The Complexity of Some Problems on Very Sparse Graphs

Thomas Emden-Weinert*
Stefan Hougardy[†]
Bernd Kreuter[‡]

Humboldt-Universität zu Berlin, Institut für Informatik,10099 Berlin, GERMANY January 17th, 1997

Abstract. We study the complexity of the problems Dominating Set, Max Cut, Vertex Feedback Set, Steiner Tree, Hamiltonian Circuit, and Chromatic Index on graphs G of bounded maximum degree and large girth. All results are essentially best possible. We also construct regular class-one graphs of large girth and small order. Finally, we point out how vertex resp. edge feedback sets of size $\mathcal{O}(\log n)$ can be used to solve Max Cut, Independent Set, Node Cover, Dominating Set, Vertex Feedback Set and Steiner Tree in polynomial time.

1 Introduction

Let G = (V, E) be a graph with node set V and edge set E. The order of G, i.e. the number of its vertices, is denoted by |G| or n = n(G), the number of its edges by m = m(G) or just by |E|. The degree of a node $v \in V$, i.e. the number of neighbors of v in G, is denoted by d(v), the maximum degree of a node in G by $\Delta(G)$. A graph every vertex of which has degree r is called r-regular and cubic if r = 3. The girth g(G) of a graph G is the length of a shortest cycle in G and can be computed in time $\mathcal{O}(mn)$. For an introduction to the theory of computational complexity and the notion of NP-completeness we refer the reader to [GJ79, Pap94].

Bounding the maximum degree in optimization problems on graphs does often not affect their hardness, cf. e.g. [Joh85]. For a constant $k \in \mathbb{N}$, a graph G of maximum degree k is sparse in the sense that G has at most k|G|/2 edges. The girth is another graph parameter controlling the sparseness of a graph - a graph G of girth $g \ge 2h + 2$, $h \in \mathbb{N}$, has at most $\left(\frac{n}{2}\right)^{1+1/h} + 2^h \cdot \left(\frac{n}{2}\right)^{1-1/h}$ edges [ES82]. As graphs of large girth look like trees locally one might think that a hard problem might be easier to solve on graphs of large girth. Nevertheless, as we show in this paper, several well-known NP-hard problems on graphs remain NP-hard on graphs with large girth although being solvable in linear time on trees.

More specifically, we prove the NP-completeness of Dominating Set, Max Cut, Vertex Feedback Set and Steiner Tree on graphs of girth $g(G) \geq |G|^r$ for any fixed r, $0 \leq r < 1$ (Section 2), the NP-completeness of Hamiltonian Circuit on graphs of girth $g(G) \geq |G|^r$ for any fixed r, $0 \leq r < 1/2$, giving a polynomial time algorithm for graphs G of girth $g(G) > 2|G|^{1/2}$ (Section 3), and the NP-completeness of Chromatic

^{*}E-mail:weinert@informatik.hu-berlin.de

[†]E-mail:hougardy@informatik.hu-berlin.de

[‡]E-mail:kreuter@informatik.hu-berlin.de

INDEX on r-regular graphs of girth $g(G) \ge c \cdot \log |G| / \log(r-1)$, for any fixed $0 \le c < 1$ and integer $r \ge 3$ (Section 4). The last result is best possible up to the constant c.

In all cases one may additionally impose the restriction to graphs of maximum degree 3 (resp. 6 in case of Vertex Feedback Set), thus forcing the graphs to be sparse both in a global and in a local way.

In a companion paper [EHK96] we have shown that an analogous result holds for the problem Graph Colorability.

In Section 5 we show how the problems MAX CUT, INDEPENDENT SET, NODE COVER resp. Dominating Set can be solved in polynomial time given a vertex resp. edge feedback set of size $\mathcal{O}(\log n)$ for the graph at hand. As such a feedback set can be constructed in polynomial time in graphs G with girth $g(G) \geq \frac{n \log n}{\log n}$ this yields polynomial time algorithms for these problems as well as for the problems Vertex Feedback Set and Steiner Tree in graphs with girth $g(G) \geq \frac{n \log n}{\log n}$.

2 DOMINATING SET, MAX CUT, VERTEX FEEDBACK SET and STEINER TREE

In the case of Dominating Set we are given a graph G = (V, E), and the problem is to find a smallest node set $S \subseteq V$ such that every vertex from $V \setminus S$ has at least one neighbor in S. The smallest possible size of such a set S is called the domination number $\gamma(G)$. In the case of MAX CUT we are given a graph G = (V, E) and the problem is to find a partition $V = X \cup Y$ of the node set such that the number $|E(X,Y)| := |\{\{x,y\} \in E:$ $x \in X, y \in Y$ of crossing edges is maximized. The largest possible size of such a set of edges is denoted by mc(G). A vertex set $F \subseteq V$ which intersects all cycles of G = (V, E)(i.e. $G[V \setminus F]$ is a forest) is called a vertex feedback set. The problem Vertex Feedback SET is to find the minimal size vfs(G) of a vertex feedback set in a given graph G. In case of Steiner Tree, finally, we are given a graph G = (V, E) and a set $T \subseteq V$ of so-called terminal vertices. A set $F \subseteq E$ of edges such that F induces a subgraph of G which is a tree and covers all the vertices from T is called a Steiner tree for G and T. The problem is to find the minimum number St(G,T) of edges of a Steiner tree F for G and T. In case of the Weighted Steiner Tree problem we are additionally given edge weights $w: E \to \mathbb{Q}^+$ and try to minimize $\sum_{e \in F} w(e)$. Planar Dominating Set is the problem DOMINATING SET restricted to planar graphs; analogously for the other problems.

Theorem 2.1 For a rational number r, $0 \le r < 1$, and an integer Δ let $\mathcal{G}_{\Delta,r}$ ($\mathcal{BPG}_{\Delta,r}$) denote the class of all (bipartite and planar) graphs G of maximum degree Δ and girth $g(G) \ge |G|^r$. Then for $0 \le r < 1$, Max Cut restricted to the class $\mathcal{G}_{3,r}$, Dominating Set and Steiner Tree restricted to the class $\mathcal{BPG}_{3,r}$ and Vertex Feedback Set restricted to the class $\mathcal{BPG}_{6,r}$ are NP-complete.

Proof. Restricted to graphs of maximum degree 3 the problems MAX CUT [Yan81], PLANAR DOMINATING SET [KK79] and PLANAR STEINER TREE are NP-complete. As – to our best knowledge – for DOMINATING SET and STEINER TREE these NP-completeness proofs are unpublished, let us briefly sketch the reductions. To show that PLANAR DOMINATING SET is NP-complete, use the reduction [LR79] from PLANAR NODE COVER [GJ77]; as to the restriction of the maximum degree, a local replacement analogously to the corresponding proof [GJ77] for NODE COVER works as follows: replace each node in G of

degree d>3 by a circuit of length 3d+1 and attach a leaf to one of these vertices appropriately. Steiner tree is NP-complete on unweighted grid graphs [GJ77], which are planar graphs of maximum degree 4. To remove vertices of degree 4 insert 4n new vertices on each edge and replace vertices of degree 4 by a 4-cycle. Then, for the graph G' obtained, $St(G,T)=\left\lfloor \frac{1}{4n+1}St(G',T')\right\rfloor$. Vertex Feedback Set is NP-complete restricted to bipartite planar graphs of maximum degree 6 [KD79].

We set out the reduction for Dominating Set only and then indicate how to modify it for the other two problems. So let G be a planar graph of maximum degree $\Delta(G) \leq 3$. Let k be the smallest integer such that $\frac{k}{k+2} \geq r$ and set $t := |G|^k$ if |G| is odd and $t := |G|^k - 1$ otherwise. Insert 3t new vertices on each edge and denote the resulting bipartite planar graph by G'. Then $|G'| \leq |G| + \frac{3|G|}{2} |3|G|^k \leq |G|^{k+2}$ for $|G| \geq 5$. Hence $g(G') \geq 3t \geq |G|^k \geq |G'|^{\frac{k}{k+2}} \geq |G'|^r$ so that $G' \in \mathcal{BPG}_{3,r}$. Furthermore $\gamma(G') = \gamma(G) + m(G) \cdot t$ (for " \geq " observe that for each edge $e \in E(G)$ a minimum dominating set S in G' contains at least t vertices of the 3t vertices inserted on e; on the other hand, without loss of generality, S contains at most t of them). As r is constant the reduction is polynomial time computable.

For MAX Cut resp. Vertex Feedback Set and Steiner Tree insert 2t resp. t vertices on each edge to obtain a graph G' with $mc(G') = mc(G) + m(G) \cdot 2t$ resp. vfs(G') = vfs(G) and $St(G', T) = (t+1) \cdot St(G, T)$.

For MAX CUT resp. Dominating Set and fixed g, the result was already proved in [PT95] resp. [ZZ95]. Analogously, for every fixed r, $0 \le r < 1$, the problem Independent Set (and hence Node Cover) is NP-complete restricted to the class of all planar graphs G of maximum degree 3 and girth $g(G) \ge |G|^r$ [Mur92].

In Section 5 we will prove the following theorem. Put $\log n = \log \log n$.

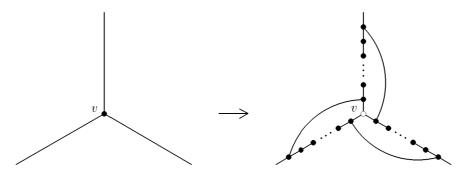
Theorem 2.2 The problems Max Cut, Independent Set, Node Cover, Dominating Set, Vertex Feedback Set and Steiner Tree restricted to the class of graphs G with $g(G) \geq \frac{n \log n}{\log n}$ are solvable in polynomial time.

3 Hamiltonian Circuit

For a graph G, the problem Hamiltonian Circuit is to decide whether G contains a circuit visiting each node of G exactly once.

Theorem 3.1 Let $0 \le r < 1/2$ be a fixed rational number. Then Hamiltonian Circuit is NP-complete for bipartite planar graphs G of maximum degree 3 and girth $g(G) \ge |G|^r$.

Proof. The reduction will use the following operation on a graph G = (V, E) which we will refer to as "expanding a node v". Let $t \in \mathbb{N}$ be an integer and $v \in V$ be a node of degree 3. For i = 1, 2, 3, insert t new nodes, say $x_1^{(i)}, \ldots, x_t^{(i)}$, on the i-th edge incident to v such that $x_j^{(i)}$ is at distance j from $v, 1 \leq j \leq t$, and add the edges $\{x_t^{(1)}, x_1^{(2)}\}, \{x_t^{(2)}, x_1^{(3)}\}$, and $\{x_t^{(3)}, x_1^{(1)}\}$, cf. the following figure:



Observe that the resulting graph G_v is Hamiltonian if and only if G is. Furthermore, the graph H which is induced by the new nodes and v has girth t+2 and every cycle in G_v which intersects H but which is not completely contained in H has either length at least t+3 or uses the node v and at least 4 other nodes of H.

We now reduce from the Hamiltonian Circuit problem on cubic bipartite planar graphs [ANS80]. So let G be a cubic bipartite planar graph. Let k be the smallest integer such that $\frac{k}{2(k+1)} \geq r$ and set $t := |G|^k$ if |G| is even and $t := |G|^k + 1$ otherwise. Expanding every node of G t-times yields a graph G' of order $|G'| \leq |G| \cdot (1 + t \cdot 3t) \leq |G|^{2k+2}$ for |G| large enough. Hence G' is planar and bipartite, has maximum degree 3 and girth

$$g(G') \ge \min\{(t \cdot 4 + 1) \cdot g(G), t + 2\} \ge t \ge |G|^k \ge |G'|^{\frac{k}{2k+2}} \ge |G'|^r$$

Furthermore, as r is constant, the reduction is polynomial time computable.

In fact, the last theorem is essentially tight as the following proposition shows.

Proposition 3.2 Let $\mathcal{G} := \{G : G \text{ is a graph with } g(G) > 2\sqrt{|G|}\}$. Then Hamiltonian Circuit restricted to the class \mathcal{G} is in P.

Proof. Let $G \in \mathcal{G}$ and n := |G|. We may clearly assume that G has no vertices of degree smaller than 2. Suppose a node v in G has at least two neighbors x and y of degree 2. Then a Hamiltonian circuit must use the edges $\{x,v\}$ and $\{v,y\}$. Therefore we may remove from G the other edges incident to v, the reduced graph being Hamiltonian if and only if G is. This way we may recursively remove edges from G that cannot be contained in a Hamiltonian circuit.

Suppose first that at some step there occurs a vertex of degree less than 2. Then obviously G is not Hamiltonian.

Assume secondly that at some step there are no vertices of degree at least 3 left in the reduced graph. Then G is Hamiltonian if and only if the reduced graph is a |G|-cycle.

Suppose finally that the minimum degree in the reduced graph H is at least 2 and that there are still some vertices of degree at least 3 left, but every vertex of degree at least 3 has at least two neighbors of degree at least 3. We will show that this case is impossible. Pick a vertex v of degree at least 3 in H. Let $\Gamma_i(v)$ denote the set of all vertices at distance (exactly) i from v. We claim that

(*) for $1 \le i \le \lfloor \sqrt{n} \rfloor$, $|\Gamma_i(v)| \ge 2i + 1$ and $\Gamma_i(v)$ contains at least two vertices of degree at least 3.

To see this observe that (*) is true for i=1 by the way we chose v and by the definition of H. Now let $1 < i \le \lfloor \sqrt{n} \rfloor$ and assume that (*) is true for i-1. Note that $g(H) \ge g(G) > 2\lfloor \sqrt{n} \rfloor$. As the minimum degree of H is at least 2 and a vertex $w \in \Gamma_{i-1}(v)$ cannot have a neighbor in $\Gamma_{i-1}(v)$ (otherwise there would be a cycle of length at most $2i-1 \le 2\lfloor \sqrt{n} \rfloor -1$)

every vertex $w \in \Gamma_{i-1}(v)$ has at least one neighbor in $\Gamma_i(v)$. Furthermore, for different w's these neighbors must be different because otherwise there would be a cycle in H of length at most $2i \leq 2\lfloor \sqrt{n} \rfloor$. The two vertices of degree at least 3 in $\Gamma_{i-1}(v)$ each have two neighbors in $\Gamma_i(v)$, at least one of them having degree greater than 2. Hence $|\Gamma_i(v)| \geq |\Gamma_{i-1}(v)| + 2$ and (*) is proven.

Now, by (*), the number of vertices at distance $0, \ldots, \lfloor \sqrt{n} \rfloor$ from v is at least

$$\sum_{i=0}^{\lfloor \sqrt{n} \rfloor} (2i+1) = (\lfloor \sqrt{n} \rfloor + 1)^2 > n,$$

П

a contradiction.

4 CHROMATIC INDEX

A k-edge-coloring of a graph G=(V,E) is a function $c:E \to \{1,\ldots,k\}$ such that incident edges receive different colors, that is, for all edges $e \neq f$ in G, $e \cap f \neq \emptyset \Rightarrow c(e) \neq c(f)$. The minimum number k of colors such that there exists a k-edge-coloring of G is called the *chromatic index* of G, denoted by $\chi'(G)$. By a theorem of Vizing $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$. However, the problem Chromatic Index, which is to decide whether the chromatic index of a graph G is $\Delta(G)$ (a so-called "class one" graph) or $\Delta(G) + 1$ (a "class two" graph) is NP-complete, even for r-regular graphs for any fixed $r \geq 3$ [LG83].

We begin by constructing r-regular graphs of large girth which are class one. These graphs will later be used as gadgets in our NP-completeness proof. By a classical theorem of König bipartite graphs are class one.

Theorem 4.1 Let $g \ge 3$ and $r \ge 3$ be integers. Then an r-regular graph of girth at least g on

$$n:=n(g,r):= \left\{ \begin{array}{ll} 2 \, \frac{(r-1)^{g-1}-1}{r-2} & \mbox{if g is odd} \\ 4 \, \frac{(r-1)^{g-2}-1}{r-2} & \mbox{if g is even} \end{array} \right.$$

 $vertices\ can\ be\ constructed\ in\ time\ polynomial\ in\ n.$ Furthermore, in case g is even the $graph\ constructed\ is\ bipartite.$

Proof. We will show how the non-constructive proof of [Bol78, Theorem III.1.4] can be turned into an algorithm.

The case g even is derived from the case g odd as follows, see [Bol78, Theorem III.1.3]. Let G = (V, E) be an r-regular graph of girth g-1 and order n(g-1, r). Then an r-regular bipartite graph G' = (V', V'', E') of girth at least g is defined by letting V' and V'' be disjoint copies of V and $E' := \{\{x', y''\}: x' \in V', y'' \in V'', \{x, y\} \in E\}$.

Consider now the case g odd. Let V be a vertex set of size n; we will see in a moment that n is an integer. The following procedure constructs an r-regular graph G=(V,E) on V of girth at least g. By d(v) we will denote the degree of a vertex $v \in V$ with respect to the current edge-set E and dist(v,w) the distance between vertices v and w which is defined to be ∞ if there is no path from v to w. For a node $x \in V$ and an integer $k \in \mathbb{N}_0$, $\mathcal{B}_k(x) := \{v \in V | dist(v,x) \leq k\}$ is the ball of radius k around k, $\mathcal{S}_k(x) := \{v \in V | dist(v,x) = k\}$ the sphere at radius k around k.

```
\begin{split} E &:= \emptyset \,; \\ \text{REPEAT} \\ &\quad \text{WHILE there exist } x_1, x_2 \in V \text{ with } d(x_1) < r \text{ and } d(x_2) < r \\ &\quad \text{and } dist(x_1, x_2) \geq g - 1 \text{ DO } E := E \cup \{\{x_1, x_2\}\} \,; \\ \text{IF } |E| < nr/2 \text{ THEN BEGIN} \\ &\quad \text{choose } x_1, x_2 \in V \text{ with } d(x_1) < r \text{ and } d(x_2) < r \,; \\ &\quad \text{choose an edge } \{y_1, y_2\} \in E \text{ such that} \\ &\quad y_1 \in V \setminus (\mathcal{B}_{g-2}(x_1) \cup \mathcal{B}_{g-2}(x_2)) \text{ and} \\ &\quad y_2 \in V \setminus (\mathcal{B}_{g-2}(x_1) \cap \mathcal{B}_{g-2}(x_2)) \,; \\ \text{IF } dist(y_2, x_1) \geq g - 1 \text{ THEN} \\ &\quad E := E \setminus \{\{y_1, y_2\}\} \cup \{\{y_2, x_1\}, \{y_1, x_2\}\} \,; \\ \text{ELSE} \\ &\quad E := E \setminus \{\{y_1, y_2\}\} \cup \{\{y_2, x_2\}, \{y_1, x_1\}\} \,; \\ \text{END; } \{\text{IF } |E| < nr/2\} \\ \text{UNTIL } |E| = nr/2 \,; \end{split}
```

The proof of the correctness of this procedure is essentially that of [Bol78, Theorem III.1.4]. For the sake of completeness we will provide it here, too.

We will show that the choice of $\{y_1, y_2\} \in E$ as specified can always be made and that at all times the following invariant holds for G = (V, E)

- (i) $\Delta(G) \leq r$, and
- (ii) g(G) > g.

Observe that (i) and (ii) hold in the beginning and that these conditions are not violated during the WHILE-loop. As to the choice of $\{y_1, y_2\}$ observe that for i = 1, 2

$$\mathcal{B}_{g-2}(x_i) \leq \sum_{j=0}^{g-2} (r-1)^j = \frac{(r-1)^{g-1}-1}{r-2} = n/2.$$

The WHILE-loop guarantees that every vertex of degree at most r-1 is in $\mathcal{B}_{g-2}(x_1) \cap \mathcal{B}_{g-2}(x_2)$, in particular so are x_1 and x_2 . Trivially, $\mathcal{S}_{g-2}(x_1) \cap \mathcal{S}_{g-2}(x_2) \subseteq \mathcal{B}_{g-2}(x_1) \cap \mathcal{B}_{g-2}(x_2)$ so that for $R := V \setminus (\mathcal{B}_{g-2}(x_1) \cup \mathcal{B}_{g-2}(x_2))$

$$|R| = n - |\mathcal{B}_{g-2}(x_1)| - |\mathcal{B}_{g-2}(x_2)| + |\mathcal{B}_{g-2}(x_1) \cap \mathcal{B}_{g-2}(x_2)| \ge |\mathcal{S}_{g-2}(x_1) \cap \mathcal{S}_{g-2}(x_2)| + 2.$$

Hence $R \neq \emptyset$ and any vertex in R satisfies the requirement for y_1 in the algorithm. Neighbors of vertices in R have distance at least g-2 to x_1 as well as to x_2 . As all vertices in R have degree r the above inequality shows that not all neighbors of vertices in R can have distance g-2 to x_1 as well as to x_2 since then there would be a vertex of degree larger then r in $\mathcal{S}_{g-2}(x_1) \cap \mathcal{S}_{g-2}(x_2)$, contradicting invariant (1). Therefore, an edge $\{y_1, y_2\} \in E$ as specified in the algorithm exists.

We now argue that the update of E with respect to $\{y_1, y_2\}$ does not violate invariant (ii). We only consider the case $dist(y_2, x_1) \geq g-1$, the other case then follows by symmetry. Obviously, none of the edges $\{y_2, x_1\}$ and $\{y_1, x_2\}$ introduces a cycle of length less than g in $G - \{y_1, y_2\}$ by itself. Suppose there is a cycle in $G - \{y_1, y_2\}$ of length less than g containing both edges. Then there would either be a $y_1 - y_2$ or a $y_1 - x_1$ -path of length at most g - 3 in $G - \{y_1, y_2\}$ which is impossible.

Finally, using a polynomial time shortest path algorithm the procedure is obviously computable in time polynomial in n since each iteration of the REPEAT-loop adds at least one to |E|.

Corollary 4.2 For integers $r \geq 3$ and $g \geq 3$, there exists a bipartite r-regular graph of girth at least g on at most $n = 4(r-1)^{g-1}$ vertices. Furthermore, such a graph can be constructed in time polynomial in n.

Let G be an r-regular graph and H be a bipartite r-regular graph. Fix an arbitrary edge $h = \{x,y\}$ of H. For an edge $e = \{u,v\}$ of G consider the following operation on G which we will refer to as $e \to H$: remove the edge e from G, take a copy of H, remove the edge e from G, and add the two edges $\{u,x\}$ and $\{v,y\}$ to the disjoint union $(G-e) \cup (H-h)$. Let the resulting graph be called $G[e \to H]$. Observe first that $G[e \to H]$ is again r-regular. Furthermore, we have:

Lemma 4.3 G is r-edge-colorable if and only if $G[e \rightarrow H]$ is.

Proof. As H is r-regular and class one, i.e. r-edge-colorable, the only-if part is obvious. For the reverse implication, let us first compute the chromatic index of the graph H' which arises from H by subdividing the edge $\{x,y\}$ by one new node. The edge set of H decomposes into r perfect matchings. As H' has only one vertex more than H the size of a maximum matching in H' is the same as in H. Hence, since H' contains exactly one edge more than H, it takes at least r+1 matchings to cover its edges.

Now, consider an r-edge-coloring of $G[e \to H]$. The edges $\{u, x\}$ and $\{v, y\}$ must have received the same color, say b, because otherwise the graph H' would be r-edge-colorable. Hence, by assigning the color b to the edge $\{u, v\}$, the r-edge-coloring of $G[e \to H]$ induces an r-edge-coloring of G.

Theorem 4.4 Let an integer $r \geq 3$ and a rational number c, $0 \leq c < 1$, be fixed. Then the problem Chromatic Index is NP-complete for r-regular graphs G of girth $g(G) \geq c \frac{\log |G|}{\log (r-1)}$.

Proof. We reduce from the NP-complete problem Chromatic Index on r-regular graphs, so let G = (V, E) be an r-regular graph on n := |G| vertices.

For $g:=\left\lceil\frac{2c}{1-c}\frac{\log n}{\log(r-1)}\right\rceil$, construct a bipartite r-regular graph H of girth at least g as in Corollary 4.2. Fix an edge $h=\{x,y\}$ of H arbitrarily. Now, for all edges $e\in E$, successively apply the operation $e\to H$. By Lemma 4.3 the resulting r-regular graph G' is r-edge-colorable if and only if G is. By Corollary 4.2 H has order $|H|\leq 4(r-1)^{g-1}<4n^{\frac{2c}{1-c}}$ and thus G' has order

$$|G'| \le n + \frac{nr}{2}|H| \le n^2 n^{\frac{2c}{1-c}} = n^{\frac{2}{1-c}},$$

for $n \geq 4r$ (for a smaller graph G, $\chi'(G)$ can be computed in constant time by complete enumeration). As the girth of G' obviously is at least as large as the girth of H, we finally get

$$g(G') \ge g \ge \frac{2c}{1-c} \frac{\log n}{\log(r-1)} \ge c \frac{\log |G'|}{\log(r-1)}.$$

It is easy to see that with respect to the girth Theorem 4.4 is best possible up to a constant factor since counting the nodes at distance at most $\lfloor \frac{g-1}{2} \rfloor$ of any particular node yields $g(G) \leq 2 \frac{\log |G|}{\log (r-1)} + 2$ for any r-regular graph G.

5 The use of small feedback sets

Analogously to a vertex feedback set (see Section 2) an edge feedback set in a graph G = (V, E) is defined to be an edge set $A \subseteq E$ such that the graph $(V, E \setminus A)$ is a forest. For a graph G, denote by H(G) the graph obtained from G by recursively removing vertices of degree 0 and 1 from G.

Theorem 5.1 Let G = (V, E) be a connected graph with girth $g(G) \geq \frac{n \log n}{\log n}$, where n = |G|. Then the set $F = \{v \in V : d_H(v) \geq 3\}$ is incident to at most $\mathcal{O}(\log n)$ edges from H := H(G). Hence G contains an edge feedback set and a vertex feedback set of size $\mathcal{O}(\log n)$ which can be computed in polynomial time.

Proof. We need only prove the statement about F. As G is connected H = H(G) is also connected. If H is empty or just a cycle then the statement is evident. If this is not the case then $F = \{v \in V : d_H(v) \geq 3\} \neq \emptyset$.

Let m = |E(H)|. Then $|F| \le 2(m - |H|)$ and F is incident to at most

$$\sum_{v \in F} d_H(v) = 2m - 2(|H| - |F|) = 2|F| + 2(m - |H|) \le 6(m - |H|)$$

edges in H. Hence we only need to show that $m - |H| = \mathcal{O}(\log |H|) = \mathcal{O}(\log n)$.

If m > 2|H| then by [Bol78, Theorem III.3.7(a)] $g(G) = g(H) \le 2\log|H| + 2$ which is impossible if n is large enough. Hence $m \le 2|H|$.

Assume that $m-|H| \geq 7\log|H|$. By [Bol78, Theorem III.3.6] H contains a collection of at least k edge-disjoint cycles where k has to satisfy $m-|H| \leq 2k(\log k + \log k + 2)$. Solving for k gives $\frac{m-|H|}{3\log(m-|H|)}$ edge-disjoint cycles provided |H| is large enough. The sum of the lengths of these cycles is at most $m \leq 2|H|$. Thus there is one cycle of length at most

$$2|H|\frac{3\log(m-|H|)}{m-|H|} \ \leq \ \frac{6|H|\log(7\log|H|)}{7\log|H|} \ < \ \frac{n{\rm llog}\,n}{\log n},$$

provided n is large enough yielding a contradiction.

The following proposition proves Theorem 2.2 for the problems Max Cut, Independent Set and Node Cover.

Proposition 5.2 The problems MAX CUT, INDEPENDENT SET and NODE COVER are solvable in polynomial time given a vertex feedback set of size $\mathcal{O}(\log |G|)$.

Proof. We only give an algorithm for the problem MAX CUT as the other problems can be treated similarly.

Let G = (V, E) be a graph and suppose $\emptyset \neq F \subseteq V$. For a partition of F into $F = X_F \dot{\cup} Y_F$ let $mc(X_F)$ denote the maximum number |E(X,Y)| of cut edges in a partition $V = X \dot{\cup} Y$ of V which extends $F = X_F \dot{\cup} Y_F$, i.e. for which $X_F \subseteq X$ and $Y_F \subseteq Y$. Then mc(G) is simply max $\{mc(X_F) : X_F \subseteq F\}$.

We will show below that $mc(X_F)$ can be computed in polynomial time in case F is chosen to be a vertex feedback set for G. Now, since we are given a vertex feedback set F of size $|F| = \mathcal{O}(\log |G|)$, mc(G) may be determined in polynomial time by enumerating over all $X_F \subseteq F$.

For a vertex feedback set F and an $X_F \subset F$, $mc(X_F)$ can be computed in polynomial time as follows. Let $G[V \setminus F]$ consist of the trees T^1, \ldots, T^k and denote by E^i the set of edges incident with the vertices of T^i . Observe that E can be written as the disjoint union

 $E = E(X_F, Y_F) \dot{\cup} E^1 \dot{\cup} \dots \dot{\cup} E^k$ and that the number of cut edges in E^i depends solely on the assignment of the vertices in T^i to X and Y.

The maximum number of cut edges in E^i for a tree T^i is now computed in a dynamic programming fashion. Choose a root w_i of T^i . Denote by T^i_v the subtree of T^i rooted at v, i.e. those vertices u of T^i for which the unique $u - w_i$ -path in T^i contains v.

For a vertex $v \in T_i$, let the two functions $f^x(v)$ resp. $f^y(v)$ denote the maximum number of edges in a cut in G extending $(X_F \cup \{v\}, Y_F)$ resp. $(X_F, Y_F \cup \{v\})$ which belong to $E(T_v^i) \cup E(V(T_v^i), F)$. Hence, the maximum number of cut edges in E^i is $\max\{f^y(w_i), f^x(w_i)\}$.

Writing $\Gamma^-(v)$ for the set of neighbors of v in T_v^i we have the following recursions

$$f^{x}(v) = |\Gamma(v) \cap Y_{F}| + \sum_{u \in \Gamma^{-}(v)} \max\{f^{x}(u), 1 + f^{y}(u)\}$$

$$f^{y}(v) = |\Gamma(v) \cap X_{F}| + \sum_{u \in \Gamma^{-}(v)} \max\{f^{y}(u), 1 + f^{x}(u)\},$$

at the leaves of T^i using the convention that the sum over the empty set is zero. Thus the values of f^x and f^y for all $v \in T^i$ can be computed in the reverse order of the order in which a breadth first search starting from root w_i visits the nodes of T^i .

The value $mc(X_F)$ is finally determined according to

$$mc(X_F) = |E(X_F, Y_F)| + \sum_{i=1}^k \max\{f^y(w_i), f^x(w_i)\}.$$

Now we are going to prove Theorem 2.2 for the problem Dominating Set by making use of the existence of a small edge feedback set. To this end let us first consider the problem Dominating Set With Preassignments which is defined as follows. Let G=(V,E) be a graph and let a function $status:V\to\{0,1,2\}$ be given. The meaning of the function status is that vertices with status 1 are preassigned to be in the dominating set, vertices with status 2 are not in the preassigned dominating set but need not be dominated and vertices with status 0 still need to be dominated. Hence the problem is to find a minimum size $D\subseteq V$ such that

- $D \supseteq \{v \in V : status(v) = 1\}$ and
- $\{v \in V : status(v) = 0\} \subset D \cup \Gamma(D)$,

By abuse of notation we will say that such a set D dominates the vertices of G. The following lemma is a generalization of [CGH75].

Lemma 5.3 The problem Dominating Set With Preassignments is solvable in polynomial time on trees.

Proof. Let a tree T = (V, E) and a function $status: V \to \{0, 1, 2\}$ be given. We will use the same terminology as in the proof of Proposition 5.2. Fix a root w of T and consider the following three functions for a vertex $v \in V$:

```
f^{in}(v) := \min \{|D| : D \subseteq V(T_v), v \in D \text{ and } D \text{ dominates all vertices in } V(T_v)\},

f^{out}(v) := \min \{|D| : D \subseteq V(T_v), v \notin D \text{ and } D \text{ dominates all vertices in } V(T_v)\},

f^{ex}(v) := \min \{|D| : D \subseteq V(T_v) \text{ and } D \text{ dominates all vertices in } V(T_v) \text{ except possibly } v \text{ itself}\}
```

where "dominates" means "dominates with respect to the preassignment function status". Then the number we are heading at is just $\min\{f^{in}(w), f^{out}(w)\}$.

The three functions satisfy the following recursions for a vertex $v \in V$:

$$\begin{split} f^{in}(v) &= 1 + \sum_{u \in \Gamma^{-}(v)} f^{ex}(u), \\ f^{out}(v) &= \begin{cases} & \min_{w \in \Gamma^{-}(v)} \{f^{in}(w) + \sum_{u \in \Gamma^{-}(v) \setminus \{w\}} \\ & & \min\{f^{in}(u), f^{out}(u)\} \} \end{cases} &: status(v) = 0, \\ & & : status(v) = 1, \\ & \sum_{u \in \Gamma^{-}(v)} \min\{f^{in}(u), f^{out}(u)\} \end{cases} &: status(v) = 2, \\ f^{ex}(v) &= \begin{cases} & f^{in}(v) \\ & & : status(v) = 1, \\ & \min\{f^{in}(v), \sum_{u \in \Gamma^{-}(v)} \min\{f^{in}(u), f^{out}(u)\} \} \end{cases} &: status(v) \in \{0, 2\}. \end{split}$$

It is easy to check that the formulae give the right values in particular for the leaves of T using the convention that the sum over the empty set is 0 and the minimum over the empty set is infinity. Hence, the values of f^{in} , f^{out} and f^{ex} can be computed by dynamic programming in the reverse order of the order in which a breadth first search starting from root w visits the nodes of T yielding the size $\min\{f^{in}(w), f^{out}(w)\}$ of a minimum dominating set for T at the root w.

Furthermore, it should be clear that a minimum dominating set for T can now be computed by another breadth first search from w.

Proposition 5.4 The problem Dominating Set is solvable in polynomial time given an edge feedback set of size at most $\mathcal{O}(\log n)$.

Proof. Let A be an edge feedback set for G of size at most $\mathcal{O}(\log n)$. Without loss of generality G is connected and A is an inclusionwise minimal edge feedback set for G. Then $T = (V, E \setminus A)$ is a tree. Let U be the set of vertices of G that are incident with an edge in A. Then also $|U| = \mathcal{O}(\log n)$. A minimum dominating set for G can now be computed by enumerating over all $D_U \subseteq U$, solving the problem DOMINATING SET WITH PREASSIGNMENTS for T and

$$status(v) := \begin{cases} 1 & \text{if } v \in D_U, \\ 2 & \text{if } v \in (U \setminus D_U) \text{ and } v \in \Gamma(D_U), \\ 0 & \text{otherwise} \end{cases}$$

and taking the smallest dominating set for T obtained this way.

Now we turn to a third class of problems where we, instead of using just any given small feedback set, have to make use of the structure of the feedback set guaranteed by Theorem 5.1.

A minimal vertex feedback set in a connected graph G with maximum degree $\Delta(G) \geq 3$ contains without loss of generality only vertices from the set $F = \{v \in V : d_H(v) \geq 3\}$, H = H(G). Hence, according to Theorem 5.1 enumerating over all subsets of F yields the following result.

Proposition 5.5 The problem Vertex Feedback Set restricted to the class of graphs G with $g(G) \geq \frac{n \text{llog} n}{\log n}$ is solvable in polynomial time.

Proposition 5.6 The Weighted Steiner Tree problem restricted to the class of graphs G with girth $g(G) \geq \frac{n \log n}{\log n}$ is solvable in polynomial time.

Proof. Let (G,T,w), G=(V,E), be an instance of the WEIGHTED STEINER TREE problem, where $T\subseteq V$ is the set of terminals and $w:E\to \mathbb{Q}^+$ the weight function. We may clearly assume that G is connected. Moreover, we may assume that G=H(G) because suppose G contains a vertex v of degree 1. If v is not a terminal then we may just remove v from G. Otherwise, if v is a terminal, we may define a new equivalent instance by letting the neighbor of v be a terminal and removing v. We finally can assume that there are no non-terminal vertices of degree 2 because we may remove such a vertex and merge the two adjacent edges into a single edge its weight being the sum of the weights of the two old edges.

Let $F = \{v \in V : d(v) \geq 3\}$. G can be written as a union of paths P^1, \ldots, P^k with first and last vertices in F and whose interior vertices lie in $V \setminus F$. By Theorem 5.1, $k = \mathcal{O}(\log n)$. For $i = 1, \ldots, k$, let $P^i = v^i_1, v^i_2, \ldots, v^i_{j(i)}$. Let furthermore $\{v^i_{\ell(i)}, v^i_{\ell(i)+1}\}$ be the longest edge in P^i , i.e. the edge with the maximum weight. Then it is easy to see that a minimum Steiner tree intersects P^i either

- (1) in all edges or
- (2) in all edges except $\{v_1^i, v_2^i\}$ or
- (3) in all edges except $\{v_{i(i)-1}^i, v_{i(i)}^i\}$ or
- (4) in all edges except $\{v_{\ell(i)}^i, v_{\ell(i)+1}^i\}$,

where for some i some of the cases may coincide. For a function $case: \{1, \ldots, k\} \to \{1, 2, 3, 4\}$, define a subgraph G_{case} of G such that G_{case} intersects each P^i exactly in those edges specified by case(i). Let $w(G_{case})$ be the sum of the lengths of the edges of G_{case} , then the length of a minimum Steiner tree for (G, T) is

$$St(G,T) = \min \{ w(G_{case}) \mid \text{case} : \{1,\ldots,k\} \to \{1,2,3,4\} \text{ and } G_{case} \text{ is a tree covering all vertices from } T \}.$$

As $k = \mathcal{O}(\log n)$ we can enumerate all cases in polynomial time.

References

- [ANS80] T. AKIYAMA, T. NISHIZEKI, N. SAITO NP-completeness of the Hamiltonian cycle problem for bipartite graphs, J. Inform. Process. 3, 1980, 73-76.
- [EHK96] TH. EMDEN-WEINERT, S. HOUGARDY, B. KREUTER Uniquely colorable graphs and the hardness of coloring graphs of large girth, Manuscript, Humboldt-Universität zu Berlin, October 1996; available at the URL "http://www.informatik.huberlin.de/~hougardy/".
- [Bol78] B. Bollobás, Extremal graph theory, Academic Press, London, 1978.
- [CGH75] E. COCKAYNE, S. GOODMAN, S. HEDETNIEMI, A linear algorithm for the domination number of a tree, Inform. Process. Letters 4, 1975, 41-44.
- [ES82] P. Erdős, M. Simonovits, Compactness results in extremal graph theory, Combinat. 2, 1982, 275-288.
- [GJ77] M.R. GAREY, D.S. JOHNSON, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math. 32, 1977, 826-834.
- [GJ79] M.R. GAREY, D.S. JOHNSON, Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979.

- [Joh85] D.S. Johnson, *The NP-completeness column: an ongoing guide* [Graph restrictions and their effect], J. Alg. 6, 1985, 434-451.
- [KK79] T. KIKUNO, Y. KAKUDA, The NP-completeness of the dominating set problem in cubic planar graphs, Technical Report, Faculty of Engineering, Hiroshima University, 10th Summer Language and Automata Symposium, 1979.
- [KD79] M.S. KRISHNAMOORTHY, N. DEO, Node-deletion NP-complete problems, SIAM J. Comput. 8, 1979, 619-625.
- [LR79] J.K. LENSTRA, A.H.G. RINNOOY KAN, Complexity of packing, covering and partitioning problems, in: Packing and covering in combinatorics, Hrsg. Schrijver, A., Math. Centre Tracts 106, Amsterdam, 1979, 275-291.
- [LG83] D. LEVEN, Z. Galil, NP-completeness of finding the chromatic index of regular graphs, J. Alg. 4, 1983, 35-44.
- [Mur92] O.J. Murphy, Computing independent sets in graphs with large girth, Disc. Appl. Math. 35, 1992, 167-170.
- [Pap94] C.H. PAPADIMITRIOU, Computational complexity, Addison-Wesley, Reading MA, 1994.
- [PT95] S. POLJAK, Z. TUZA, Maximum cuts and largest bipartite subgraphs, in: Combinatorial optimization, Hrsg. Cook, W., Lovász, L., Seymour, P., DIMACS series in discrete mathematics and theoretical computer science, Vol. 20, AMS, 1995, 181-244.
- [Yan81] M. Yannakakis, Edge-deletion problems, SIAM J. Comput. 10, 1981, 297-309.
- [ZZ95] I.E. ZVEROVICH, V.E. ZVEROVICH An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20, 1995, 375-395.