This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545

Computation of Best Possible Low Degree Expanders

STEFAN HOUGARDY Ivo KOTHNIG
Forschungsinstitut fiir Diskrete Mathematik Institut fiir Informatik
Universitiat Bonn Humboldt-Universitidt zu Berlin
Lennéstr. 2, 53113 Bonn, GERMANY 10099 Berlin, GERMANY
hougardy@or.uni-bonn.de koethnig@informatik.hu-berlin.de
Abstract. We present an algorithm for computing a best possible bipartite cubic

expander for a given number of vertices. Such graphs are needed in many applications and
are also the basis for many results in theoretical computer science. Known construction
methods for expander graphs yield expanders that have a fairly poor expansion compared
to the best possible expansion. Our algorithm is based on a lemma which allows to
calculate an upper bound for the expansion of cubic bipartite graphs.
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1 Introduction

An expander is a graph that is sparse (i.e. it has only few edges) and highly connected, in the
sense that the neigborhood of each set of vertices has large cardinality. Expanders are needed
for many applications and are also used for many results in theoretical computer science,
for example network design [Pip87, PY82|, complexity theory [Val77, Sip88|, derandomiza-
tion [IW97], coding theory [SS96], cryptography [GIL+90|, and non-approximability results
[Pap94].

In this paper we consider regular bipartite expanders, i.e. bipartite graphs in which all
vertices have the same degree. A bipartite graph G = (AU B, F) is said to have expansion ¢
for A if for every subset S C A with |S| < |A|/2 the neighborhood N(S) of S has size at least
¢+ |S|. The goal is to find k-regular bipartite expanders on n vertices with highest possible
value for the expansion c.

It is rather easy to prove by a probabilistic argument the existence of k-regular expanders
with an expansion strictly larger than 1 [Pin73]. For many applications explicit constructions
of such expanders are needed. Several such constructions are known [Mar73, GG81, RVWO01]
but they only produce expanders with a fairly small expansion compared to the best possible
expansion. This also holds for the expander graphs constructed in [LPS88] that meet the
eigenvalue bound and are in this sense best possible. In this paper we present an algorithm
which computes either one or all best possible k-regular bipartite expanders for a given number
of vertices.



This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545

The simple brute force approach is to enumerate all unlabeled k-regular bipartite graphs
and afterwards check their expansion. In our algorithm the expansion of a graph is already
checked when only some part of it has been generated. This allows us to skip in a very early
stage the enumeration of graphs which can not beat the best graph which is already computed.
The heart of our algorithm is a lemma that allows the prediction of the best possible expansion
for subgraphs of cubic graphs.

This way the algorithm generates much fewer graphs than a brute force approach would
require. Our approach allows to generate a best possible cubic expander on up to 48 vertices,
while a brute force approach is limited to 34 vertices.

2 The Algorithm

The main idea of our algorithm is to enumerate for a given number n of vertices and degree
k only those k-regular bipartite graphs on 2n vertices that are candidates for having the best
possible expansion. There exist very fast algorithms for enumerating all k-regular bipartite
graphs on 2n vertices [Mer96]. As the number of such graphs grows extremly fast, it is not
feasable to first generate all bipartite k-regular graphs on 2n vertices and then to choose
one having the largest expansion. This approach is especially not feasable as computing the
expansion of a graph is a co-NP-hard problem [BKV+81].

FIND-BEST-EXPANDER

VALID(G)
1. RETURN
2 regularity(G) AND
3. maximality(G) AND
4 expansion(G)
DFS (4)
1. IF (i=n)
2. expansion := expansion of G
3. ELSE
4. FOR EACH vy < ... <wv, € B
5. G:=G+{{i,v1},....{i,v}}
6. IF (VALID(G&))
7. DFS (i + 1)
8. G:=G—{{i,v1},... . {i,v}}

MAIN(n)
1. A:={0,...,n—1}

2. B:={n,...,2n—1}
3. G:=(AUB,D)

4. expansion :=1

5. DFS(0)

Figure 2.1: Outline of an algorithm for computing expanders.
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Our approach uses an orderly algorithm that starts from the empty graph and extends
the set of currently produced subgraphs. While generating these subgraphs we compute the
expansion of all their completed subsets (i.e. those in which all vertices already have degree k)
and remove all subgraphs that cannot yield expanders that are better than the best expander
currently found.

To be more precise the algorithm works as shown in Figure 2.1. It starts with the procedure
MAIN which generates an empty graph on 2n vertices. The vertices 0 to n — 1 belong to the
bipartition set A and the vertices n to 2n — 1 belong to the bipartition set B of the graph.
Initially we assume that the expansion is at least 1, which is justified by Hall’s theorem.

Next we call a recursive procedure DF'S. The parameter of DF'S determines for which vertex
of A all neighbors have to be computed as next. All possible supergraphs will be checked by
the function VALID, which tests if the resulting graph is

e a subgraph of a regular graph,
e in maximal representation and
e has the expansion property.

Since expansion is invariant up to isomorphism we only generate graphs in lexicographic
maximal representation, i.e. for all permutations of {0,...,n — 1} and {n,...,2n — 1} we
check if the corresponding adjacency matrix is lexicographically smaller than the adjacency
matrix of the current graph. For this we use some techniques similar to those in [Mer96].
Details of the algorithm for this test are described in [KO02].

To check if the graph has the expansion property we test for all subsets of {0,...,i}
containing ¢, that the size of the neighborhood is not to small. Since we have already tested
all subsets of {0,...,i} not containing 7 in the previous iterations we do not need to check
them again.

It follows directly from the definition, that it is not necessary to check the subsets of B.
But there are good reasons doing this. If we check the size of the neighborhood of subsets of
B, we can bound the size of the neighborhood of subsets of A even if we do not know their
neighborhoods since it may not have been generated so far. For this we use the following
lemma, which is easily seen to be true.

Lemma 1 Let G = (AU B, E) be a regular bipartite graph, R a subset of B and S a subset
of A that contains the neighborhood of R in G. Furthermore let P = B\ R and Q = A\ S.
Then the neighborhood of Q is included in P. O

This lemma is applied as follows. Assume we know that a subset R of B exists with size
x and there is a subset S of A with size y containing the neighborhood of R. Then we know,
that a subset @) of A with size n — y exists and the size of its neighborhood is bounded by
n — x (n is the size of A and B ).

The test of the expansion of the subsets of B works like the test of the expansion of the
subsets of A. It is just a little bit more difficult to implement since the vertices of B already
having degree k and thus which subsets are allowed to be tested must be known.
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3 Calculating an Upper Bound for the Expansion of Supersets

In this section we present a theorem which shows, that for a given subset one can estimate
an upper bound for the size of the neighborhood of some of its small supersets (i.e supersets
with just a few more vertices). Notice, that we do not know for which superset we can bound
the size of the neighborhood (we just know the size of the superset). Furthermore it is not
necessary to explictly know the subset from which we derive the existence of a superset with
small neighborhood. We just need its size and a bound of its neighborhood. Thus we can
recursivly apply the theorem to bound the size of the neigborhood of some arbitrary large
supersets. To prove the theorem we first present some necessary lemmas.

Lemma 2 Let G = (AU B, E) a connected bipartite graph, n = |A|, such that each vertex of
A has at most degree k. Then for each x € {1,...,n} there exists an X C A with

IN(X)| <a(k—1)+1.

Proof. We proof this by induction on x. Let x = 1. We choose an arbitrary vertex v € A.
Vertex v has degree at most k£ and thus the lemma holds. Now let n > « > 1. By induction
hypothesis there is a set Y C A of size x — 1 with |[N (Y)| < (x —1)(k —1) + 1. Since the
graph is connected there are vertices in A \ Y, which belong to the neighborhood of N (V).
Thus, we can choose an arbitrary vertex in A\ Y, which is adjacent to N (Y). This vertex
has at most k£ — 1 neighbors in B\ N (Y). For X =Y U {v} it follows | X| = x and

NX) < (z2-1D)(k—1)+1+k—-1
x(k—1)+1.

g

Corollary 3 Let G = (AU B, E) be a connected bipartite graph, n = |A|, such that each
verter of A has at most degree 2. Then there is for each x € {1,...,n} an X C A with
IN (X)| <x+1.

Lemma 4 Let G = (AU B, E) be a connected bipartite graph, n = |A|, such that each vertex
of A has at most degree 2. Then the following hold:

|IB| = |Al+1, ifd(v) =2 for eachv € A and G is a tree, and
|B| < |A]+1, else.

Proof. Since G is connected it follows |A|+|B|—1 = |E|,if G is a tree and |A|+|B|-1 < E
otherwise. Since each edge is incident with a vertex in A and a vertex in B and each vertex
in |A] is incident with at most 2 edges it follows |E| = 2|A|, if d (v) = 2 for each v € A and
|E| < 2|A| otherwise. Together:

|A|+|B|—1 = 2]|A|,if d(v) =2 for each v € A and G is a tree, and
|A|+|B|—1 < 2|A], else.

Adding 1 — |A| on both sides gives the result. O
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Lemma 5 Let a, b, © and y be natural numbers, y > = and a > x. Ifb-y < a(y+ 1) then:
b—z)(y—z)<(a—z)(y—xz+1).

Proof. We concider two cases.
Case 1: Let b > a + 1. Then it follows:

(b—z)(y —x) by — bx — xy +
aly+1) —(a+1)z—ay—z?
= ay—aa:+a—xy+m2—x

(a—a)(y—z+1).

N

Case 2: Let b < a. Then also b — x < a — x holds. Since y > x the term y — x is not
negative and it follows:

b—=z)(y—2z) < (a—=z)(y—z).
Since a > = the term a — z is positive and it follows:

b-2z)(y—2) < (a-2)(y—=2)
< (a—x)(y—x)+a—=
(a-o)y—z+1).

We now can proof the following theorem.

Theorem 6 Let G = (AU B, E) be a connected 3-regular bipartite graph, R C A, S C B with
N (R) C S. Furthermore let P=A\ R and Q =B\ S. Ify+ 1 < |P| and

Qly <3(SI =R (y+1),

then there exists a subset X C P with |X| = x and [IN(X)NQ| < z+ 1 for each x €
{1,...,y+1}.

Proof. We consider the set P/ = N (S) N P and the induced subgraph G’ = G [P U Q)] of
G. The proof works by induction on y. Since a vertex in P’ has at most two neighbors in Q,
the result can be seen easily for the case y = 0.

Let now y > 0. We first assume, that the vertices of P’ have degree exactly two in G’ and
all components of G’ are trees. Using Corollary 3 we only need to show, that there exists a
component in G’ containing y + 1 vertices of P’. By our assumption each component K of
G’ fulfills the premises of Proposition 4, such that |Bx| = |Ax| + 1, where Ak is the set of
vertices in P’ of component K and By ist the set of vertices in @ of component K. This
implies that £ = |Q| — |P’| is the number of components in G’. Since S is adjacent with
exactly 3|S| edges and R is adjacent with exactly 3 |R| edges, which all connect to vertices
in S, there exist 3 (|S| — |R|) edges between S and P’. Since all vertices in P’ have degree 2
in G’ two different edges between S and P’ can not be incident with the same vertex of P’.
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Thus it follows |P'| = 3(|S| — |R|). Assume now that each component of G’ contains at most
y vertices in P’. Then we get the following contradiction:

[P < ky
= (1QI=|P|)y
Qly — |P'|y
< 3(S|—IR)) (y+1)—|P'|y

= [P|y+1) =[Py
= |P|.

We now study the case, that there either exists a vertex of P’ which has degree at most one
in G’ or there exist components of G’ which are not trees. We choose an arbitrary component
K of G’ containing either a vertex of P’ that has degree at most one in G’ or is not a tree. If
|Ar| > y + 1 the result follows from Corollary 3. Otherwise we have to show, the result for
each z with |Ax| <z <y+1.

From Proposition 4 it follows |Bg| < |Ak|. Let By C @Q, such that |Bj| = |Ak| and
Bk C Bj;. We now consider the sets R = RU Ag, ST =SUB), Pt = A\ Ax = P\ Ag
and QT = Q\ By = Q\ Bj,. Let y* =y — |A;|. We just need to show now, that for each
z € {1,...,y"} there exists a X C PT with |X| = z and at most x + 1 neighbors in Q™.
Since y* <y, |PT|=|P|—|Ak| >y +1—|Ax| =y + 1 and

QF|yt = (QI-2") (y—2")

< (3(S|=|R) —z") (y—at +1)
< 3(IS|—IR]) (y* +1)
= 3([s7=[r")) (v" +1)
(use Lemma, 5 for step 2), this follows by induction. O

We can now deduce from the existence of a small set R with a small neighborhood S the
existence of a superset of R with small neighborhood. We just calculate the maximal y with
y+1<|P|and |Q|y < 3(|S| —|R|). It follows by Theorem 6, that there must be a subset
R’ of A with |R|+ y + 1 vertices and a subset S” of B with size |S| + y + 2 that contains
all neighbors of R. This step can be repeated until the claimed subset of A or the claimed
neigborhood of the claimed subset of B has size |A|/2 depending if we consider supersets from
a subset of A or supersets from a subset of B.

4 Results

Figure 1 shows the best possible expansion for 3-regular bipartite graphs with 2n vertices
graphically. Interesting is to observe the pattern depending on the divisibility by 6 and the
seemingly convergence to 4/3. Monien and Preis [MP01] have shown that for large n a cubic
bipartite expander can have an expansion of at most 4/3 + .

Table 1 shows the best possible expansion. It also shows the runtime our algorithm needed
on an Athlon-CPU with 3GHz and the number of tested subgraphs.

Table 2 shows the number of 3-regular bipartite graphs with 2n vertices, which have at
least for one bipartion set the best possible expansion (last column). Column A V B contains
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best possible expansion

6 12 18 24
number of vertices per bipartition set n

Figure 4.1: best possible expansion of 3-regular bipartite graphs

‘ n ‘ subgraphs ‘ time ‘ expansion ‘
3 2 0 sec 3/1
4 4 0 sec 4/2
5 10 0 sec 4/2
6 18 0 sec 5/3
7 19 0 sec 6/3
8 42 0 sec 7/4
9 51 0 sec 7/4
10 480 0 sec 8/5
11 1467 0 sec 8/5
12 272 0 sec 9/6
13 552 0 sec 10/6
14 677 0 sec 11/7
15 5727 0.1 sec 11/7
16 32935 1.3 sec 12/8
17 6171 0.3 sec 12/8
18 61456 5.2 sec 13/9
19 96423 7.1 sec 14/9
20 8151 0.5 sec 15/10
21 | 1879924 | 1 min 11 sec 15/10
22 | 21052389 1 h 29 min 16/11
23 | 31588879 | 2 h 43 min 16/11
24 | 81502779 | 4 h 30 min 17/12

Table 1: best possible expansion of 3-regular bipartite graphs
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‘ n ‘ subgraphs ‘ time ‘ AV B ‘ not sym. ‘ sym. ‘ A=B ‘ sum
3 3 0 sec 0 0 1 1 1
4 7 0 sec 0 0 1 1 1
) 20 0 sec 0 0 1 1 1
6 50 0 sec 0 0 3 3 3
7 68 0 sec 0 0 1 1 1
8 113 0 sec 0 0 1 1 1
9 480 0 sec 0 0 7 7 7
10 1885 0 sec 11 4 25 29 40
11 15166 0.2 sec 19 244 202 446 465
12 148230 3.6 sec 2292 2931 752 3683 5975
13 3748 0 sec 0 0 1 1 1
14 15831 0.2 sec 0 0 4 4 4
15 1601611 43.3 sec 2945 793 423 1216 4161
16 | 36034623 | 34 min 44 sec | 177411 25924 2979 28903 206314
17 | 1318065325 | 68 h 46 min | 15354167 | 8708524 | 75431 | 8783955 | 24138122
18
19 216907 16.3 sec 1 0 0 0 1
20 | 917948423 17 h 52 min 1 0 4 4

Table 2: number of best expanders

the graphs with best possible expansion for exactly one bipartition set. Graphs with best
possible expansion for both bipartition sets are divided by those that are symmetrical and
those that are not symmetrical, i.e there is an/no automorphism that maps vertices from B
to A and vice versa. Column A = B shows the sum of these columns.
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