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Abstract. For any integer k, we prove the existence of a uniquely k-colourable graph of girth
at least g on at most k'2(97") vertices whose maximal degree is at most 5k'®. From this we
deduce that, unless NP=RP, no polynomial time algorithm for k-COLOURABILITY on graphs G
of girth g(G) > igglolgGllc and maximum degree A(G) < 6k'® can exist. We also study several
related problems.

1. Introduction and Results

Let G = (V, E) be a graph with vertex set V and edge set E. The order of G, i.e. the
number of its vertices, is denoted by |G|, the number of its edges by m(G). The degree of
a vertex v € V is denoted by d(v), the maximum degree of a vertex in G by A(G). The
girth g(G) of a graph G is the length of a shortest cycle in G and can easily be computed
in polynomial time using breadth-first-search. Let k be an integer, or more generally, an
integer valued function. A graph G = (V, E) is called k-colourable if and only if there
is a function ¢ : V — {1, ..., k}, where k = k(|G|), such that e¢(u) # e(v) for all edges
{u,v} € E. Such a function ¢ is called a k-colouring of G. Note that ¢ partitions V into
independent sets ¢='(i), i = 1,... k, the so-called colour classes of c. The minimum
number k such that a graph G is k-colourable is called the chromatic number x(G) of G.
A graph G = (V, E) is said to be uniquely k-colourable if and only if G is k-colourable
and every k-colouring of G induces the same k-partition of V. Necessarily, x(G) = k for
any uniquely k-colourable graph GG. For an integer-valued function &, k--COLOURABILITY
is the decision problem “given a graph G, is x(G) < k(|G])?”. For an introduction to the
theory of computational complexity we refer the reader to [10, 21].

Uniquely colourable graphs of large girth. Graphs of large girth are rather sparse
as the maximum number of edges in an n-vertex graph of girth ¢ > 2h+2, h € IN, is at
most (%)H—l/h +2h. (%)1_1/h [9]. The problem to decide whether graphs of large girth
exist which have large chromatic number and if so how to construct such graphs dates
back to 1947 and has received considerable attention in graph theory since then, cf. [13,

section 1.5].
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The existence of uniquely k-colourable graphs of arbitrary large girth was already
proven by BoLLOBAS and SAUER [5]. However, they give no bound on the order of such
a graph. Analyzing their construction one can see that the graph they construct is at
least of order ¢9.

We use a similar probabilistic argument but remove vertices instead of edges from a

random balanced k-partite graph, which yields

Theorem 1.1. Let k > 2 be an integer. For every integer N1 > k there exists a graph
G on N vertices with N1/2 < N < Ni which is uniquely k-colourable and has girth
9(G) > L%%J and marimum degree A(G) < 5k'3.

Furthermore there is a randomized algorithm which outputs a graph G on N wvertices

together with a k-colouring of G such that g(G) > Lf—;%J, A(G) < 5k and with

probability at least 1/2 the graph G is uniquely k-colourable.
Theorem 1.1 immediately implies the following result.

Corollary 1.1. For fized integers k and g, there exists a uniquely k-colourable graph o
y g 9 quety grap.
girth at least g on at most k'*(9FY) yertices whose marimum degree is at most 5k'3. [

Here the bound on the order is best possible up to the constant in the exponent, which is
by [3, Theorem V.4.2] at least 1/2. The constant in the exponent can be improved slightly,
especially for larger k one can easily get a smaller constant. In order to keep the proofs
simple we did not optimize on this constant. Furthermore, even when the condition of
unique colourability is omitted, i.e. when asking for the minimal order n(k, g) of a graph
with chromatic number & and girth at least g, the constant in the exponent is not known.
In [4] it is shown that n(k, g) < [(6klog k)9+!]. LuBorzky, PHILLIPS und SARNAK [1§]
succeeded in constructing such graphs of order n < k39 explicitly. Recent results of Kim
[17] and JoHANsSON [14] on the other hand give a lower bound of Q(klogk) on the
maximum degree of such graphs when g > 5 resp. g > 4.

Hardness results. That bounding the maximum degree in optimization problems on
graphs often does not affect their hardness is well documented, see e.g. [16]. The girth
as another graph parameter controlling the sparseness of a graph is less well studied
in this context. As graphs of large girth look like trees locally, one might think that
an NP-complete problem might be easier to solve on graphs of large girth. In spite of
being solvable in linear time on trees, however, several well-known NP-hard problems
on graphs remain NP-hard on graphs with large girth. This was first observed for the
problem INDEPENDENT SET by MURPHY [20] who showed that this problem remains NP-
complete even when restricted to the set of all graphs G with girth ¢(G) > |G|" where
0 < r < 1is afixed real number. In a companion paper [7] we study the complexity of
several graph theoretic problems like HAmMiToNTAN CircurT, CHROMATIC INDEX and
STEINER TREE on graphs of large girth and bounded maximum degree.

In this note we study the complexity of graph colouring problems on graphs of large
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girth and bounded maximum degree. Qur reductions rely heavily on properties of uniquely

colourable graphs whose existence is guaranteed by Theorem 1.1.

Theorem 1.2. Let k > 3 be a fired integer. Unless NP=RP, there exists no polynomial
time algorithm for k-COLOURABILITY on the class of graphs G of girth g(G) > Lllgglcl)g}ch
and mazimum degree A(G) < 6k,

The bound on the girth is best possible up to a constant factor as a graph G with

chromatic number k has girth at most 21;;(%'?'2) + 1, cf. [3, Theorem V.4.2, p.258].

For a finite class of graphs G, we denote by Forb (G) the class of graphs containing

no graph from G as a (weak) subgraph. In abuse of notation, we will write Forb (G) for
Forb ({G}) in case of a single forbidden graph G. For fixed g, the proof of Theorem 1.2

implies:

Corollary 1.2. (a) Let k > 3 and g be fized integers. Then the problem k-COLOURABILITY
1s NP-complete on the class of graphs of girth at least g and of marimum degree at most
6k'3,

(b) Let k > 3 be an integer. Let G be a finite class of graphs such that every graph
from G either contains a cycle or a vertex of degree more than 6k'3. Then the problem
k-COLOURABILITY is NP-complete on the class Forb (G).

The NP-completeness of 6-COLOURABILITY on the class of graphs of girth at least g,
g a fixed integer, was proven by JunseN and Towrr [13, section 10.3] using Hasds’
construction and in fact their proof works for any fixed k and g. However, their method
does not give any bound on the maximum degree and, moreover, their reduction is not
polynomial for k£ and g that grow with |G|. In Section 3 we will also prove a stronger
form of Theorem 1.2 where k£ may also be an integer-valued, non-decreasing function.

Note that, trivially, k-CoLOURABILITY is polynomially solvable on bipartite graphs and
that, asymptotically, almost all triangle-free graphs (i.e. graphs with girth g(G) > 4) are
bipartite [8]. In contrast, Corollary 1.2(a) shows that k-CoLouraBILITY is NP-complete
already on the class of triangle-free graphs. Corollary 1.2(b) contrasts with the existence
of an algorithm that, for fixed £ € IN, colours the graphs in Forb (K,) in linear expected
time [22].

In the case k = 3 and ¢ = 4 we can improve on Corollary 1.2(a) with respect to the
degree, using a modification of a well-known uniquely 3-colourable triangle-free graph
as a gadget. This result has been proved independently by Maffray and Preissmann [19]
using a similar reduction; thus we omit our proof here.

Theorem 1.3. 3-COLOURABILITY is NP-complete for the class of triangle-free graphs
G of marimum degree A(G) < 4. O

The bound on A(G) is of course best possible as by BRoOKS’ theorem a triangle-free
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graph G with A(G) < 3 is 3-colourable. Observe also that 3-COLOURABILITY is in P for
planar triangle-free graphs by GROT#SCH’s theorem [11].

Another problem we address is the complexity of “colouring with many colours” as
measured by the maximum degree of a graph. The proof of BROOKS’ theorem yields a
linear time algorithm to k-colour a graph of maximum degree k, k£ > 3, that does not
contain a Kiy1 as a subgraph. It is however an open problem whether for & > 9, there
exists a graph of maximum degree k not containing a K which has chromatic number &
or, on the other hand, whether BROOKs’ theorem can be strengthened, cf. [13, sections
4.7,4.8]. By a recent related result of REED [23] the chromatic number of a graph can be
bounded by a convex combination of its clique number and A + 1, for sufficiently large

A. We show the following.

Theorem 1.4. Let k > 3 be a fizred integer. Then k-COLOURABILITY is NP-complete
on the class of all graphs G of mazimum degree A(G) < k + [\/%] — 1.

Observe that this result is best possible for & < 4. Furthermore, for graphs of girth at
least 5, the maximum degree must be superlinear in the chromatic number [17].

Outline of the paper. In section 2 we prove theorem 1.1. In section 3 we therefrom
derive our hardness results.

2. Uniquely Colourable Graphs of Large Girth

In this section we prove Theorem 1.1. We use a construction similar as in [5], however,
instead of removing edges from a random k-partite graph we will remove vertices.

First we define a class of k-colourable graphs. In Lemma 2.1 it 1s then shown that many
of these graphs have some useful properties. Tt is then shown how to construct from a
graph with these properties a uniquely k-colourable graph with large girth.

For integers n and k, fix k disjoint sets Vi, ..., Vi with |V;] = nforalli=1,... k. Let
G(n, k) be the class of labelled k-partite graphs on the vertex set V4 UVa U ... UV, i.e.
there may only be edges between different V;s whereas the Vs are stable sets.

Let p = p(n) with 0 < p < 1. Define a probability distribution on G(n, k) by assigning
to a graph G € G(n, k) with e edges the probability p®(1 — p)”2k(1"_])/2_5. Equivalently,
we may construct an element G € G(n, k) by picking for each i,j € [k] with i # j and
for all vertices v € Vj, w € V; the edge {v,w} with probability p. We finally denote by
G(n, k), the probability space defined in this way.

Now we define a subclass of G(n, k) whose graphs have some suitable properties.

Definition. Let F(n, k) be the class of graphs G € G(n, k) having the following prop-

erties.
(i) For any 4, j € [k] with i # j and any U C V;, W C V; of size
U= Pn/2]  and W] = [(k— n/k]
there are at least k7n/4 edges between U and W in G.
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(1) For any 4,5 € [k] with i # j and any U C Vi, W C V; of size |U| = [W| = [ 3]
there is at least one edge between U and W in G.

(i42) For any i € [k] and any U C Vi, W C U;,; Vj of size 1 < |U[ = [W| < n/40 there
are less than |W|k'%/2 edges between U and W in G.

(iv) Let g := | ligﬂj and define C’ = {v : v is a vertex contained in a cycle in G of

11 log k
length 3,...,9 — 1}. Then |C| < %
(v) Let Y := {v : v has degree in G larger than 5k'3}. Then [Y]| < 2 — 1.

For the proof of the next lemma we need a special case of the Chernoff-bounds, cf. [1].
Let X be a random variable with binomial distribution B(N, p). Then we have

Prob(X < (5/6)Np) < exp(—Np/72). (1)

Lemma 2.1. Let k > 3 and n > k'0 be integers. Define p = k'%n~1. Then an element
G € G(n, k), is contained in F(n, k) with probability at least 1/2.

Proof. We are going to show that an element G € G(n, k), has each of the properties
(7)-(v) with probability at least 9/10.
Ad (1). Let for some i # j, U C V; with |U| = [k=3n/2] and W C V; with |W| =
[(k = 1)n/k] be given. Let N = [k=3n/2] - [(k — 1)n/k]. Then (5/6)Np > k'n/4. By
(1) the probability of the event that U and W span less than k“n/4 edges is at most
exp(—Np/72) < exp(—k7n/216).

There are at most k? choices for ¢ and j and at most 22" ways to choose U and W.
Hence the probability that the statement of (i) does not hold is at most

L2920 exp(—k7n/216) < k2 exp((?—k /216)n) < erxp(—Qn) < 1/10

as k7> 37> 4.216 and 2n > k19> 2Ink + In 10.

Ad (i), Let for some i # j, U C V; and W C Vj of size |U| = |W| = [55;] be
given. Let N = [4%'\ Then the probability that there is no edge between U and W is
(1 —p)V < exp(—pN) < exp(—k®n/1600). Hence the probability that the statement of
(#i) does not hold can be bounded similarly as above by

K227 exp(—k"n/1600) < Kk exp((2 - k*/1600)n) < k*exp(=2n) < 1/10.

Ad (ii1). Let U and W be as in the statement of (ii7) and let ¢ := |U| = |[W]|. If there
are at least qk'%/2 edges between U and W then there exists a set E C U x W of size
[qk'°/2] such that all edges of E are contained in G. The probability of this event is at

most
RN A S LA LG N
[qk10/2])7 = \Jgk0/2] = n '

Summing over all possible choices for U and W we get that the probability that G does
not fulfill the statement of (iii) is at most

n /40|

n/40] n kn 2eq ak'/2 L ekn\ 2 q qk'%/4 4F2q ak™°/4
El ) . - kS -
GGG < X () O

q=1

(=}
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[n/40] 5 N\ qk'"/4
4e’q
< k)
< X (1)

where we used the fact that k1 > 8. Using furthermore that (ek‘)s/kw < (e~3)8/310 < 9/e?
we can bound the last sum by

L%ﬂj (k)% 462 ak /4 . L?%‘I:OJ 364>
n - — n .

g=1 g=1

Because the function f(q) = (?’nﬂ)zq is convex in ¢, f(q) can be bounded by max{f(1), f(|»/40])}
in the interval [1,..., |n/40]]. Therefore the sum is at most

36\" (36\FL L [38 m (36)F
n /) ' \40 = n 40 \ 40 ’

The function 5 (%) %% is decreasing for n > 310 and we can set n = 3% in the maximum.

Hence the maximum is at most 1/10 which is what we were heading for.
Ad (iv). The expected number of cycles of length i is at most (kn);p’/(2i). Therefore the

expected number of vertices contained in some cycle of length 3,...,¢g — 1 is at most
g-1 g-1 11
. o k9 —1 n—1 n
2 : § : 10
(kn)lpz S k'R S L1l _q S k1l _ S W
i=3 i=3

by the definition of g. By Markov’s inequality the probability that the number of vertices
contained in a cycle of length 3,...,9 — 1 is more than ;7 — 1 can be bounded by
A/ (3 — 1) < 4/k® < 1/10.

Ad (v). Let N = n?k(k — 1)/2 be the number of possible edges. If there are more
than 7 vertices of degree more than 5k'3 then the total number of edges is more than
2 5k'3/2 = 5k'n/8 > 5Np/4. Let Y be the random variable counting the number of
edges. Then Y has binomially distribution B(N, p). Therefore, by Chebychev’s inequality,

5 16Var(Y) 16Np(1 —p) < 16 < 32 1

B R s N U e R ST

O

Let k > 2 and n > k be integers. We now show how to turn a graph G € F(n, k)
into a uniquely k-colourable graph with girth at least g := Lﬁ%J To do this we first
remove the vertices contained in some short cycle and the vertices whose degree is too
large. Then we remove the vertices which have too few neighbours in another partition

class. Precisely we do the following.

Procedure ALTER

Input: A graph G € F(n, k), n >k > 2.

Output: A graph H € G(m, k) for an m < n.
1. Let C:={v: v is a vertex contained in a cycle of length 3,...,¢9 — 1}.
2. Let Y := {v: v has degree larger than 5k'3 in G}.
3. Let £:=max{|V;N(CUY)|:iek]}.
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4. Remove from every V; exactly £ vertices in such a way that all vertices from C UY
are removed. Call the remaining sets W;.
5. WHILE there exist ,j € [k] and a v € W; such that v has less than k1°/2
neighbours in W; DO
remove v from W; and remove for every r # ¢ an arbitrary vertex from W,.

6. Output the graph H = G[W1 U ... U Wy].
Observe that the sets W; all have the same size.

Lemma 2.2. The WHILE-loop is executed at most 5 times.

Proof. Assume that the WHILE-loop is executed more than g times. Let W, i € [k],
be the sets W; after [3-] executions of the WHILE-loop. Then |Wj| > (k — 1)n/k as
¢ < 3¢ — 1 because G has properties (iv) and (v).

There exist 4, j € [k] such that the tuple (4, j) was selected more than [57z] times in the
WHILE-loop. Le. there exists a set U C V; of size g5z ]| such that all vertices from U
have less than k'°/2 neighbours in Wj. Let W be a subset of W of size [(k — 1)n/k].

Then there are less than k“n/4 edges between U and W and contradicting property (i).
]

Lemma 2.3. Let a graph H be an output of the procedure ALTER. Then H has the
following properties.
(a) H has a k-colouring all of whose colour classes are of equal size m,

where (k — )n/k <m < n.
Eb; H has girth at least | rlo%nj and mazimal degree at most 5k'3.

11 Jog k
c) H is uniquely k-coloumﬁé

Proof. (a) and (b) follow immediately from the construction and from Lemma 2.2.
To prove (c), as in the procedure, denote by W; for i € [k] the colour classes of the
colouring arising from the partition. Assume that there is another k-colouring of H.
Then this colouring has a colour class of size at least m which does not coincide with
any of the W;. Hence we may fix an independent set A in H of size m which does not
coincide with any of the W;. We distinguish two cases.
Consider first the case that there is an i € [k] such that
n

0 (2)
Let U := Wi\ A and |U]| < n/40. Let furthermore W := A\ W;. Then |W|=|U|. As A is
an independent set all neighbours of vertices from W in W; must belong to U. Therefore,
by step (5) of the algorithm ALTER above, there are at least |W|k'%/2 edges between U
and W which contradicts property (7).

Assume now that for every ¢ € [k], (2) does not hold. Select an index 7 such that |[ANW;| >
m/k and note that m/k > [5z] since k > 2. As |A\ Wi| = [W;\A| > n/40, there also is
an index j # i such that |[A N W;| > [5z]. As A is an independent set, this contradicts

20k
property (ii). U

[Wi\A| <
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Theorem 1.1 now follows easily from the previous lemmas.

Proof of Theorem 1.1. If k = 2 then let G be the path on N = Ny vertices.

If k> 3 and N; < k33 then let G be any complete k-partite graph on N = N; vertices
which of course has girth 3 > %gog—k

Let now & > 3 and N; > k% be given. Define n := [Ny/k|. Then n > k' and by
Lemma 2.1 F(n,k) # 0. Apply then ALTER to a graph G € F(n,k). Let H be the
output of the procedure. Then H has N = km vertices by Lemma 2.3, where Ny > N =
km > (k—1)|N1/k| > (1 —1/k)Ny —k > 2N1/3 — k > N1 /2. Furthermore H has girth

at least

1 logn 1 log N1 — logk 1 log Ny
— 5" > —_—o''t” Fom > —
11 logk - 11 log k& - 12 logk
and maximal degree at most 5k!3.
To show the existence of a randomized algorithm as claimed in the theorem observe
that if ALTER is applied to a graph G € G(n, k)\F(n, k) it still outputs a k-colourable
graph with required girth and maximal degree. U

3. Hardness Results

Proof of Theorem 1.2. Given a polynomial algorithm .4 for the decision problem k-
COLOURABILITY on the class of graphs G of girth ¢(G) > ugﬂg}qj and maximum degree
A(G) < 6k'® we exhibit a co-RP algorithm for k-CorLouRABILITY. It then follows that
NP C co-RP and hence NP = ZPP, so in particular we have NP=RP.

Let G be a graph. We may assume that |G| > k°/2. Apply Theorem 1.1 to Ny := |G|**
and k to construct in randomized polynomial time a k-colourable graph H with |H| < N
that has girth g(H) > H;%OZIRJ > 5 and maximal degree A(H) < 5k'? together with a
k-coloring of H.

Consider a shortest cycle C'in H. Choose a vertex z on (. Consider the two resp.

three vertices at distance at least [|C|/2] — 1 from x on C. Then one of these vertices,
say y, is coloured different from z and fulfills disty (2, y) > [g(H)/2] — 1. Now replace
each edge {u,v} in G by a copy of H, identifying u with z and v with y to obtain a graph
(G1. Since every cycle in Gy that is not completely contained in a copy of H has length
at least 3 - distg(z,y) > 3[g(H)/2] — 3 > g(H), the graph G has girth g(G1) > g(H).

The maximal degree of G is at most |G| -5k*3. One of the colour classes, say S, in the
k-colouring of H has size at least |H|/k > Ny/(2k) > 5|G|. Replace each vertex v in Gy
of degree larger than 6k'3 by a new copy of H connecting each neighbour of v in G to a
vertex from S in such a way that no vertex from S gets more than k'3 new neighbours.
We obtain a graph G2 on at most ((lgl) +|G|)N1 < |G|*> Ny vertices with maximal degree
at most 6k3. Moreover, G5 has girth

log Ny | [log N1+ 2log |G S log |G'a|
12logk | 13 log k = [ 13logk |~

0(Ga) > 9(G1) > g(H) > [

The co-RP algorithm for k-COLOURABILITY now outputs .4(G3). It is then clear that the

algorithm runs in randomized time polynomially bounded in |G|. Furthermore, if G is
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k-colourable so is G5 by the choice of z and y. On the other hand, if G is not k-colourable
then G, too, is not k-colourable provided H is uniquely k-colourable which happens with
probability 1/2. ]

Proof of Corollary 1.2. (a) For fixed k and g a uniquely k-colourable graph on at most
E12(9+1) vertices with girth at least ¢ and maximum degree at most 5k'3 (guaranteed to
exist by Corollary 1.1) can be constructed in constant time by complete enumeration.
The reduction is then similar to the one above.

(b) Let g := 14+ max{g(G) : G € G and ¢(G) < oo}. Then the class of all graphs of girth
at least g and of maximum degree at most 6k'3 is contained in Forb (G). Therefore, (b)
follows immediately from (a). U

Proof of Theorem 1.4. We reduce from k-CorouraBILITY. Let G = (V| E) be a
graph.

Suppose G has a vertex v € V of degree d(v) > k+[vVk]—1. Add vertices 1, ..., iR to
G, detach k of the edges incident with v and attach them evenly to rq, .. S TIVR] instead.

Finally, add a (k — 1)-clique C to the graph and connect v and each r;, 1 < ¢ < {\/E],
to each ¢ € C by an edge. Obviously, the graph G’ arising this way is k-colorable if and
only if G is. The newly introduced vertices all have degree at most k + [\/E] — 1 and the
degree of v has decreased by one. Therefore, after O(m(G)) such operations the graph
produced has maximum degree at most A(G) < k + [\/E] — 1 as required. ]

We conclude this section with a study of k-CorLoUrABILITY for an integer-valued,
non-decreasing function k = k(|G]).

Theorem 3.1. let £ > 0 be a constant. Let k be an integer valued non-decreasing
function such that for every integer n > 3,

3 < k(n) < n—-n°+3 (3)

holds. Then the problem k-COLOURABILITY is NP-complete.

Proof. We reduce from 3-CoLOURABILITY. Let GG be an instance of 3-COLOURABILITY,
n := |G|. Let k be an integer valued function as in the statement of the theorem. Define
for every non-negative integer N the function f by f(N) := k(N +n) — N — 3. Then
by (3) f(0) > 0. Let £ := [1/¢]. By the right hand side of (3)

fn*f —n) =k —n‘4+n-3<-n"+n<0.

Because k is non-decreasing, f(N + 1) > f(N) — 1. Hence there is a minimal integer
Ny with f(Ng) = 0. Then 0 < Ny < nf — n. Now define a graph H by adding an
Ng-clique to G connecting every vertex from the clique with every vertex from G. This
graph has at most n’ vertices and therefore the reduction is polynomial. Furthermore,

H is k(|H|)-colourable if and only if G is 3-colourable. ]

On the other hand, let ¢ be a fixed integer and define k(n) := n—c. Then k-COLOURABILITY
is in P because a graph is k-colourable if and only if it contains a e-colourable subgraph
of order 2c.
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Theorem 3.1 implies the following strengthening of Theorem 1.2.

Corollary 3.1. For some ¢ > 0, let 3 < k(n) < n —n® + 3 be an integer-valued non-
decreasing function. Then unless RP=NP, there exists no polynomial algorithm for the

problem k-COLOURABILITY on the class of graphs G with girth g(G) > [%J —1.

Proof. If k > |G|*/3° then iggllgGIL < 3 and the statement follows directly from The-

orem 3.1. For k < n'/3 we reduce from f-CoLOURABILITY, where £ is the function
£(n) := k(n?%). Then ¢ fulfills condition (3) of Theorem 3.1 for an appropriately chosen
€ > 0. The rest of the proof is then similar as the proof of Theorem 1.2 apart that we
only have g(H) > 3 and thus only g(G1) > g(H) — 1. U

4. Discussion

There is couple of natural complexity theoretic questions related to unique colourability.
The problem “given a graph G, is G uniquely k-colourable?” for example is NP-hard [2],
the problem “given a graph G and a k-colouring of G, is there another k-colouring of G'7”
is NP-complete [6]. If there exists a polynomial-time algorithm which finds a 3-colouring
of a uniquely 3-colourable graph then NP=RP [24]. For complexity classes related to
uniqueness problems and a survey of related results, see [15, 25].

We close by stating some open questions:

e What is the smallest f(k) such that k-CoLouraBILITY on graphs of maximum degree
A < f(k) is still NP-complete ?

e Or, more general, for given k > 3, give a complete characterization of all classes of
graphs G having the property that k-CoLOURABILITY is NP-complete on Forb (G)
(cf. Corollary 1.2 (b)).

e For which classes of graphs G are there k-colourable graphs in Forb (G)?

e Can one improve k to k = n —logn in Theorem 3.17

The same questions can also be formulated for induced forbidden subgraphs. The third
question for k¥ = 3 and the induced case was recently investigated by RANDERATH (per-

sonal communication).
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