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Abstract

Motivation. The Dictionary of Interfaces in Proteins (DIP) is a data
base collecting the three-dimensional structure of interacting parts of pro-
teins that are called patches. It serves as a repository, in which patches
similar to given query patches can be found. The computation of the
similarity of two patches is time consuming and traversing the entire DIP
requires some hours. In this work we address the question how the patches
similar to a given query, can be identified by scanning only a small part
of DIP. The answer to this question requires the investigation of the dis-
tribution of the similarity of patches.

Results. The score values describing the similarity of two patches can
roughly be divided into three ranges that correspond to different levels
of spatial similarity. Interestingly, the two iso—score lines separating the
three classes can be determined by two different approaches. Applying
a concept of the theory of random graphs reveals significant structural
properties of the data in DIP. These can be used to accelerate scanning
the DIP for patches similar to a given query. Searches for very similar
patches could be accelerated by a factor of more than 25. Patches with
a medium similarity could be found ten times faster than by brute-force
search.

Contact. christoph.gille@charite.de,
hougardy@informatik.hu-berlin.de

1 Introduction

1.1 In-silico screening

Structure-based in-silico screening (ISS) methods are widely used within the
pharmaceutical industry lead discovery process (Good, 2001) as proven by nu-
merous successful applications: farnesyltransferase inhibitors (Perola et al.,
2000), erythromycin analogs, (Siani et al., 2000), microtubule-stabilizer, (Wu
et al., 2001) morphine analogs (Poulain et al., 2001), Cdk4 inhibitors (Honma
et al., 2001) and antiviral quinolones (Filipponi et al., 2002). Generally, two
ISS-approaches can be distinguished. Similarity searching (Willett et al., 1998;
Xue & Bajorath, 2000) and docking, (Gane & Dean, 2000). The high com-
putational effort of ISS is usually reduced by a number of simplifications and
restrictions. For instance flexibility of ligands and targets are at least partly
restricted and solvent are often ignored (Stahl, 2000). The reduction of the
search space decreases the computational effort as realized by the application
of topological pharmacophore models (Schneider et al., 1999) or by random se-
lection of compounds from a virtual combinatorial library (Beroza et al., 2000).
In the present work we describe the reduction of structure comparisons using a
graph theoretical approach.
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1.2 The Dictionary of Interfaces in Proteins (DIP)

Peptides sample a huge conformational space due to the large number of rotat-
able bonds. In a previous work the Dictionary of Interfaces in Proteins (DIP)
was developed to exploit the learning set of 107 molecular docking interfaces in-
cluded in the 20,000 known protein structures (Preifiner et al., 1998). Matching
between protein substructures and low molecular weight compounds works well
(Preifiner et al., 2001), thus bridging the way to a new conformational space for
ISS.

1.3 Accelerating queries in DIP

Currently, searching DIP for conformations similar to a query molecular struc-
ture is performed by matching the query against all structures in DIP (lin-
ear search), which takes some hours. The issue of faster-than-linear search in
databases has been examined extensively in the area of information retrieval
from textual data collections, where the method of singular value decomposi-
tion is very useful as the data can be represented in vectorial form (Jiang et al.,
1999). However, the application of such methods to accelerate search in DIP is
not feasible, as the objects in this database have no obvious vectorial description.
This is most evident by the fact that the similarities neither obey the triangle
inequality nor are they transitive. Similarity values may be be calculated from
score values by subtraction from 100%. If the relation of data objects is only
given by pairwise similarity scores, as is the case in DIP, then a reduction of the
number of comparisons is typically based on prior grouping of the objects into
clusters of similar objects, which are not necessarily disjoint. The clustering
problem has been considered mainly in the context of computer vision so far
(Puzicha et al., 1999) and is now also widely applied in computational biology.
The biological areas range from sequences of proteins (Hofmann & Buhmann,
1997) to gene expression data (Hartuv et al. 1999, Hartuv & Shamir, 2000,
Matula, 1972, Wu & Leahy 1993) and even protein domains (Bolten et al.,
2001).

Their success was hope and motivation to exploit the power of clustering for
DIP.

2 Databases and Methods

2.1 Data

The data objects that we are dealing with are molecular surface patches (MSP)
in DIP, (Preifiner et al. 1998) as illustrated in Fig. 1. An MSP is a set of atoms
of a secondary structural element (SSE) that are in spatial proximity to atoms
of another SSE, ligand or solvent.

For the design of efficient search strategies, we independently investigated
five data sets containing about 1000 MSPs with 25-29, 40-49, 50-59, 60-69, and
more than 100 atoms, which are representative for DIP. This subdivision was



This paper appeared in: Bioinformatics 19 (2003), 2442-2447

necessary since superposition requires patches of similar size. All pairs of patches
were superimposed using the superposition algorithm of DIP (Preifiner et al.,
1998). As a one-dimensional scoring function for superpositions the following
formula was used:

S = n, exp(—rmsd/A), (1)

where n, is the proportion of atoms of the smaller patch that are superimposed
and rmsd is the root mean square distance. The values S range from 0 to
100[%].

2.2 Methods

2.2.1 Discrimination of three ranges of similarity

The 3D superposition algorithm finds an assignment of atoms in one patch to
atoms in the other one, resulting in a list of pairs of atoms. Each atom is part of a
certain amino acid of the protein and a list of pairs of corresponding amino acids
can be derived. Usually, this list contains about 3 to 7 amino acids for patches
with 30 to 70 atoms. In this list we can count assignments of identical amino
acids to measure sequence similarity between both patches. In our analysis we
distinguish three classes of patch pairs: pairs with dissimilar sequences, pairs
with similar sequences having at least two identical amino acids, and sequence
identical pairs, i.e. pairs where all assigned amino acids are identical. Sequence
identical pairs originate in almost all cases from homologous proteins.

2.2.2 The evolution of the threshold graph

For each set of MSPs, the pairwise scores can be arranged in a similarity matrix,
each of whose rows and columns corresponds to one MSP. This matrix can be
considered as the (weighted) adjacency matrix of a graph that we call ”similarity
graph”. For every given threshold score ¢ this similarity graph can be turned
into an (unweighted) graph (”threshold graph”) in the following way: each
vertex represents one patch and there is an edge between a pair of patches if
the score of the pair exceeds t. We use the concept of the threshold graph to
analyze the similarity data for hidden structure as follows: For a set of MSPs,
100 threshold graphs are computed, where the value of ¢ ranges from 0.01 to 1
in steps of 0.01. This sequence of threshold graphs, which can be considered as
an ”evolution of the threshold graph” is examined for the value of several graph
parameters. For instance, a pair of vertices in a graph is connected if there is a
path of edges of the graph, along which one can walk from one to the other. A
connected component is a maximal set of vertices that are pairwise connected.
As a special case, an isolated vertex, which has no edges to any other vertex, is a
connected component on its own. A largest connected component is one, which
has the maximal number of vertices among all connected components (Fig. 2).
The parameters that we observed during the evolution were: the number of
components, the average size of components, the number of isolated vertices,
and the size of the largest component. The goal was to identify parameters of
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the graph that exhibit some “unexpected behavior” when plotted wversus the
threshold value t.

2.2.3 Random permutation of the edges of the similarity graph

To test for “unexpected behavior” of the graph parameter, we considered ran-
dom permutations of the entries of the adjacency matrix. The evolution of the
threshold graph of the permuted similarity graph is examined for the same graph
parameters as the original one. If the behavior of a graph parameter in the per-
muted similarity graph deviates considerably from the original similarity graph,
this indicates that the original similarity graph has an “unexpected structure”.
Note that this criterion has a high level of confidence for the following reason:

Permuting the original similarity graph conserves the distribution of score
values and thus the number of edges of each threshold graph. Therefore, the
evolution of the permuted similarity graph is like the classical evolution of the
graph G, m, where n is the number of MSPs and m increases from 0 to $n(n—1).
This evolution has been extensively studied in the theory of random graphs (Bol-
lobéds 2001). According to this theory these graph parameters, including those
investigated here, are usually very stable upon permutation for all thresholds ¢.

2.2.4 Accelerated screening by hierarchical subdivision

The first search procedure that we considered organizes the data in a binary
tree as follows. A first MSP is chosen as the root of the tree. All other MSPs
are compared with this root and ordered by their score values. Now a critical
score value s is computed and the MSPs are partitioned into two sets A and B
such that the set A contains all MSPs with a score value smaller than s and B
contains all MSPs with a score value larger than s. The set A is taken as the
left child and the set B as the right child of the root. The critical score value
s is computed in such a way that the sets A and B have almost the same size
while at the same time there are a fewest possible number (ideally zero) edges
in the similarity graph that connect MSPs from the set A with MSPs from the
set B. This procedure is repeated recursively until the sets A and B have size
1 or there is no critical value s that allows to almost half the current set.

To search for a given MSP, the binary tree is used as follows. Starting with
the root the given MSP is compared to the current vertex in the tree. The tree
is followed to the left branch, if the score value of the MSP compared with the
current vertex is smaller than the critical score value s stored with the current
vertex. Otherwise the right branch is taken. Whenever a comparison with a
vertex in the binary tree yields a score value higher than the given threshold,
the vertex is output. Note that the number of comparisons is only dependent
on the depth of the tree. Therefore it is desirable to have a binary tree that is
as balanced as possible. In the best case only log, n comparisons are needed if
n MSPs are in the data structure.
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2.2.5 Accelerated screening by dominating sets

A subset of vertices, called representatives, is chosen so that every other vertex in
the graph is covered by at least one of these representatives. A vertex is covered
by a representative, if there exists an edge in the threshold graph between
the vertex and the representative. In graph theoretic terms this is called a
dominating set. This dominating set is built up using a simple greedy approach.
First the vertices of the threshold graph are ordered by decreasing average weight
(in the similarity graph) of their neighbourhood. Proceeding in this order,
vertices are added to the dominating set as long as there are vertices in the
graph that are not covered. There may be vertices that are linked to several
representatives.

The search for a given MSP is then performed as follows: We again use
the above ordering of the representatives. First the given MSP is compared
to the representative. If the score value is high enough, the query MSP is also
compared to all the neighbours of the representative, otherwise these neighbours
are skipped.

Note that this procedure is also applicable, if the similarity matrix is not
fully known, as one can easily add new MSPs to this search structure and, if
necessary, update the set of representatives.

The tradeoff between the reduction of comparisons and the number of false
negatives can be controlled by additional parameters, e.g. the procedure can be
configured to cover vertices by heavy edges, or by more than one representative.

3 Results and Discussion

3.1 The distribution of the score value

The prerequisite for the acceleration of searches in DIP was the investigation
of the distribution of the score values, because it significantly influences the
behavior and success of any such approach. The density plot of the rmsd versus
the relative number of superimposed atoms revealed three agglomerations, a
very small one with very high scores, a medium sized one with high scores, and
a larger one with low scores (Fig. 3).

A statistical analysis of the average score values in the presence and absence
of sequence similarity (Table 1) supports the following interpretation of the data
produced by the superposition algorithm (Fig. 3). The large agglomeration to
the top left corresponds to sequence-dissimilar MSP pairs while the part to the
lower right results mainly from sequence-identical MSP pairs.

The iso-score line separating the top left and the middle parts corresponds
to the score value, that is attained by as many sequence-dissimilar MSPs as
sequence-similar MSPs. Therefore, pairs that have an accidental similarity,
i.e. a similarity that cannot be explained from the sequence of the protein, are
expected in the middle part of the distribution, which corresponds to the second
level of spatial similarity.
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3.2 Bends in the plot of the largest graph component

Comparing the evolution of the threshold graph derived from the original simi-
larity graph with the threshold graph of the randomly permuted similarity graph
we found that the largest graph component was the only graph parameter that
exhibited “unexpected behavior” (Fig. 4). The respective plot of the size of the
largest graph component versus the threshold ¢ shows two remarkable bends,
which are absent in the permuted data (Fig. 4). Surprisingly, the score values
at, which these two bends occur (Fig. 4) coincide with the score values that sep-
arate the three ranges of spatial similarity (Fig. 3). This is a constant feature
for all analyzed sets of patches extracted from DIP irrespectively of the patch
size. Each set contains only patches with sizes within a certain range. However,
the exact values vary with the size of the patches. The score values of the first
bend depend only on the mean size of patches and are well approximated by

the empirical formula
700
15+ =t (2)
min(ny,ng)
where n; and ns denote the sizes of the two MSPs. This formula estimates the
score value that separates the first and the second level of spatial similarity as

shown for MSP sizes between 16 and 89 (Tab. 1).

3.3 Acceleration of DIP searches

There is a strong need for approaches that accelerate the process of identification
of structural neighbors to a given query patch.

We applied two techniques from graph theory to order molecular objects ac-
cording to their three-dimensional shape. Both methods are generally applicable
but each is advantageous in different situations.

Arranging the patches in a binary tree yielded almost balanced search trees
for scores in the third level of spatial similarity. As a consequence, this rapid
approach is only suitable to find very similar patches. In the examined data,
all close structural neighbors were identified with only 1/25 of the comparisons
needed for linear search.

Screening DIP using dominating sets proved to be efficient in the second
level of spatial similarity (Fig. 5) achieving a ten fold acceleration (Tab. 1).
This is paid for by a moderate proportion of false negatives, usually 15%, which
is tolerable for an application of DIP as a repository of potential building blocks
for ligands. The speed-up factor and the sensitivity rise with increasing amount
of data and can be influenced by setting the least score value required for a
patch to be represented by another one. Since small compounds are in many
aspects similar to MSPs and most entries in the Cambridge database (Hall et
al., 1991) consist of less than 100 atoms the techniques presented in this paper
may also be applied to accelerate the identification of ligands for proteins.
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Figure 1: Two patches (top) and their superimposed atoms (below).

I

Figure 2: Part of the threshold graph (t=253) for 1153 patches of size >100,
including a component of size 10

10
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Figure 3: Distributional plot of the pairwise superpositions of 1153 patches of
size >100. Two iso-score lines at values 23% and 53%.
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Figure 4: Evolution of the largest component in the original (black) and the

randomly permuted (grey) similarity graph for the pairwise superposition of
1153 patches of size > 100.
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Figure 5: Application of dominating sets for the identification of patches similar
to a query patch. Speedup factor and sensitivity depending on the size of the
database. Results for two parameter settings, one focusing on speed (solid), the
other on sensitivity (dashed).
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Table 1: Average score value and variance for patch pairs exhibiting sequence
identity, similarity and dissimilarity. Score value where the frequencies of com-
parisons of sequence similar patches and of comparisons of dissimilar patches
are identical and interpolated values from formula (2). Three data sets differing
in the number of atoms in the patches.

Size of the MSPs 40-49 | 50-59 | 6069
Pairs with sequence dissimilarity

Mean 15.2 13.9 12.8
variance 20.0 15.8 13.3
Pairs with sequence similarity
Mean 17.3 16.0 15.4
variance 96.9 82.4 92.5
Pairs with sequence identity
Mean 76.7 74.5 75.5
variance 158.3 | 165.6 | 150.3
Score value where frequencies are identical
Statistically inferred 31.0 27.9 25.5
Interpolated 30.9 28.0 25.9

14





