent to a, y being adjacent to ¢ and z being adjacent to e. Then we
have the three P4’s zabe, yede and zefa which show that the 1-overlap graph of G contains a
triangle. a

Proof of Lemma 2 Let abedef be the vertices of the Cs. We will show that if G contains
no comparable pair of vertices then no Cs-universal vertex can be partial on the Cg-partial
vertices.

Claim 1: FEvery universal vertex is adjacent to all partial vertices of type 2, 4, 5, 6, and 7.

Let u be a Cg-universal vertex and p be a Cgs-partial vertex not adjacent to u. We will show
that in all these five cases for the vertex p there are five Py’s in G such that the 1-overlap graph
of G contains a Cf.

Let p be of type 2, i.e., p sees the vertices a and b. Then take the five Py’s abed, eubp, fabe,
dubp and pafe.

17



This paper appeared in: Journal of Combinatorial Theory, Series B 67 (1996), 212-237

Let p be of type 4, i.e., p sees the vertices a,b and ¢. Then take the five Py’s eubp, cpaf,
bede, fubp and apcd.

Let p be of type 5, i.e., p sees the vertices a,c and e. Then take the five P,’s cdef, duap,
bafe, aped and peub.

Let p be of type 6, 1.e., p sees the vertices a,b,c and e. Then take the five P,’s bafe, fucp,
aped, fubp and aped.

Let p be of type 7, i.e., p sees the vertices a,b,d and e. Then take the five Py’s peuc, bafe,
apde, bpef and abed. <&

Claim 2: Any universal vertex is adjacent to all partial vertices of type 3.

Let u be a universal vertex and p be a partial vertex of type 3 not adjacent to u. We assume
that p sees the vertices a and c.

Since the vertex b must not dominate p there must exist a vertex x that sees p but does not
see b. Then the three P4’s zpch, cdef and euap show that ¢ must be an edge. By symmetry
also za must be an edge. Now the three Ps’s azced, bafe, and fucp show that zd must be an
edge. But this gives a contradiction since now we have the three P,’s dzab, euap, and cdef. <

Claim 3: A universal vertex that is non-adjacent to a partial vertex of type 1 cannot see any
partial vertex.

Let u be a universal vertex and p be a partial vertex of type 1 not adjacent to u where we
assume that p sees the vertex a. Let z be a Cg-partial vertex that sees u. We will show that
this gives a contradiction.

First assume that z is adjacent to b and f. Then the three P,’s pauc, defa and fzbe show
that z must be adjacent to ¢. By symmetry it must also be adjacent to e. But now the three
Py’s cxfa, paue and bede and the three P,’s fabe, bred and paue show that x must also be
adjacent to a and d. This contradicts the assumption that z is a Cs-partial vertex.

Now let us assume that z sees b but does not see f. Then the three P,’s fabx, pauc, and
cdef show that za must be an edge. Then we can conclude that ze must be an edge because
of the P,’s xafe, paud, and bede. But then the three P,’s paue, abed and bxef imply that x
must see f — a contradiction.

Thus we know that x cannot see b and by symmetry can also not see f. If x sees a then the
three P,’s zafe, paud and bede imply that z must see e. But this gives a contradiction since
then the P4’s exab, pauc and cdef imply that z must see b.

Therefore we know that x sees neither a nor b nor f. If x sees e then the three Py’s bede,
zefa and paud give a contradiction.

By symmetry z can also not see ¢ and therefore d is the only possible neighbor of z. But if
z sees d then we find the three Py’s bedz, paud and bafe which again gives a contradiction. &
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Claim 4: A universal veriezx that is non-adjacent to a partial vertex of type 8 cannot see any
partial vertex.

Let u be a universal vertex and p be a partial vertex of type 8 which sees the vertices a, b, ¢, d
and e and does not see u. Assume that there exists a partial vertex x that is adjacent to u.

Let us first assume that z sees @ and e. Then the P,’s axed, fabc and fudp show that x
must see d and by symmetry it also must see b. Now the three P,’s dxaf, fubp and bede resp.
axde, bafe and fucp show that z must also see f and ¢. But this is a contradiction since x is
assumed to be a Cs-partial vertex.

Now assume that z sees a but does not see €. Then the three Py’s zafe, fudp and abed
show that zf must be an edge. Then z must also see d because of the Py’s defxz, abed and
fubp. But this gives a contradiction because we now have the three Py’s axde, fabc and fudp.

Thus we know that x cannot see a and by symmetry also not e. Let us assume that xzf 1s
an edge. Then the P4’s bafz, fucp and bede imply that # must see b and by symmetry it also
must see d. But then the three P.’s fubp, cdef and dzba give a contradiction.

Thus we know that x sees neither a nor e nor f. Then x cannot see b because of the three
Py’s bede, fabx, and fudp. By symmetry z can also not see d.

Thus the only possible neighbor of z is ¢. But if x sees ¢ then there are the three Py4’s fucp,
bafe and zcde giving the desired contradiction. <&

We are now going to complete the proof of Lemma 2. If a Cs-universal vertex u misses a
C-partial vertex of type 1 or 8, then by Claims 3 and 4 vertex u must miss all of P. On the
other hand if u sees all partial vertices of type 1 and 8 then by Claims 1 and 2 it sees all of P.

O

Proof of Lemma 3 Assume that G contains neither a homogeneous pair nor a homogeneous
set nor a comparable pair of vertices. We will show that this assumption leads to a contradiction.

Let C = abedef denote the Cg and let P denote the set of C-partial vertices. Then there
must exist a C-universal or C-null vertex that is P-partial, otherwise the sets C' and P would
form a homogeneous pair. By Lemma 2 we know that no C-universal vertex can be P-partial.
Thus there must exist a C-null vertex that is P-partial. We will show that this is not possible
yielding the desired contradiction.

Claim 1: No C-null vertex can see a C-partial vertex of type 2,3,6 or 7.

Let n be a C-null vertex and p be a C-partial vertex adjacent to n. We will show that if p is
of type 2,3,6 or 7 then the 1-overlap graph of G contains a Cs.

If p is of type 2, i.e., p sees a and b then there are the five Py’s abed, npaf, cdef, npbc and
pafe.
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If p is of type 3, i.e., p sees a and ¢ then there are the five Py’s pafe, npch, edef, npaf and
abed.

If p is of type 6, 1.e., p sees a, b, c and e then there are the five Py’s cpaf, nped, abed, npaf
and bped.

If p is of type 7, i.e., p sees a,b,d and e then there are the five Py’s fabe, npde, bpef, apdc
and npef. <&

Claim 2: No C-null vertex can see a C-partial vertex of type 5.

Let n be a C-null vertex and p be a C-partial vertex that is adjacent to n and of type 5,1.e., p
sees a, ¢ and e.

Since GG does not contain a comparable pair of vertices there must exist a vertex z that sees
b but does not see p. Then the three Py’s pabx, npef and bede imply that za must be an edge.
By symmetry also z¢ must be an edge. Now we find the three Py’s czaf, npab and bede which
imply that  must see f. Now we get a contradiction since there are the three Py’s fzep, nped
and abed. <&

Claim 3: No C-null vertex can see a C-partial vertex of type 4.

Let n be a C-null vertex and p be a C-partial vertex that is adjacent to n and of type 4, i.e., p
sees a, b and c.

Since GG does not contain a comparable pair of vertices there must exist a vertex z that sees
b but does not see p. Then the three Py’s npbx, epaf and bede imply that x must see n. Now we
find the three P4’s abxn, depn and defa which imply that za must be an edge. By symmetry
also ¢ must be an edge.

Now the good set argument shows that 2z must see at least one of the vertices d, e or f. But
x cannot see d because otherwise there are the three Py’s pbxd, npaf and edef. By symmetry
x can also not see f.

Thus 2z must see e but then we find the three P4’s pnze, epaf and bede. <&

Claim 4: If a C-null vertez is adjacent to a partial vertex of type 1 then it must be adjacent
to all partial vertices.

Let n be a C-null vertex and p be a C-partial vertex that is adjacent to n and of type 1,1.e., p
sees a. Let z denote a C-partial vertex that is not adjacent to n.

First let us assume that z sees the vertices ¢ and e. Then there are the three P,’s cxef, fapn
and abed which imply that x must be adjacent to f. By symmetry 2 must also be adjacent to
b. Next we find the three P,’s exba, fapn and cdef which imply that  must see a. Then there
are the three Py’s npaz, fabe and bzed which imply that z must be adjacent to p (note that
z is a partial vertex and therefore cannot be adjacent to d). But now we get a contradiction
with the three P,’s npaf, pxred and abed.
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Now we assume that x sees neither ¢ nor e. If x is adjacent to d then there are the three
Py’s xdef, abed and fapn which show that 2 must see f. By symmetry x must also see b. But
then the three P4’s defa, bapn and fzbc give a contradiction. Thus 2 cannot be adjacent to d.
Moreover z also cannot be adjacent to f because otherwise there are the three P,’s defz, abed
and fapn. By symmetry x can also not be adjacent to b. Thus x must be adjacent to a but
then there are the three P4’s bede, bapn and zafe.

Thus we know that x must be adjacent to exactly one of the two vertices ¢ and e. By
symmetry we may assume that z sees ¢ and misses e. Vertex  must miss f or else efzc, fapn
and abcd are three Py’s inducing a triangle in the 1-overlap graph. Then  must miss d or else
zdef, fapn and abed are Py’s that form a triangle in the 1-overlap graph. Then z must miss a
or else zafe, bapn and bede are Py’s that form a triangle. Then z must see b or else abex, fapn
and cdef are Py’s that form a triangle. Now there must exist a vertex y that is adjacent to z
and non-adjacent to b since otherwise G contains a comparable pair of vertices. The vertex y
must be different from p because otherwise G would contain the C7 zecdefay Then there are
the three P4’s pafe, zede and yxba which show that y must see a. Now the three P,’s xcde,
pabc and zyaf imply that y is adjacent to f. But then the three Py’s bzyf, de fa and bapn give
a contradiction. <&

Claim 5: If a C-null vertezx is adjacent to a partial vertex of type 8 then it must be adjacent
to all partial vertices.

Let n be a C-null vertex and p be a C-partial vertex that is adjacent to n and of type 8,1.e., p
sees a,b,c,d and e. Let z denote a C-partial vertex that is not adjacent to n.

First let us assume that z sees the vertices a and e. Then the three P,’s exab, cdef and
fapn show that  must be adjacent to b. By symmetry x must also be adjacent to d. Moreover
the three Py’s fape, bede and npex show that z must also see p. Now the three Py’s dxaf npef
and bede show that z must be adjacent to f. But then we get a contradiction since the three
Py’s exbe, fepn and defa imply that 2 must see ¢ which is not possible since x is assumed to
be a C-partial vertex.

Next let us assume that z sees neither a nor e. If x sees f then there are the three Py’s
defz, abed and fapn which show that x must also see d. By symmetry  must also see b. But
now the three P,’s npef, afzd and bede give a contradiction. Thus z cannot see f. If z sees b
then the three P,’s fabz, bede and npef give a contradiction. By symmetry  can also not see
d. Thus # must see ¢ but then there are the three P,’s abcx, edef and npaf.

Therefore we know that z is adjacent to exactly one of the two vertices ¢ and e. By symmetry
we may assume that x sees a. Then the three P,’s xapn, abed and bpe f imply that xp must be
an edge. Now zd cannot be an edge because otherwise we find the three Py’s npef, axde and
fabe. Similarly z cannot be adjacent to ¢ or f because of the Ps’s zede, fabe and npef resp.
defz, fapn and abed. Hence three Py’s xabe, cdef and fapn imply that z must see b.

Since G does not contain a comparable pair of vertices there must exist a vertex y that is
adjacent to ¢ but is non-adjacent to p. Then the three P4’s epey, fapn and dcba imply that y
must see e. Now the three P,’s cyef, debx and fapd imply that y is adjacent to f. But then
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the three Ps’s fyep, edchb and xzafe yield a contradiction.

6 Comparison with known classes of perfect graphs

In this section we analyze the relation of the new classes of perfect graphs that we have intro-
duced in this paper, with the known classes of perfect graphs.

For brevity of notation we will denote our new classes defined via 3-, 2-, and l-overlap
graphs as 03,02 and Oy, i.e. O3 denotes the class of all Berge graphs whose 3-overlap graph
is triangle-free; Oy denotes the class of all Berge graphs whose 2-overlap graph is triangle-free
and @; denotes the class of all Cs5-free graphs whose 1-overlap graph is bipartite.

First we note, that all three of these classes contain the Cg and its complement. Therefore
the classes O3, @y and O, are neither contained in the class of strict quasi parity graphs [19]
nor in the class BIP* [4] nor strongly perfect [2]. Two vertices are called an even pair if all
induced paths connecting these two vertices have even length. A graph G is called quas: parity
if every induced subgraph or its complement contains an even pair. Meyniel [19] proved that
quasi parity graphs are perfect. The graph of Figure 7a) shows that the class Qg is not quasi
parity.

Figure T:

For the graphs in O; we do not know whether these graphs are quasi parity graphs. However,
the following Lemma shows that the class O3 is contained in the quasi parity graphs.

Lemma 4 If G is a Berge graph whose 2-overlap graph is triangle-free then G is quasi parity.

Proof. Tt is easy to see that if G is a Berge graph that contains a homogeneous set, or a

comparable pair of vertices, or a vertex of degree two, then G or G contains an even pair.
Moreover as shown in [12], every weakly triangulated graph contains an even pair.

Suppose the statement of the lemma is not true, i.e., there exists a Berge graph G whose 2-
overlap graph is triangle-free, but G is not quasi parity. Then G cannot be weakly triangulated
and Claims 1, 2 and 3 of the proof of Theorem 3 show that G must consist of a cycle C' of
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length at least eight where all vertices of G — C' have exactly two consecutive vertices of C' as
its neighbors.

Let the vertices of C' be labeled a, b, ¢, ... and let z be a vertex of G — C' that sees b and c.
Let y be a neighbor of d. If the vertex y does not exist then the vertex d has degree two and
therefore as noted above G contains an even pair. If the second neighbor of y on C' is e then
independently whether z and y are adjacent, the graph induced by the vertices a, b, ¢, d,e, f, z,y
contains a triangle in the 2-overlap graph. Therefore the second neighbor of y on C' must be
c. Using the same argument once more with y in the role of z, we see that there must exist a
vertex z adjacent to e and d. But as we have seen just above, such a vertex cannot exist in G.
O

Finally we want to analyze which classes of perfect graphs are contained in our classes Og,
02 and O;. A graph is called Py-reducible, if every vertex is contained in at most one Py
[16]. Trivially all the three classes contain the class of Py-reducible graphs. A graph is called
Py-sparse, if any set of five vertices induces at most one P,. Clearly, every Ps-reducible graph
is Py-sparse. It is easy to see that the class O3 contains the Ps-sparse graphs and a simple case
analysis shows that the same is true for the class @;. However the class @5 does not contain
the Ps-sparse graphs; the graph Fg of Figure 4 is a counterexample.

The graph of Figure 7b) shows that none of the three classes 01, O3 and O3 contains the
trees, the interval graphs or the permutation graphs (see [10] for definitions). However, as noted
before Corollary 2, the class O3 contains all graphs whose partner graph is triangle-free.
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