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Abstract. We study the complexity of the problems DOMINATING SET, MAX CUT, VERTEX
FEEDBACK SET, STEINER TREE, HAMILTONIAN CIrcuIT, and CHROMATIC INDEX on graphs G
of bounded maximum degree and large girth. All results are essentially best possible. We also
construct regular class-one graphs of large girth and small order. Finally, we point out how vertex
resp. edge feedback sets of size O(logn) can be used to solve Max CuT, INDEPENDENT SET, NODE
COoVER, DOMINATING SET, VERTEX FEEDBACK SET and STEINER TREE in polynomial time.

1 Introduction

Let G = (V, F) be a graph with node set V and edge set F. The order of GG, i.e. the number
of its vertices, is denoted by |G| or n = n(G), the number of its edges by m = m(G) or
just by |F/|. The degree of a node v € V, i.e. the number of neighbors of v in G, is denoted
by d(v), the maximum degree of a node in G by A(G). A graph every vertex of which
has degree r is called r-regular and cubic if r = 3. The girth ¢(G) of a graph G is the
length of a shortest cycle in G and can be computed in time O(mn). For an introduction

to the theory of computational complexity and the notion of NP-completeness we refer
the reader to [GJ79, Pap94].

Bounding the maximum degree in optimization problems on graphs does often not
affect their hardness, cf. e.g. [Joh85]. For a constant £ € IN, a graph G of maximum degree
k is sparse in the sense that G' has at most k|G|/2 edges. The girth is another graph
parameter controlling the sparseness of a graph — a graph G of girth ¢ > 2h + 2, h € N,
has at most (%)H-]/h + 2. (%)1_1/h edges [ES82]. As graphs of large girth look like trees
locally one might think that a hard problem might be easier to solve on graphs of large
girth. Nevertheless, as we show in this paper, several well-known NP-hard problems on
graphs remain NP-hard on graphs with large girth although being solvable in linear time
on trees.

More specifically, we prove the NP-completeness of DoMINATING SET, Max CuUT,
VERTEX FEEDBACK SET and STEINER TREE on graphs of girth ¢(G) > |G|" for any fixed
r, 0 < r < 1 (Section 2), the NP-completeness of HAMILTONIAN CIRCUIT on graphs of
girth ¢(G) > |G|" for any fixed r, 0 < r < 1/2, giving a polynomial time algorithm for
graphs G of girth g(G) > 2|G|'/? (Section 3), and the NP-completeness of CHROMATIC

*E-mail:weinert @informatik.hu-berlin.de
'E-mail:hougardy@informatik.hu-berlin.de
YE-mail:kreuter@informatik.hu-berlin.de



INDEX on r-regular graphs of girth ¢(G) > ¢ log |G|/ log(r — 1), for any fixed 0 < ¢ < 1
and integer r > 3 (Section 4). The last result is best possible up to the constant c.

In all cases one may additionally impose the restriction to graphs of maximum degree 3
(resp. 6 in case of VERTEX FEEDBACK SET), thus forcing the graphs to be sparse both in
a global and in a local way.

In a companion paper [EHK96] we have shown that an analogous result holds for the
problem GRAPH COLORABILITY.

In Section 5 we show how the problems Max CuT, INDEPENDENT SET, NODE COVER
resp. DOMINATING SET can be solved in polynomial time given a vertex resp. edge feedback

set of size O(logn) for the graph at hand. As such a feedback set can be constructed
in polynomial time in graphs G with girth ¢(G) > Tﬂ% this yields polynomial time
algorithms for these problems as well as for the problems VERTEX FEEDBACK SET and

STEINER TREE in graphs with girth ¢(G) > nllszin

2  DoMINATING SET, MAX CuT, VERTEX FEEDBACK SET and
STEINER TREE

In the case of DOMINATING SET we are given a graph G = (V, F), and the problem is to
find a smallest node set S C V such that every vertex from V'\S has at least one neighbor
in S. The smallest possible size of such a set S is called the domination number v(G).
In the case of MAx CuUT we are given a graph G = (V, F) and the problem is to find a
partition V = XUY of the node set such that the number |E(X,Y)| := [{{z,y} € F :
z € X,y € Y} of crossing edges is maximized. The largest possible size of such a set of
edges is denoted by mc(G). A vertex set /7 C V which intersects all cycles of G = (V, E)
(i.e. G[V \ F] is a forest) is called a vertex feedback set. The problem VERTEX FEEDBACK
SET is to find the minimal size v fs(G) of a vertex feedback set in a given graph G In case
of STEINER TREE, finally, we are given a graph G = (V, E) and a set T C V of so-called
terminal vertices. A set ' C F of edges such that F induces a subgraph of G which is a
tree and covers all the vertices from 7’ is called a Steiner tree for G and 7. The problem
is to find the minimum number St(G,T) of edges of a Steiner tree I’ for G and T. In
case of the WEIGHTED STEINER TREE problem we are additionally given edge weights
w: F — Q% and try to minimize ... w(e). PLANAR DOMINATING SET is the problem
DOMINATING SET restricted to planar graphs; analogously for the other problems.

Theorem 2.1 For a rational number r, 0 < r < 1, and an integer A let Ga, (BPGA )
denote the class of all (bipartite and planar) graphs G of mazimum degree A and girth
g(G) > |G|". Then for 0 < r < 1, Max CurT restricted to the class G, DOMINATING SET
and STEINER TREE restricted to the class BPG3, and VERTEX FEEDBACK SET restricted
to the class BPGg, are NP-complete.

Proof. Restricted to graphs of maximum degree 3 the problems Max CuT [Yan81], Pra-
NAR DOMINATING SET [KK79] and PLANAR STEINER TREE are NP-complete. As — to our
best knowledge — for DOMINATING SET and STEINER TREE these NP-completeness proofs
are unpublished, let us briefly sketch the reductions. To show that PLANAR DOMINATING
SET is NP-complete, use the reduction [LR79] from PLANAR NoDE CoVER [GJ77]; as
to the restriction of the maximum degree, a local replacement analogously to the cor-
responding proof [GJ77] for Nopr CovER works as follows: replace each node in G of



degree d > 3 by a circuit of length 3d + 1 and attach a leaf to one of these vertices ap-
propriately. STEINER TREE is NP-complete on unweighted grid graphs [GJ77], which are
planar graphs of maximum degree 4. To remove vertices of degree 4 insert 4n new vertices
on each edge and replace vertices of degree 4 by a 4-cycle. Then, for the graph G’ ob-

tained, St(G,T) = { L St(G’,T’)J. VERTEX FEEDBACK SET is NP-complete restricted

4an+1
to bipartite planar graphs of maximum degree 6 [KD79].

We set out the reduction for DOMINATING SET only and then indicate how to modify it
for the other two problems. So let G' be a planar graph of maximum degree A(G) < 3. Let
k be the smallest integer such that kkﬁ > rand set t := |G|¥ if |G| is odd and t := |G|* 1
otherwise. Insert 3t new vertices on each edge and denote the resulting bipartite planar

graph by G'. Then |G| < |G|+ @ 3|G|1* < |G|**? for |G| > 5. Hence g(G') > 3t >
GIF > |G'|’€% > |G'|" so that G' € BPGs,,. Furthermore v(G') = v(G) +m(G) -t (for “>”

observe that for each edge e € F/(G) a minimum dominating set S in G’ contains at least
t vertices of the 3t vertices inserted on e; on the other hand, without loss of generality, S
contains at most ¢ of them). As r is constant the reduction is polynomial time computable.

For Max Cut resp. VERTEX FEEDBACK SET and STEINER T'REE insert 2¢ resp.
t vertices on each edge to obtain a graph G’ with me(G') = me(G) + m(G) - 2t resp.
vfs(G') =vfs(G) and St(G",T) = (t+1) - St(G,T). o

For Max CuT resp. DOMINATING SET and fixed g, the result was already proved in
[PT95] resp. [Z795]. Analogously, for every fixed r, 0 < r < 1, the problem INDEPENDENT
SET (and hence NoDpE CoVER) is NP-complete restricted to the class of all planar graphs
G of maximum degree 3 and girth ¢(G) > |G|" [Mur92].

In Section 5 we will prove the following theorem. Put llogn = loglog n.

Theorem 2.2 The problems MAX CUT, INDEPENDENT SET, NODE COVER, DOMINAT-
ING SET, VERTEX FEEDBACK SET and STEINER TREE restricted to the class of graphs

G with girth g(G) > nll;gi” are solvable in polynomial time.

3 HAMILTONIAN CIRCUIT

For a graph G, the problem HAMILTONIAN CIRCUIT is to decide whether G contains a
circuit visiting each node of G exactly once.

Theorem 3.1 Let 0 < r < 1/2 be a fized rational number. Then HAMILTONIAN CIRCUIT
is NP-complete for bipartite planar graphs G of mazimum degree 3 and girth g(G) > |G|".

Proof. The reduction will use the following operation on a graph G = (V, F) which we will
refer to as “expanding a node v”. Let t € IN be an integer and v € V' be a node of degree

(1) (1)

3. For « =1, 2,3, insert ¢ new nodes, say z;’,...,2;’, on the ¢-th edge incident to v such
that acg-z) is at distance j from v, 1 < 5 <t, and add the edges {mgl), xSQ)}, {mg), acgs)}, and
{x§3), wgl)}, cf. the following figure:



.
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Observe that the resulting graph G, is Hamiltonian if and only if GG is. Furthermore, the
graph H which is induced by the new nodes and v has girth ¢ 4+ 2 and every cycle in G,
which intersects H but which is not completely contained in H has either length at least
t + 3 or uses the node v and at least 4 other nodes of H.

We now reduce from the HAMILTONIAN CIRCUIT problem on cubic bipartite planar
graphs [ANS80]. So let G be a cubic bipartite planar graph. Let & be the smallest integer
such that ﬁ > r and set t := |G|*if |G| is even and t := |G|* 41 otherwise. Expanding
every node of G t-times yields a graph G’ of order |G’| < |G| (1+1t-3t) < |G|***2 for |G|
large enough. Hence G’ is planar and bipartite, has maximum degree 3 and girth

g(@) > min{(t-441) - g(@),t+2} > ¢ > |G]F > |G > |G

Furthermore, as r is constant, the reduction is polynomial time computable. a

In fact, the last theorem is essentially tight as the following proposition shows.

Proposition 3.2 Let G := {G : G is a graph with g(G) > 2/|G]}. Then HAMILTONIAN
CIRCUIT restricted to the class G is in P.

Proof. Let G € G and n := |G|. We may clearly assume that G has no vertices of degree
smaller than 2. Suppose a node v in GG has at least two neighbors 2 and y of degree 2.
Then a Hamiltonian circuit must use the edges {z, v} and {v, y}. Therefore we may remove
from G the other edges incident to v, the reduced graph being Hamiltonian if and only
if G is. This way we may recursively remove edges from G that cannot be contained in a
Hamiltonian circuit.

Suppose first that at some step there occurs a vertex of degree less than 2. Then
obviously G is not Hamiltonian.

Assume secondly that at some step there are no vertices of degree at least 3 left in the
reduced graph. Then G is Hamiltonian if and only if the reduced graph is a |G|-cycle.

Suppose finally that the minimum degree in the reduced graph H is at least 2 and that
there are still some vertices of degree at least 3 left, but every vertex of degree at least 3
has at least two neighbors of degree at least 3. We will show that this case is impossible.
Pick a vertex v of degree at least 3 in H. Let I';(v) denote the set of all vertices at distance
(exactly) 7 from v. We claim that

(*) for 1 <1< |[/n], |li(v)|>2i+1 and

[';(v) contains at least two vertices of degree at least 3.

To see this observe that (*) is true for 7 = 1 by the way we chose v and by the definition of
H.Now let 1 < ¢ < |/n] and assume that (*) is true for 7 — 1. Note that g(H) > ¢(G) >
2|y/n]. As the minimum degree of H is at least 2 and a vertex w € I';_; (v) cannot have a
neighbor in I';_y (v) (otherwise there would be a cycle of length at most 2i—1 < 2[/n]—1)



every vertex w € I';_1(v) has at least one neighbor in I';(v). Furthermore, for different w’s
these neighbors must be different because otherwise there would be a cycle in H of length at
most 2¢ < 2[y/n]. The two vertices of degree at least 3 in I';_; (v) each have two neighbors
in I';(v), at least one of them having degree greater than 2. Hence |I';(v)| > |U—1(v)] + 2
and (*) is proven.

Now, by (*), the number of vertices at distance 0,. .., [/n] from v is at least
V]
Y 2i+1) = ([Va]+1)" > n,
=0
a contradiction. O

4 CHROMATIC INDEX

A k-edge-coloring of a graph G = (V,F) is a function ¢ : £ — {1,...,k} such that
incident edges receive different colors, that is, for all edges e # fin G,enf #0 =
c(e) # ¢(f). The minimum number k of colors such that there exists a k-edge-coloring
of G is called the chromatic index of G, denoted by Y'(G). By a theorem of VizIiNG
X'(G) € {A(G), A(G)+ 1}. However, the problem CHrROMATIC INDEX, which is to decide
whether the chromatic index of a graph G is A(G) (a so-called “class one” graph) or
A(G) 4+ 1 (a “class two” graph) is NP-complete, even for r-regular graphs for any fixed
r > 3 [LGS3].

We begin by constructing r-regular graphs of large girth which are class one. These
graphs will later be used as gadgets in our NP-completeness proof. By a classical theorem
of KONIG bipartite graphs are class one.

Theorem 4.1 lLet g > 3 and r > 3 be integers. Then an r-regular graph of girth at least
g on
-1
o o 2 (r_lr)# if g is odd
n:=n(g,r):= 4 =121

) if g is even
vertices can be constructed in time polynomial in n. Furthermore, in case g is even the

graph constructed is bipartite.

Proof. We will show how the non-constructive proof of [Bol78, Theorem II1.1.4] can be
turned into an algorithm.

The case g even is derived from the case g odd as follows, see [Bol78, Theorem I11.1.3].
Let G = (V, E) be an r-regular graph of girth ¢ — 1 and order n(g—1,r). Then an r-regular
bipartite graph G’ = (V/, V" E’) of girth at least ¢ is defined by letting V’ and V" be
disjoint copies of V and F':= {{2',y"} : 2’ e V', y" € V" {z,y} € F}.

Consider now the case g odd. Let V be a vertex set of size n; we will see in a moment
that n is an integer. The following procedure constructs an r-regular graph G = (V, F)
on V of girth at least g. By d(v) we will denote the degree of a vertex v € V with
respect to the current edge-set F' and dist(v,w) the distance between vertices v and w
which is defined to be oo if there is no path from v to w. For a node z € V and an
integer k € Ny, Br(z) := {v € V| dist(v,z) < k} is the ball of radius k around z,
Sk(z) :=={v € V| dist(v,z) = k} the sphere at radius k£ around z.



E:= 0;
REPEAT
WHILE there exist 21,29 € V with d(z1) <r and d(z3) <r
and dist(z1,29) > g—1 D0 F:= FU{{z1,22}};
IF |E| < nr/2 THEN BEGIN
choose z1,25 € V with d(z) <r and d(z3) < r;
choose an edge {yi,y2} € F such that
y1 € V\ (By—z2(w1) UBy—2(z2)) and
y2 € V\ (Bg-2(z1) N By-2(z2));
IF dist(yg,z1) > g — 1 THEN

= E\{{y1,y2}} U {{y2, 21}, {1, 22}};

ELSE
b= E\{{ylayZ}} U {{y27 '7;2}3 {yla 1'1}};
END; {IF |F|< nr/2}
UNTIL |E|=nr/2;

The proof of the correctness of this procedure is essentially that of [Bol78, Theorem I11.1.4].
For the sake of completeness we will provide it here, too.

We will show that the choice of {y;,y2} € E as specified can always be made and that
at all times the following invariant holds for G = (V, E)

(i) A(G) <r, and
(i) 9(G) 2 g.

Observe that (i) and (ii) hold in the beginning and that these conditions are not violated
during the WHILE-loop. As to the choice of {y, 42} observe that for 1 = 1,2

B,_a(zi) < g:(r—l)j _ % — n/2.

The WHILE-loop guarantees that every vertex of degree at most r — 1 is in By_z(z1) N
Bg—2(z2), in particular so are z1 and zo. Trivially, Sy_a(z1) N Sy—2(z2) C By—a(z1) N
By—2(x2) so that for R :=V \ (By_a(z1) U By—2(22))

|R| = n—By—g(z1)] = |By—2(z2)| + [By—2(21) N By—2(w2)| > [Sy—2(21) NSy—2(z2)| + 2.

Hence R # () and any vertex in R satisfies the requirement for y; in the algorithm.
Neighbors of vertices in R have distance at least g — 2 to z; as well as to z4. As all vertices
in R have degree r the above inequality shows that not all neighbors of vertices in R can
have distance g —2 to z; as well as to z, since then there would be a vertex of degree larger
then r in Sy_o(z1) NSy—2(z2), contradicting invariant (1). Therefore, an edge {y1,y2} € E
as specified in the algorithm exists.

We now argue that the update of £ with respect to {y1, y2} does not violate invariant
(ii). We only consider the case dist(y2, 1) > g—1, the other case then follows by symmetry.
Obviously, none of the edges {y2, 21} and {y;,z2} introduces a cycle of length less than
g in G — {y1,y2} by itself. Suppose there is a cycle in G — {y1,y2} of length less than g
containing both edges. Then there would either be a y; — yo— or a y; — 21 —path of length
at most ¢ — 3 in G — {y1, y2} which is impossible.

Finally, using a polynomial time shortest path algorithm the procedure is obviously
computable in time polynomial in n since each iteration of the REPEAT-loop adds at least
one to |F|. O



Corollary 4.2 For integers r > 3 and g > 3, there exists a bipartite r-regular graph of
girth at least g on at most n = 4(r — 1)9~! vertices. Furthermore, such a graph can be
constructed in time polynomial in n. a

Let G be an r-regular graph and H be a bipartite r-regular graph. Fix an arbitrary edge
h ={z,y} of H. For an edge e = {u, v} of G consider the following operation on G which
we will refer to as e — H: remove the edge e from (G, take a copy of H, remove the edge h
from H, and add the two edges {u, 2} and {v, y} to the disjoint union (G—e)U(H —h). Let
the resulting graph be called G[e — H]. Observe first that G[e — H] is again r-regular.
Furthermore, we have:

Lemma 4.3 G is r-edge-colorable if and only if Gle — H] is.

Proof. As H is r-regular and class one, i.e. r-edge-colorable, the only-if part is obvious.
For the reverse implication, let us first compute the chromatic index of the graph H’
which arises from H by subdividing the edge {z,y} by one new node. The edge set of H
decomposes into r perfect matchings. As H' has only one vertex more than H the size of a
maximum matching in H' is the same as in H. Hence, since H' contains exactly one edge
more than H, it takes at least r + 1 matchings to cover its edges.

Now, consider an r-edge-coloring of G[e — H]. The edges {u,z} and {v,y} must have
received the same color, say b, because otherwise the graph H’ would be r-edge-colorable.
Hence, by assigning the color b to the edge {u, v}, the r-edge-coloring of G[e — H] induces
an r-edge-coloring of G. a

Theorem 4.4 Let an integer r > 3 and a rational number ¢, 0 < ¢ < 1, be fized. Then

the problem CHROMATIC INDEX is NP-complete for r-regular graphs G of girth g(G) >
log |G

cloggr|—l :

Proof. We reduce from the NP-complete problem CHROMATIC INDEX on r-regular graphs,

so let G = (V, E)) be an r-regular graph on n := |G| vertices.

For g = [%10;?%-‘, construct a bipartite r-regular graph H of girth at least g¢
as in Corollary 4.2. Fix an edge h = {z,y} of H arbitrarily. Now, for all edges e € F|,
successively apply the operation e -+ H. By Lemma 4.3 the resulting r-regular graph G’ is

2c
r-edge-colorable if and only if G is. By Corollary 4.2 H has order |[H| < 4(r—1)9=" < 4ni-<
and thus G’ has order

2c 2

G < nt SIH| < wPnt = nr

for n > 4r (for a smaller graph G, x/(G) can be computed in constant time by complete
enumeration). As the girth of G’ obviously is at least as large as the girth of H, we finally
get
2¢  logn log |G|
> c——.
1—clog(r—1) = Tlog(r—1)

9(G) > g > O
It is easy to see that with respect to the girth Theorem 4.4 is best possible up to a
constant factor since counting the nodes at distance at most | £5*| of any particular node

yields g(G) < 21;2(gr|f]|) + 2 for any r-regular graph G.




5 The use of small feedback sets

Analogously to a vertex feedback set (see Section 2) an edge feedback set in a graph
G = (V, E) is defined to be an edge set A C E such that the graph (V, E\A) is a forest.
For a graph G, denote by H(G) the graph obtained from G by recursively removing vertices
of degree 0 and 1 from G.

Theorem 5.1 Let G = (V,E) be a connected graph with girth ¢(G) > Tﬁggin, where
n = |G|. Then the set ' = {v € V : dg(v) > 3} is incident to at most O(logn) edges
from H := H(G). Hence G contains an edge feedback set and a vertex feedback set of size

O(logn) which can be computed in polynomial time.

Proof. We need only prove the statement about F. As GG is connected H = H((G) is also
connected. If H is empty or just a cycle then the statement is evident. If this is not the
case then I'={v eV : dy(v) >3} #0.

Let m = |E(H)|. Then |F| < 2(m — |H|) and F is incident to at most

S dir(v) = 2m - 2(|H|— |Fl) = 2|F| +2(m — |H]) < 6(m — |H])
veF

edges in H. Hence we only need to show that m — |H| = O(log |H|) = O(logn).

If m > 2|H| then by [Bol78, Theorem I11.3.7(a)] ¢(G) = g(H) < 2log|H| + 2 which is
impossible if n is large enough. Hence m < 2|H|.

Assume that m — |H| > 7log |H|. By [Bol78, Theorem I11.3.6] H contains a collection
of at least k edge-disjoint cycles where & has to satisfy m — |H| < 2k(logk + llogk + 2).
#@HD edge-disjoint cycles provided |H| is large enough. The sum
of the lengths of these cycles is at most m < 2|H|. Thus there is one cycle of length at

Solving for k gives

most
2|H|3log(m— |H) < 6|H | log(7log|H|) nllogn
m— |H| - Tlog |H | logn ’
provided n is large enough yielding a contradiction. a

The following proposition proves Theorem 2.2 for the problems Max CuT, INDEPEN-
DENT SET and NoDE COVER.

Proposition 5.2 The problems Max CuT, INDEPENDENT SET and NODE COVER are
solvable in polynomial time given a vertex feedback set of size O(log |G|).

Proof. We only give an algorithm for the problem MaXx CuT as the other problems can
be treated similarly.

Let G = (V,FE) be a graph and suppose § # F C V. For a partition of I’ into
F = XpUYF let me(Xr) denote the maximum number |E (X, Y)| of cut edges in a partition
V = XUY of V which extends I’ = XpUYp, i.e. for which Xz C X and Yr C Y. Then
me(G) is simply max {me(Xp) : Xg C F}.

We will show below that me(Xz) can be computed in polynomial time in case F is
chosen to be a vertex feedback set for GG. Now, since we are given a vertex feedback set
F of size |F| = O(log |G]), me(G) may be determined in polynomial time by enumerating
over all Xp C F.

For a vertex feedback set F' and an Xg C F, me(XF) can be computed in polynomial
time as follows. Let G[V\F] consist of the trees 1,...,T* and denote by E* the set of
edges incident with the vertices of 7. Observe that F can be written as the disjoint union



E = E(Xp,Yr)UE'U.. .UE* and that the number of cut edges in £ depends solely on
the assignment of the vertices in 7% to X and Y.

The maximum number of cut edges in E* for a tree 1" is now computed in a dynamic
programming fashion. Choose a root w; of 1. Denote by 1 the subtree of 1" rooted at
v, i.e. those vertices u of 7% for which the unique u — w;-path in 7" contains v.

For a vertex v € T;, let the two functions f”(v) resp. fY(v) denote the maximum
number of edges in a cut in G extending (Xz U {v},Yr) resp. (Xg,Yr U {v}) which
belong to E(7%) U E(V(T}), F). Hence, the maximum number of cut edges in £ is
max] f2(), £ (0},

Writing ['~(v) for the set of neighbors of v in 77 we have the following recursions

) = [Pe)nYel+ 32 max{f"(u),1+ f'(u)}
u€l'=(v)

Flo) = [P)nXpl+ Y max{f'(u),1+ f*(u)},

uel'=(v)

at the leaves of 1" using the convention that the sum over the empty set is zero. Thus the
values of f* and fY for all v € T* can be computed in the reverse order of the order in
which a breadth first search starting from root w; visits the nodes of 1.

The value me(Xp) is finally determined according to

k
me(Xp) = |E(Xp, Yi)| + D max{f’(w;), f*(wi)}. o

=1

Now we are going to prove Theorem 2.2 for the problem DOMINATING SET by making
use of the existence of a small edge feedback set. To this end let us first consider the problem
DoMINATING SET WITH PREASSIGNMENTS which is defined as follows. Let G = (V, F)
be a graph and let a function status : V — {0, 1,2} be given. The meaning of the function
status is that vertices with status 1 are preassigned to be in the dominating set, vertices
with status 2 are not in the preassigned dominating set but need not be dominated and

vertices with status 0 still need to be dominated. Hence the problem is to find a minimum
size D C V such that

e D D {veV: status(v) = 1} and
o {veV: status(v) =0} C DUI(D),

By abuse of notation we will say that such a set DD dominates the vertices of G. The
following lemma is a generalization of [CGHT75].

Lemma 5.3 The problem DOMINATING SET WITH PREASSIGNMENTS is solvable in poly-
nomial time on trees.

Proof. Let a tree T'= (V, I)) and a function status : V — {0, 1,2} be given. We will use
the same terminology as in the proof of Proposition 5.2. Fix a root w of T" and consider
the following three functions for a vertex v € V:

f(w) = min {|D|: D CV(T,),v€ D and D dominates all vertices in V(7})},
o v) = min {|D|: D CV(L,),v ¢ D and D dominates all vertices in V(1)},
f(w) = min {|D|: D CV(T,) and D dominates all vertices in V(7))

except possibly v itself}

where “dominates” means “dominates with respect to the preassignment function status”.
Then the number we are heading at is just min{f*"(w), f**“(w)}.



The three functions satisfy the following recursions for a vertex v € V:

i) = 14+ Y (),

uel = (v)

minwer—(v){fm (w) + ZuEF_(U).\{W}

) min{ ), U 0Y) c starus() =0,
00 _ . status(v) = 1,
> uer—(v) min{ f*(u), fo*(u)} . status(v) = 2,

15 (v) { fm(v) _ - : Status(v) =1,
N min {fm(v), > uer—(y) mind [ (u), f"“t(u)}} : status(v) € {0,2}.

It is easy to check that the formulae give the right values in particular for the leaves of
T using the convention that the sum over the empty set is 0 and the minimum over the
empty set is infinity. Hence, the values of f, f°** and f** can be computed by dynamic
programming in the reverse order of the order in which a breadth first search starting
from root w visits the nodes of 7" yielding the size min{f""(w), fo*(w)} of a minimum
dominating set for 1" at the root w.

Furthermore, it should be clear that a minimum dominating set for T can now be
computed by another breadth first search from w. a

Proposition 5.4 The problem DOMINATING SET is solvable in polynomial time given an
edge feedback set of size at most O(logn).

Proof. Let A be an edge feedback set for GG of size at most O(logn). Without loss of
generality GG is connected and A is an inclusionwise minimal edge feedback set for G.
Then T = (V,E\A) is a tree. Let U be the set of vertices of GG that are incident with
an edge in A. Then also |U| = O(logn). A minimum dominating set for G can now be
computed by enumerating over all Dy C U, solving the problem DoMINATING SET WITH
PREASSIGNMENTS for 1" and

1 ifve Dy,
status(v) := { 2 ifve (U\Dy) and v e I'(Dy),
0 otherwise

and taking the smallest dominating set for I’ obtained this way. a

Now we turn to a third class of problems where we, instead of using just any given
small feedback set, have to make use of the structure of the feedback set guaranteed by
Theorem 5.1.

A minimal vertex feedback set in a connected graph G' with maximum degree A(G) > 3
contains without loss of generality only vertices from the set F' = {v € V : dg(v) > 3},
H = H(G). Hence, according to Theorem 5.1 enumerating over all subsets of I yields the
following result.

Proposition 5.5 The problem VERTEX FEEDBACK SET restricted to the class of graphs
G with girth g(G) > ”lgggn” is solvable in polynomial time. O

Proposition 5.6 The WEIGHTED STEINER TREE problem restricted to the class of graphs
G with girth g(G) > nlgggn" is solvable in polynomial time.
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Proof. Let (G,T,w), G = (V,FE), be an instance of the WEIGHTED STEINER TREE
problem, where T C V is the set of terminals and w : E — Q% the weight function.
We may clearly assume that G is connected. Moreover, we may assume that G = H(G)
because suppose GG contains a vertex v of degree 1. If v is not a terminal then we may just
remove v from G. Otherwise, if v is a terminal, we may define a new equivalent instance
by letting the neighbor of v be a terminal and removing v. We finally can assume that
there are no non-terminal vertices of degree 2 because we may remove such a vertex and
merge the two adjacent edges into a single edge its weight being the sum of the weights
of the two old edges.

Let ' = {v € V : d(v) > 3}. G can be written as a union of paths P',..., P*
with first and last vertices in F' and whose interior vertices lie in V\F. By Theorem 5.1,
k= O(logn). Fori=1,....k, let P' =0l v}, .. .,v;—(i). Let furthermore {vz(i), U2(¢)+1} be
the longest edge in P, i.e. the edge with the maximum weight. Then it is easy to see that
a minimum Steiner tree intersects P either

(1) in all edges or

(2) in all edges except {vi, vy} or

(3) in all edges except {v;-(i)_l, U;-(Z-)} or
(4) in all edges except {vé(i), U§(¢)+1}v

where for some i some of the cases may coincide. For a function case : {1,...,k} —
{1,2,3,4}, define a subgraph G.,sc of G such that G, intersects each P exactly in
those edges specified by case(t). Let w(Geqse) be the sum of the lengths of the edges of
G'ease, then the length of a minimum Steiner tree for (G,T') is

St(G,T) = min {w(Gease) | case: {l,...,k} — {1,2,3,4} and

G eqse 18 a tree covering all vertices from 7'}.

As k = O(logn) we can enumerate all cases in polynomial time. a
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