On a conjecture of Hoàng and Tu concerning perfectly orderable graphs

Stefan Hougardy
Humboldt-Universität zu Berlin
Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany
hougardy@informatik.hu-berlin.de

August 2003

Abstract

Hoàng and $\mathrm{Tu}[5]$ conjectured that a weakly triangulated graph which does not contain a chordless path with six vertices is perfectly orderable. We present a counterexample to this conjeture.

Keywords: perfectly orderable graph, weakly triangulated graph

A graph is called perfectly orderable if it admits a linear order " $<$ " on its vertices such that no chordless path with four vertices a, b, c, d and edges $a b, b c, c d$ has $a<b$ and $d<c$. The notion of perfectly orderable graphs has been introduced by Chvátal [1]. A graph is called weakly triangulated [3] if neither the graph nor its complement contains a chordless cycle of length at least 5 .

In 1989 Chvátal [2] conjectured that a weakly triangulated graph which does not contain a chordless path with five vertices is perfectly orderable. This conjecture was proved by Hayward [4] in 1997.

Theorem 1 (Hayward [4]) A weakly triangulated graph which does not contain a chordless path with five vertices is perfectly orderable.

In 2000 Hoàng and Tu proposed the following natural extension of this result:
Conjecture 1 (Hoàng, Tu [5]) A weakly triangulated graph which does not contain a chordless path with six vertices is perfectly orderable.

We will present a counterexample to this conjecture in the following.

Lemma 1 There exist weakly triangulated graphs without a chordless path with six vertices that are not perfectly orderable.

Proof. We will prove that the graph shown in Figure 1 has the desired properties. It is easy to see that this graph does not contain a chordless path with six vertices and that it is weakly triangulated. It remains to show that the graph is not perfectly orderable.

We will denote a chordless path with four vertices a, b, c, d and edges $a b, b c, c d$ simply by $a b c d$. Because of the symmetry of the graph we may assume $e<d$ without loss of generality. Now the chordless path edih implies $i<h$. Next the chordless path ihge implies $g<e$. The triangle deg must be acyclic, so $g<d$ must hold. Next the chordless path gdac implies $a<c$. The chordless path $a c f g$ implies $f<g$. Now the triangle egf must be acyclic, so $f<e$. The chordless path feab implies $a<b$. Next the chordless path abgf implies $g<f$. This is a contradiction as we already have $f<g$.

Figure 1: A counterexample to the conjecture of Hoàng and Tu.

References

[1] V. Chvátal, Perfectly ordered graphs, in: Topics on Perfect Graphs, C. Berge and V. Chvátal (Eds.), Ann. Discrete Math. 21, (North Holland, Amsterdam, 1984), 63-65
[2] V. Chvátal, A class of perfectly orderable graphs, Report No. 89573-OR (1989), Forschungsinstitut für Diskrete Mathematik, Universität Bonn
[3] R. B. Hayward, Weakly triangulated graphs, J. Combin. Theory Ser. B 39 (1985), 200-208
[4] R. B. HAYWARD, Meyniel weakly triangulated graphs - I: co-perfect orderability, Discrete Applied Mathematics 73 (1997), 199-210
[5] C. T. HoÀng, X. Tu, On the perfect orderability of unions of two graphs, Journal of Graph Theory 33 (2000), 32-43

