This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4. Proof Checking and Non-Approximability

Stefan Hougardy

4.1 Introduction

In this chapter we will present the PCP-Theorem and show how it can be used
to prove that there exists no PTAS for APX-complete problems unless P = NP.
Moreover we will show how the PCP-Theorem implies that MAXCLIQUE cannot
be approximated up to a factor of n° in an n-vertex graph and how this factor
can be improved to n'~¢ by making use of Hastad’s [Has97a] result showing
that § amortized free bits suffice for a (logn, 1)-verifier to recognize any NP
language.

4.2 Probabilistically Checkable Proofs

The class PCP (standing for Probabilistically Checkable Proofs) is defined as
a common generalization of the two classes co-RP and N'P. To see this let us
briefly recall the definitions of these two classes as given in Chapter 1. A language
L belongs to co-RP if there exists a randomized polynomial time Turing machine
M such that

x €L = Prob[M accepts z] = 1.
x ¢ L = Prob[M accepts z] < 1/2.

Using a similar notation, the class NP can be defined to consist of all languages
L for which there exists a polynomial time Turing machine M such that

x € L = T certificate ¢ such that M accepts (z,c).

x & L =V certificates ¢ M rejects (z,c).

It is easily seen that this definition is equivalent to the one given in Chapter 1 as
the certificate ¢ used in the above definition simply corresponds to an accepting
computation path of the non-deterministic Turing machine used in Chapter 1 to
define the class N'P.

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

64 Chapter 4. Proof Checking and Non-Approximability

The idea of the class PCP now is to allow simultaneously the use of randomness
and non-determinism (or equivalently use of a certificate). The notions here are
slightly different: the Turing machine will be called verifier and the certificates
are called proofs.

A wverifier V is a (probabilistic) polynomial time Turing machine with access to
an input z and a string 7 of random bits. Furthermore the verifier has access to
a proof 7 via an oracle, which takes as input the position of the proof the verifier
wants to query and outputs the corresponding bit of the proof 7. Depending on
the input z, the random string 7 and the proof 7 the verifier V will either accept
or reject the input x. We require that the verifier is non-adaptive, i.e., it first
reads the input 2 and the random bits 7, and then decides which positions in
the proof 7 it wants to query. Especially this means that the positions it queries
do not depend on the answers the verifier got from previous queries. We will
denote the result of V’s computation on z, 7 and 7 as V(z, 7, 7).

As we will see later, verifiers are very powerful if we allow them to use polyno-
mially many random bits and to make polynomially many queries to a proof.
This is the reason why we introduce two parameters that restrict the amount of
randomness and queries allowed to the verifier. An (r(n), g(n))-restricted verifier
is a verifier that for inputs of length n uses at most #(n) = O(r(n)) random bits
and queries at most ¢(n) = O(g(n)) bits from the proof 7.

The class PCP(r(n),q(n)) consists of all languages L for which there exists an
(r(n),q(n))-restricted verifier V' such that
re€L = 3rs. t. Prob.[V(z,7,m) = ACCEPT] =1. (completeness)
z¢L = VrProb,[V(z,7,m) = ACCEPT] < 1/2. (soundness)
Here the notation Prob,[...] means that the probability is taken over all random
strings 7 the verifier may read, i.e., over all 0-1-strings of length #(n) = O(r(n)).

We extend the definition of PCP to sets R and) of functions in the natural
way: PCP(R,Q) = UreR,qEQPCP(r(')y q(+))-

Obviously, the class PCP is a common generalization of the classes co-RP and
NP, since we have:

PCP(poly, 0) = co-RP

PCP(0,poly) = NP
Here we denote by poly the set of all polynomials; similarly we use polylog for
the set of all poly-logarithmic functions etc.

The natural question now is: How powerful is a (poly, poly)-restricted verifier ?
As was shown by Babai, Fortnow and Lund in 1990 [BFL91] this verifier is very
powerful; namely they proved that

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.2. Probabilistically Checkable Proofs 65

PCP(poly, poly) = NEXP

This result was “scaled down” almost at the same time independently by Babai,
Fortnow, Levin and Szegedy [BFLS91] who proved

NP C PCP(poly log n, poly log n)
and by Feige, Goldwasser, Lovész, Safra and Szegedy [FGL191] who proved that
NP C PCP(logn -loglogn,logn - loglogn).

The hunt for the smallest parameters for the class PCP that were still able
to capture all of NP was opened. A natural conjecture was that NP equals
PCP(logn,logn) and indeed, shortly after Arora and Safra [AS92] proved an
even stronger result that broke the logn barrier in the number of query bits:

NP= PCP(logn, poly loglogn).

Just some weeks later the hunt was brought to an end by Arora, Lund, Motwani,
Sudan and Szegedy [ALM192] who obtained the ultimate answer in the number
of queries needed to capture N/'P:

Theorem 4.1 (The PCP-Theorem). NP = PCP(logn, 1)

At first sight this is a very surprising result as the number of queries needed
by the verifier is a constant, independent of the input size. Let us take as an
example the problem 3SAT and consider the usual way to prove that a 3SAT
instance z is satisfiable, namely a truth assignment to the variables. If we are
allowed to query only a constant number of the values assigned to the variables,
then it is impossible to decide with constant error probability whether the given
3SAT instance is satisfiable. The reason why this does not contradict the PCP-
Theorem is the following. The proofs used by the verifiers are not the kind of
certificates that are usually used for problems in NP. Rather as proofs there
will be used special error correcting encodings of such certificates.

The proof of the PCP-Theorem will be given in Chapter 5. The main part in the
proof is to show that the inclusion NP C PCP(logn, 1) holds. The other inclu-
sion can easily be derived from the following slightly more general statement.

Proposition 4.2. PCP(r(n),¢(n)) € NTIME(2°(" (") . poly) whenever q(n) =
O(poly).

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

66 Chapter 4. Proof Checking and Non-Approximability

Proof. Simply observe that we can guess the answers to the O(g(n)) queries to
the proof 7 and simulate the PCP-verifier for all 2°("(") possible random strings
to decide whether we should accept an input z or not. Each of the simulations
can be carried out in polynomial time. [

Interestingly, there can be proved a trade off between the randomness and the
number of queries needed by the PCP-verifier such that its power is always
exactly suited to capture the class N'P[Gol95].

Proposition 4.3. There exist constants a,3 > 0 such that for every integer
function I(-), so that 0 < l(n) < alogn

NP =PCP(r(-),q(-))

where r(n) = alogn —I(n) and q(n) = 21",

As the extreme cases this proposition shows NP = PCP(logn,1) and NP =
PCP(0, poly).

4.3 PCP and Non-Approximability

The reason why the PCP-Theorem caused a sensation is due to its close con-
nection to the seemingly unrelated area of approximation algorithms. This con-
nection was first discovered by Feige, Goldwasser, Lovész, Safra and Szegedy
[FGL191] who observed that if the problem MAXCLIQUE can be approximated
up to a constant factor then PCP(r(n),q(n)) C DTIME(2°((m+a(n) . poly).
This observation was the main motivation for proving NP C PCP(logn,logn)
and thus showing that no constant factor approximation algorithm for MaAXx-
CLIQUE can exist, unless P=N"P.

Later on, the connection between PCPs and non-approximability has been ex-
tended to a large number of other optimization problems. The results obtained
in this area are always of the type: No “good” polynomial time approxima-
tion algorithm can exist for solving the optimization problem, unless some-
thing very unlikely happens. Here the term “very unlikely” means that the ex-
istence of such an approximation algorithm would imply P=NP or NP=ZPP
or NP C DTIME(2Po¥1987) or similar statements. The precise definition of a
“good” approximation algorithm heavily depends on the underlying optimiza-
tion problem. Roughly, optimization problems can be divided into three classes:
(1) Problems for which polynomial time constant factor approximation algo-
rithms are known, but no PTAS can exist. As an example we will show in
Section 4.4 that MAX3SAT has no PTAS and therefore no problem in APX has
a PTAS unless P=NP. (2) Problems that can be approximated up to a factor of
c1 -logn but no polynomial time algorithm can achieve an approximation ratio of

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.3. PCP and Non-Approximability 67

¢ -logn, for certain constants ¢; > c¢o. In Chapter 10 we will see that the prob-
lem SETCOVER is an example for such an optimization problem. (3) Problems
whose solution is of size O(n) but that cannot be approximated up to a factor
of n® for certain constants €. Famous examples in this class are MAXCLIQUE
and CHROMATICNUMBER. We will prove in Section 4.6 that no polynomial time
approximation algorithm for MAXCLIQUE can have a performance guarantee of
nf for a certain e, unless P=N"P.

For more than twenty years no non-trivial lower bounds for the approxima-
tion guarantee of any of the above mentioned problems was known. The PCP-
Theorem now gave such results for a whole bunch of optimization problems.
But this is not the only consequence set off by the PCP result. Soon after get-
ting the first non-trivial non-approximability results people started to tighten
the gap between the best known approximation factors achievable in polynomial
time and the lower bounds obtained by using the PCP-Theorem. Surprisingly,
this challenge not only led to improvements on the just obtained new lower
bounds, but also for several classical optimization problems, better polynomial
time approximation algorithms have been found. As an example Goemans and
Williamson [GW94a] improved the long known trivial 2-approximation algo-
rithm for MAXCUT to an 1.139-approximation algorithm for this problem. In-
terestingly, the new approximation algorithms do not rely on the PCP result.
The PCP-Theorem and its consequences for non-approximability results rather
functioned as a new strong motivation to try to improve the best known approx-
imation algorithms known so far.

For improving the lower bounds for non-approximability results by using the
PCP-Theorem it turns out that one has to reduce the constants involved in the
O-terms of the number of random bits and query bits the verifier makes use
of, while at the same time the probability of accepting wrong inputs has to be
lowered.

In the definition of the class PCP we required the verifier to accept wrong in-
puts with error probability of at most 1/2. However, this number 1/2 is chosen
arbitrarily: by repeating the verification process a constant number of times, say
k times, the error probability can easily be decreased to (1/2)* while changing
the number of random bits and queries made by the verifier by a constant factor
only. Thus if we define PCP.(,) as the class of languages that can be recognized
by (:,)-restricted verifiers that have an error probability of at most &, we obtain

PCP(logn,1) = PCPy/5(logn,1) = PCP.(logn,1) V constants & > 0.

While the error probability can be reduced to an arbitrarily small constant,
the number of queries made by the (logn, 1)-verifier must be at least 3, as the
following result shows. (Here we use the notation PCP(., queries = .) to express
that the constant in the O-term for the number of queries is 1). For the adaptive
version of this result see Exercise 4.1.)

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

68 Chapter 4. Proof Checking and Non-Approximability

Proposition 4.4. Ve > 0 PCP.(logn, queries =2) =P

Proof. Clearly P C PCP.(logn,queries = 2) thus we only have to prove the
other inclusion.

Let L be any language in PCP.(logn, queries = 2) and let z be any input for
which we want to decide in polynomial time whether x € L or not.

For each of the 2°(°6™) random strings we now can simulate the (logn, queries =
2)-restricted verifier to see which two positions it would have queried from the
proof and for what values of the queried bits the verifier would have accepted the
input. For the ith random string 7; let b;1 and b;2 be the two bits queried by the
verifier on input z and random string ;. Now we can express by a 2SAT-formula
in the two variables b;; and b;z whether the verifier would accept the input z.
The verifier will accept the input z if and only if all the 25AT-formulae obtained
in this way from all the random strings 7; can be satisfied simultaneously. Thus
we have reduced the problem of deciding whether z € L to a 2SAT-problem
which can be solved in polynomial time.]

The number of queries needed by the verifier in the original proof of the PCP-
Theorem of Arora et al. is about 10%. This number has been reduced in a sequence
of papers up to the current record due to Bellare, Goldreich and Sudan [BGS95]
who proved that 11 queries to the proof suffice for the verifier to achieve an error
probability of 1/2:

NP = PCP(logn, queries = 11)

However, as we shall see later, to obtain tight non-approximability results 11
queries are still too much. Even if one could proof that three queries suffice, this
would not be strong enough to yield the desired non-approximability results.
It turned out that instead of counting the number of queries needed by the
verifier the right way of measuring the query complexity is expressed in so called
amortized free bits. We will give the precise definition of this notion in Section 4.7
where it will become clear why amortized free bits are the right way to measure
the query complexity of a verifier when one is interested in getting tight non-
approximability results. While Proposition 4.4 shows that at least 3 bits have
to be queried, unless P=AP, it was shown in a sequence of papers that the
number of amortized free bits queried by the verifier can not only be smaller
than 2, but even arbitrarily small. This is roughly the result of Hastad [Has97a]
that we mentioned in the introduction and allows to prove that MAXCLIQUE
cannot be approximated up to a factor of n1=¢ for arbitrarily small € > 0.

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.4. Non-Approximability of APX-Complete Problems 69

4.4 Non-Approximability of APX-Complete Problems

Arora, Lund, Motwani, Sudan and Szegedy [ALM*92] not only proved the PCP-
Theorem but at the same time they also proved as a consequence that no APX-
complete problem has a PTAS.

Theorem 4.5. Unless P=N"P, no APX-complete problem has a PTAS.

Proof. We will show that the existence of a PTAS for MAX3SAT implies P =
NP. Since MAX3SAT is APX-complete (see Thereom 1.33) this proves the the-
orem.

Let L be an arbitrary language from NP and let V be the (logn, 1)-restricted
verifier for L whose existence is guaranteed by the PCP-Theorem.

For any input x we will use the verifier V' to construct a 3SAT instance S, such
that S, is satisfiable if and only if z is an element of L. Moreover, if 2 does
not belong to L then at most some constant fraction of the clauses in S, can
simultaneously be satisfied. Therefore a PTAS for MAX3SAT could be used to
distinguish between these two cases and the language L could be recognized in
polynomial time, i.e., we would have P = N'P.

We now describe how to construct the 3SAT instance S, for a given input z using
the verifier V. We interpret the proof queried by V' as a sequence 1, z2, 3, - .. of
bits where the ith bit of the proof is represented by the variable z;. For a given
random string 7 the verifier V' will query ¢ = O(1) bits from the proof which
we will denote as b;1,br9,...,b. It will accept the input 2 for the random
string 7, if the bits b;1,br2,...,b,q have the correct values. Therefore we can
construct a ¢-SAT formula F, that contains at most 2¢ clauses such that F is
satisfiable if and only if there exists a proof m such that the verifier V' accepts
input z on random string 7. This ¢-SAT formula F; can be transformed into
an equivalent 3SAT formula F! containing at most ¢ - 29 clauses and possibly
some new variables. We define S, to be the conjunction of all formulae F) for
all possible random strings 7.

If z is an element of L then by definition of a restricted verifier there exists a
proof 7 such that V' accepts z for every random string 7. Thus the formula S,
is satisfiable.

If x is not an element of L then for every proof w the verifier V' accepts z for at
most 1/2 of all possible random strings 7. This means that at most 1/2 of the
formulae F! are simultaneously satisfiable. Since every F! consists of at most
q - 27 clauses we get that at least a M;Zq fraction of the clauses of S, are not
satisfiable.

The existence of a PTAS for MAX3SAT therefore would allow to distinguish
between these two cases and thus it would be possible to recognize every language
in NP in polynomial time. |

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

70 Chapter 4. Proof Checking and Non-Approximability

From this proof and the NP = PCP(logn, queries = 11)-result stated in Sec-
tion 4.3, we immediately get the following corollary.

Corollary 4.6. Unless P = NP no polynomial time approrimation algorithm
for MAX3SAT can have a performance guarantee of 45056/45055 = 1.000022. ..

Proof. The proof of Theorem 4.5 has shown that there exists no polynomial
time approximation algorithm for MAX3SAT with a performance guarantee of
1/(1 - 2(1;24), unless P = N'P. Setting ¢ = 11 we get the claimed result.]
The constant we achieved in this corollary of course is far from being opti-
mal. The first reasonable constant for the non-approximability of MAX3SAT was
obtained by Bellare, Goldwasser, Lund and Russell [BGLR93]. They obtained
94/93 = 1.0107 ... which was improved by Bellare and Sudan [BS94] to 66/65 =
1.0153... and by Bellare, Goldreich and Sudan [BGS95] to 27/26 = 1.0384...
until very recently Hastad[Has97b] improved this to the best possible result of
8/7—¢e=1.142... (see Chapter 7).

The proof of Theorem 4.5 shows that there exists a constant ¢ > 0 such that the
following promise problem, called ROBE3SAT, is AN'P-hard:

RoBE3SAT

Instance: A 3SAT formula ® such that ® is either satisfiable or at least an
e-fraction of the clauses of ® is not satisfiable
Question: Is ¢ satisfiable ?

If we use 3SAT as the language L in the proof of Theorem 4.5 we see that
instances of the ordinary 3SAT problem can be transformed in polynomial time
into instances of ROBE3SAT such that satisfiable instances are transformed into
satisfiable instances and unsatisfiable instances are transformed into instances
where at least an e-fraction of the clauses is unsatisfiable.

In Chapter 5 it will be shown (see Theorem 5.54) that for the verifier constructed
in the proof of the PCP-Theorem we have the following property: given a proof
7 that is accepted with probability larger than the soundness probability for an
input z, one can construct in polynomial time a new proof 7’ that is accepted
with probability 1 for input x.

If we apply this result to the instances of ROBE3SAT that are constructed from
ordinary 3SAT instances as described in the proof of Theorem 4.5 we get the
following result.

Corollary 4.7. There exists a polynomial time computable function g that maps
3SAT instances to ROBE3SAT instances and has the following properties:

— if x is a satisfiable 3SAT instance then g(zx) is.

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.5. Expanders and the Hardness of Approximating MAXE3SAT-b 71

— if x is an unsatisfiable 3SAT instance then at most an 1 — € fraction of the
clauses of g(x) are simultaneously satisfiable.

— given an assignment to g(x) that satisfies more than an 1 — ¢ fraction of the
clauses of g(z) one can construct in polynomial time a satisfying assignment
for x.

4.5 Expanders and the Hardness of Approximating
MAXE3SAT-b

In this section we will show that the A“P-hardness of ROBE3SAT also holds
for the special case of ROBE3SAT-b, i.e., for 3SAT-formulae where each clause
contains exactly three literals and each variable appears at most b times. This
result will be used in Chapter 7 and Chapter 10.

For a constant k, a k-regular (multi-)graph G = (V, E) is called an ezpander,
if for all sets S C V with |S| < |V|/2 there are at least |S| edges connecting S
and V' — S. The next lemma shows that for every sufficiently large n, there exist
sparse expanders.

Lemma 4.8. For every sufficiently large n and any constant k > 5 there exist
4k-regular expanders.

Proof. We construct a bipartite graph on sets A = B = {1,...,n} by choosing
k random permutations 71,..., 7 and connecting vertex ¢ in A with vertices
m1 (i), ...,k (2) in B. This way we get a k-regular bipartite graph on n vertices.
We claim that there exist permutations m, ..., 7 such that whenever we choose
a set S C A with |S| < n/2 then there are at least 3|S|/2 vertices in B that are
adjacent to some vertex in S.

Let S be a subset of A with ¢ := |S| < n/2 and T be the set containing all vertices
in B that are adjacent to some vertex in S, such that m := |T| = [(3|S|—1)/2].
We will call such pairs (S,T") bad. The probability that for randomly chosen
permutations 7y, . .., 7 and fixed sets S and T these sets form a bad pair equals

(GE=R

If we sum this up over all possible choices for S and 7" we see that the probability
that there exists a bad pair is bounded by

{BI(Ak=)E

For 1 <t <m/3 it is easily verified that the function

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

72 Chapter 4. Proof Checking and Non-Approximability

o= ()2t

satisfies f(t) > f(t + 1), so the maximum of f in this range is attained at

t = 1. For n/3 < t < n/2 the expression "Z'n(:__tf,)' reaches its maximum for

t =n/3 or t = n/2. Now a simple computation using Stirling’s formula shows
that £(f(1) + f(n/3) + f(n/2)) tends to zero for k£ > 5 and n going to infinity.

Therefore there exist k-regular bipartite graphs with n vertices on each side such
that every set S from the left side with |S| < n/2 has at least 3/2|S| neighbors
on the right side. Now, if we identify vertices with the same number from both
sides and duplicate each edge, we obtain a 4k-regular (multi-)graph on n vertices
such that from every set S of vertices of size at most n/2 there are at least |S|
edges leaving the set S. [

While the above lemma shows the ezistence of expanders only, it can be shown
that expanders can be constructed explicitly in polynomial time. See for example
[Mar75] or [GG81] for such constructions.

With the help of expanders we are now able to prove the desired hardness result
for ROBE3SAT-b.

Lemma 4.9. There exists a constant b such that ROBE3SAT-b is N'P-hard.

Proof. We prove this by reducing from ROBE3SAT. Given a 3SAT formula F
with clauses C4,...,C), and variables z1,...,x,, we replace each of the say
k; occurrences of the variable z; by new variables y;1,...,y;r and choose an
expander G; with ¥;.1,...,Yir; asits vertices. Now we add the clauses (y; o vyi,b)
and (ym V i) whenever y; , and y;; are connected by an edge in G;. We call
this new 3SAT formula F’. Since the expanders G; have constant degree, each
variable in F’ appears only a constant number of times. Moreover, F' still has
O(m) many clauses. Whenever we have an assignment to F' we may assume
that for all ¢ the variables y;1,...,Y:r; have the same value. If this was not
the case, we simply could change the values of y;1,...,y;r; to the value of the
majority of these variables. This way, we may loose up to k;/2 satisfied clauses,
but at the same time we gain at least k;/2. This follows from the fact that G;
is an expander and therefore every set S of vertices of size at most k;/2 has at
least | S| edges leaving it. Each of these edges yields an unsatisfied clause before
changing the values of y; 1,...,¥;; to the value of their majority. Therefore a
solution to F' can be used to define a solution to F' and both formulae have the
same number of unsatisfiable clauses.]

Corollary 4.10. There exist constants § > 0 and b such that no polynomial
time algorithm can approzimate MAXE3SAT-b up to a factor of 1+ 6, unless
P=NP.

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.6. Non-Approximability of MAXCLIQUE 73

Proof. Suppose there exists a polynomial time 1+4 approximation algorithm for
MAXE3SAT-b for all § > 0. Given an instance of ROBE3SAT-b such that either
all clauses are satisfiable or at least an e-fraction of the clauses is not satisfiable,
this algorithm with § < €/(1 —¢) could be used to distinguish between these two
cases in polynomial time. This implies P=NP because of Lemma, 4.9. [

4.6 Non-Approximability of MAXCLIQUE

A clique in a graph is a set of pairwise adjacent vertices. The problem CLIQUE
is defined as follows.

CLIQUE

Instance: Given a graph G and an integer k
Question: Is there a clique of size > kin G ?

The corresponding optimization problem is called MAXCLIQUE.

MaAXxCLIQUE

Instance: Given a graph G
Problem: What is the size of a largest clique in G ?

While it is a classical result due to Karp [Kar72] that CLIQUE is N'P-complete
there was not any non-approximability result known for the problem MAX-
CLIQUE up to the year 1991 when Feige, Goldwasser, Lovasz, Safra and Szegedy
[FGL*91] observed a connection between PCPs and MAXCLIQUE. The only re-
sult known long before this is the fact that MAXCLIQUE is a self-improving
problem:

Proposition 4.11. If for any constant c there is a c-approximation-algorithm
for MAXCLIQUE, then there also exists a \/c-approzimation algorithm for MAX-
CLIQUE.

Proof. This result follows immediately from the fact that the product of a
graph G with itself (replace each vertex of G by a copy of G and join two such
copies completely if the corresponding vertices in G are adjacent) yields a new
graph G' whose maximum clique size is the square of the size of a maximum
clique in G. Thus a c-approximation algorithm for G' can be used to obtain a
v/c-approximation algorithm for G.]

This self-improving property implies that if there exists any constant factor
approximation algorithm for MAXCLIQUE then there even exists a PTAS for this
problem. As the best known approximation algorithm for MAXCLIQUE due to
Boppana and Halldérsson [BH92] has a performance guarantee of O(n/ log® n),

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

74 Chapter 4. Proof Checking and Non-Approximability

the existence of a PTAS for MAXCLIQUE was assumed to be extremely unlikely
but could not be ruled out before 1991.

In this section we will see how the PCP-Theorem implies the nonexistence of a
polynomial time n®-approximation algorithm for MAXCLIQUE for some & > 0,
while in the next section we will show that even an n' ¢ approximation algorithm
does not exist for this problem for arbitrarily small §, unless NP=ZPP. We start
by showing that no polynomial time constant factor approximation algorithm
for MAXCLIQUE can exist.

Proposition 4.12. Unless P=N"P, no polynomial time constant factor approz-
imation algorithm for MAXCLIQUE can exist.

Proof. We use the standard reduction from 3SAT to CLIQUE to prove this result.

For a given 3SAT-formula F' with clauses C4,...,Cy, and variables z1,...,z,
we construct a graph G on 3m vertices (4,j5),s =1,...,m;j = 1,2, 3 as follows.
The vertices (i,7) and (i',j') are connected by an edge if and only if i # i’ and
the jth literal in clause i is not the negation of the j'th literal in clause 7'.

If there exists a clique in G of size k then it contains at most one literal from
each clause, and it contains no two literals that are the negation of each other.
Therefore, by setting all literals corresponding to vertices of this clique to true
one gets a truth assignment for F' that satisfies at least k of its clauses. On the
other hand, given a truth assignment for F' that satisfies k£ of the clauses, one
gets a clique of size k in G by simply selecting from each satisfied clause one
literal that evaluates to true in this assignment.

Thus we have shown that the graph G has a clique of size & if and only if there
exists a truth assignment for F' that satisfies k of its clauses. This shows that
a PTAS for MAXCLIQUE cannot exist as otherwise we would also get a PTAS
for MAX3SAT which is ruled out by Theorem 4.5. Proposition 4.11 now implies
that for no constant ¢ a c-approximation algorithm for MAXCLIQUE can exist. B

To prove better non-approximability results for MAXCLIQUE, especially for prov-
ing the n® non-approximability we have to make a more direct use of the PCP-
Theorem. To start with we first present a reduction from 3SAT to CLIQUE that
is slightly different from the one used in the proof of Proposition 4.12 and was
used by Papadimitriou and Steiglitz [PS82] to prove the N'P-completeness of
CLIQUE.

Proof. (Second proof for Proposition 4.12)

Again we are given a 3SAT-formula F' with clauses Ci,...,Cp, and variables
T1,...,T,. The idea this time is that for each clause we want to list all truth
assignments that make this clause true. Instead of listing this exponential number
of assignments, we only list 7 partial truth assignments for each clause.

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.6. Non-Approximability of MAXCLIQUE 75

A partial truth assignment assigns the values true and false to certain variables
only; the rest of the variables has the value ‘-’, meaning that the value is unde-
fined. As an example, a partial truth assignment for variables 1, ..., Zg9 might
look like -10-0--01. We say that two different truth assignments ¢ and ¢’ are com-
patible, if for all variables z for which ¢(z) # - and t'(z) # - we have t(z) = t'(z).
For each clause C; there are exactly 7 satisfying partial truth assignments with
values defined only on the three variables appearing in C; (we assume here with-
out loss of generality that every clause contains exactly three different variables).
We construct for each of the m clauses of F' these 7 partial truth assignments
and take them as the vertices of our graph G. Two vertices in G are connected
if the corresponding truth assignments are compatible.

First note that no two partial truth assignments corresponding to the same clause
of F' can be compatible and therefore G is an m-partite graph. Now if there exists
a clique of size k in G then this means that there is a set of k£ pairwise compatible
partial truth assignments for k different clauses of F'. Thus there exists one truth
assignment that satisfies all these k clauses simultaneously. On the other hand,
if there is a truth assignment for F' that satisfies k of its clauses, then there is
one partial truth assignment for each of these clauses that is compatible to this
truth assignment and therefore these k partial truth assignments are pairwise
compatible yielding a clique of size k in G.]

We will now see — as was discovered by Feige, Goldwasser, Lovasz, Safra and
Szegedy [FGLT91] — that the reduction of Papadimitriou and Steiglitz applied
to the PCP-result will achieve the n® non-approximability result for CLIQUE. As
a first step we will prove once more Proposition 4.12.

Proof. (Third proof for Proposition 4.12)

Let L be an N'P-complete language and V be its (logn, 1)-restricted verifier
whose existence is guaranteed by the PCP-Theorem. Let 7(n) = O(logn) and
g(n) = O(1) be the number of random bits respectively query bits used by the
verifier V. Now for an input x we construct a graph G, in an analogous way
as Papadimitriou and Steiglitz did in their reduction from 3SAT to CLIQUE as
described in the second proof of Proposition 4.12. The role of a clause appearing
in the 3SAT formula is now taken by a random string read by the verifier and the
3 variables appearing in a given clause correspond to the ¢(n) positions queried
from the proof by the verifier.

For each of the possible 2" (") random strings we list all of the at most 29(") partial
proofs (i.e., assignments of 0 and 1 to the positions queried by the verifier for
the given random string, and assignment of ‘-’ to all other positions) that will
make the verifier V accept the input z. All these partial proofs are vertices in our
graph G, and we connect two such vertices if they are compatible (as defined
above). The graph G, has at most 2"("+9(%) vertices and since for two given
partial proofs it can be decided in polynomial time whether they are compatible,
the graph can be constructed in polynomial time.

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

76 Chapter 4. Proof Checking and Non-Approximability

For a fixed proof 7= any two vertices of G, that are compatible with 7 are
adjacent. Therefore, if there exists a proof 7 such that the verifier V' accepts the
input z for k£ different random strings, then the graph G, contains a clique of
size k.

If on the other hand, the graph G, contains a clique of size k, then the k partial
proofs corresponding to the vertices of the clique are pairwise compatible and as
no two partial proofs that correspond to the same random string are compatible
with each other, there must exist a proof m such that the verifier accepts the
input z for k different random strings.

Thus we have shown that the size of a maximum clique in G, equals the maxi-
mum number of random strings for which the verifier accepts a proof 7, where
the maximum is taken over all proofs 7.

Now if 2 € L then by the definition of PCP there exists a proof 7 such that the
verifier accepts for all possible random strings. Thus in this case w(G,) = 2",

If z € L then by the definition of PCP for each proof 7 the verifier accepts x for
at most 1/2 of the random strings. Therefore we have w(G,) < 127(™ in this
case.

Now a 2-approximation algorithm for MAXCLIQUE could be used to recognize
the N'P-complete language L in polynomial time.]

For the reduction we used in the above proof, the non-approximability factor
we obtain for MAXCLIQUE solely depends on the error probability of the veri-
fier. We have already seen, that this error probability can be made arbitrarily,
but constantly small as we know that NP = PCP.(logn,1) for all € > 0. To
obtain an n° non-approximability result for MAXCLIQUE we had to reduce the
error probability of the verifier to n™¢. Clearly this can be done by running
the (logn,1)-restricted verifier for O(logn) independent random strings; how-
ever this would result in a total number of O(log” n) random bits needed by the
verifier which results in a graph that can no longer be constructed in polynomial
time.

The idea here now is that instead of using truly random bits one can make use of
so called pseudo random bits that can be generated by performing a random walk
on an expander graph. It can be shown that by this method one can generate
alogn pseudo random strings of length O(logn) by using only ¢ - alogn truly
random bits (for more details on this see for example [HPS94]). Thus, starting
with an (logn, 1)-verifier V' that has error probability of 1/2 we can construct a
new verifier V' that simulates the verifier V' alogn times. If ¢ is the number of
bits queried by the verifier V', then we get for the new verifier V' :

error probability : n™%

random bits : c-alogn
query bits : q-alogn

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.7. Improved Non-Approximability Results for MAXCLIQUE 77

Now if we use this verifier to construct for an input = a graph G, as described
above, we get that the clique number of GG, cannot be approximated up to n®
for arbitrarily large but constant a.

The graph G, has
N = 2c-a10g ntqalogn _ ncatea

vertices. Thus we get:
a 1
n_a:N_m+q¢1 :N_m

As ¢ and ¢ are constants, we have shown:

Theorem 4.13. Unless P=NP, there exists a constant € > 0 such that no n°
approzimation algorithm for MAXCLIQUE can exist.

4.7 Improved Non-Approximability Results for
MAXCLIQUE

In the last section we have seen, that MAXCLIQUE cannot be approximated up
to n® for some constant €. Here we now want to see how large this € can be.

The value of € was € = 1/(c + q) where ¢ was a constant that came in from
the generation of pseudo random bits and ¢ is the number of queries made by
the (logn,1)-restricted verifier. Thus to achieve a small value for € we have to
try to minimize these two constants. It can be shown that by using Ramanujan-
expanders due to Lubotzky, Phillips and Sarnak [LPS86] for the generation of
pseudo random bits, the constant ¢ can almost achieve the value 2. As we already
know that 11 queries are enough for an (logn, 1)-restricted verifier, this shows
that we can choose ¢ = 0.076.

From this value for € up to the ultimate result due to Hastad [Has97a] show-
ing that € can be chosen arbitrarily close to 1, there was a long sequence of
improvements which is surveyed in Table 4.1.

Friedman [Fri91] has shown that the Ramanujan-expanders of Lubotzky, Phillips
and Sarnak are best possible, meaning that the constant ¢ must have at least
the value 2. On the other hand we know from Proposition 4.4 that ¢ must be at
least 3. Thus to get values of ¢ that are larger than 1/5 we need some new ideas.

First we note, that in the construction of the graph G, in the third proof of
Proposition 4.12 we listed for each of the 27(") random bits all partial proofs
that made the verifier V' accept the input z. As V' queries at most ¢(n) bits
there can be at most 29(™) partial proofs for which V accepts z. However, a close
look at the proof of the PCP-Theorem reveals, that for a fixed random string
there are usually much less than 29(") accepted partial proofs. The reason for

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

78 Chapter 4. Proof Checking and Non-Approximability
Authors Factor Assumption
Feige, Goldwasser, Lovész, Je > 0,208 " n NP £P

Safra, Szegedy 91

Arora, Safra 92 Je > 0,2lg “n NP #£P

Arora, Lund, Motwani, p1/10000 NP #£P
Sudan, Szegedy 92

Bellare, Goldwasser, nl/30 NP # co-RP
Lund, Russell 93 nl/% NP #co-RP
Feige, Kilian 94 nl/15 NP #co-RP
Bellare, Sudan 94 Ve, nl/6—¢ NP £P
Ve, nt/5—¢ NP # co-RP
Ve, nl/4—¢ NP # co-RP
Bellare, Goldreich, Sudan 95 Ve, nt/4=¢ NP £P
Ve, nl/3-¢ NP # co-RP
Hastad 96 Ve, n'/?—¢ NP # co-RP
Héastad 96 Ve,nl=* NP # co-RP

Table 4.1. Non-approximability results for MAXCLIQUE.

this is, that the verifier will often query some bits, say by, bz, b3 and then it will
test whether these queried bits satisfy a certain relation, say g(b1)+g(b2) = g(bs)
for some function g. If this relation is not satisfied, then V' will not accept the
input z. For this example it follows, that instead of 8 possible answers for the
bits b1, by, bs there can be at most 4 answers for which V' accepts the input z.
Roughly speaking, instead of counting the number of bits queried by the verifier
from the proof, it is only of interest, how many of these queried bits have no
predetermined value. These bits are called free bits and denoted by f.

More precisely the number f of free bits queried by a verifier is defined as

f = log(max # partial proofs for which V' accepts z).

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.7. Improved Non-Approximability Results for MAXCLIQUE 79

Following [BS94] we define the class FPCP as the free bit variant of PCP, i.e.,
the class of languages where we measure the number of free query bits instead
of query bits.

The idea of free bits appears for the first time in the paper of Feige and Kilian
[FK94] who proved that MAXCLIQUE cannot be approximated up to n'/15 unless
NP=co-RP. The name ’free bits’ was invented by Bellare and Sudan [BS94].

Thus, to improve the non-approximability factor for MAXCLIQUE, which we now
know is € = 1/(c+ f) one carefully has to look at the proof of the PCP-Theorem
to see how many free bits are needed. Bellare, Goldreich and Sudan [BGS95]
have shown in a result similar to Proposition 4.4 that at least 2 free bits are
needed.

Proposition 4.14. Ve >0 FPCP.(logn, free bits=1) =P

On the other hand they also showed that 2 free bits suffice for a (logmn,1)-
restricted verifier to recognize any N P-language.

Theorem 4.15. NP C FPCPq 794(logn, free bits = 2)
They also proved the best known result for error probability 1/2.

Theorem 4.16. NP C FPCPy 5(logn, free bits=T)

Still these results only yield that we cannot get a polynomial time n!/4-approx-
imation algorithm for MAXCLIQUE. Before further improving on the query com-
plexity we will see how the constant ¢ in the expression for € can be decreased
to 1 by using a more efficient method of generating pseudo random bits due to
Zuckerman [Zuc93].

An (m,n,d)-amplification scheme is a bipartite graph G = (A U B, E) with
|A| = m and |B| = n such that every vertex in A has degree d. We construct
(m,n, d)-amplification schemes uniformly at random by choosing for each vertex
in A uniformly at random d elements of B as neighbors. We are interested in
amplification schemes that satisfy a certain expansion property.

An (m,n,d,a,b)-disperser is a bipartite graph G = (AUB, E) with m vertices on
the left and n vertices on the right such that every vertex on the left has degree d
and each subset of size a on the left has at least b neighbors. The following result
shows that for certain parameter sets (m,n,d, a,b)-dispersers can randomly be
constructed in a very simple way.

Lemma 4.17. The probability that a uniformly at random chosen (2,27, R +
2)-amplification scheme is a (28,27, R+2,27,2"1)-disperser is at least 1 —27%",

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

80 Chapter 4. Proof Checking and Non-Approximability

Proof. For S C 2 and T C 2" let As 1 be the event that all neighbors of S are
in 7. Then the probability that the randomly chosen (2%, 2", R+2)-amplification
scheme is not the desired disperser equals

Prob[U AS,T] < Z PI‘Ob[AS,T]

|S|=2" |s|=2"
|T|=27—1-1 |T|=27—1-1

2R or 27‘—1_1 (R+2)2"
= ()) (%)

< 2R2T22r2—(R+2)2T
= 277
]

We will use these (2,27, R + 2,27, 27!)-dispersers to generate R + 2 pseudo
random strings of length r in a very simple way: We simply choose a vertex
from the left side and take all its R+ 2 neighbors as pseudo random strings. The
following result shows that by doing so we can reduce the constant ¢ to 1.

Theorem 4.18. Unless NP=ZPP no polynomial time algorithm can achieve
1
an approzrimation factor of ni+7 ¢ for MAXCLIQUE for arbitrarily small €.

Proof. Let V be a verifier for recognizing a language L that uses r(n) random
bits, queries f free bits and achieves an error probability of 1/2. We will construct
a verifier V' now as follows.

The verifier V' first uniformly at random chooses a (2%, 27(") | R+2)-amplification
scheme which by Lemma 4.17 is with very high probability a (2%,27(") R +
2,2r(n) QT(")_I)—disperser. Now V' randomly selects a vertex from the left side
of the disperser and uses its R + 2 neighbors as random strings of length r(n).
For each of these R + 2 random strings the verifier V' simulates the verifier V'
for input z. It accepts z, if and only if V' accepts z for all R + 2 runs.

The verifier V' uses R random bits and its free bit complexity is (R + 2) f. Thus
the graph G, constructed for input = by the same construction as described in
the third proof of Proposition 4.12 has N := 2E+(E+2)f yertices.

If x € L then there exists a proof w such that V' accepts input z for all random
strings and therefore V' accepts for all 2 random strings. Thus the graph G,
has a clique of size 2F.

If 2 ¢ L then we claim that G, has a clique of size at most 2"(™). Assume this
is not the case, i.e., there exist p > 2"(") random strings for which V' accepts

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

4.7. Improved Non-Approximability Results for MAXCLIQUE 81

input z. Since V accepts input z for less than %QT(") random strings, this means
that there are p > 27(") vertices on the left of the disperser whose neighbor-

hood contains at most 27(™~1 — 1 vertices. This contradicts the definition of a
(2F,27() R 4 2 27(n) 2r(n)—1)_disperser.

Thus we cannot distinguish in polynomial time whether there is a clique of size
2F or whether every clique has size at most 27("), i.e., MAXCLIQUE cannot be
approximated up to a factor of 2F~—7("),

Now we have:

N = 2R+(R+2)f

_ 9RO+ . 92f

1
N\ 7
R _

If we choose R = alogn we get for @ — oo that MAXCLIQUE cannot be ap-
proximated up to N 7 ¢ for arbitrarily small €, unless N"P=co-RP (we used
a randomized construction for the disperser).]
Since by Theorem 4.15 we know that we can set f = 2 we get that no n'/3—¢
approximation algorithm can exist for MAXCLIQUE. On the other hand we know
that f must be larger than 1. Thus we need to refine the notion of query com-
plexity once more to arrive at the final tight non-approximability result for
MAXCLIQUE.

The observation here now is, that for our non-approximability results we only
made use of the fact that there is a certain gap between the completeness and
soundness probability of the verifier. So far we have assumed that the com-
pleteness probability is always 1; in this case the verifier is said to have perfect
completeness. All the non-approximability results for MAXCLIQUE we have seen
so far do not need perfect completeness. We already have observed the trade off
between the error gap and the number of queries: we can square the error gap
by just doubling the number of queries, i.e., if we want to enlarge the logarithm
of the error gap by a factor of k, then we have to allow the verifier to use k times
as many query bits. A careful analysis of the proof of Theorem 4.18 reveals that
in fact the non-approximability-factor for MAXCLIQUE does not just depend on
f but on the ratio of f and the logarithm of the error gap.

This motivates the definition of so called amortized free bit complezity . If a
verifier has completeness probability ¢ and soundness probability s and has free
bit complexity f, then its amortized free bit complexity f is defined as

f = f/log(c/s).

We define the class FPCP as the amortized free bit complexity variant of PCP.
In the proof of Theorem 4.18 we used an error gap of 2. Bellare and Sudan

This paper appeared in: Lectures on Proof Verification and Approximation Algorithms, 63-82, LNCS 1367, 1998

82 Chapter 4. Proof Checking and Non-Approximability

[BS94] have shown that the same result as Theorem 4.18 can be proved in terms
of amortized free bit complexity.

Theorem 4.19. Unless NP=ZPP no polynomial time algorithm can achieve
1
an approzimation factor of n1+7 " for MAXCLIQUE for arbitrarily small €.

Hastad [Has97a] has shown (see Chapter 9) that NP C FPCP(logn, amor-
tized free bits = 0). Together with Theorem 4.19 this yields the desired non-
approximability result for MAXCLIQUE.

Theorem 4.20. Unless NP=ZPP no polynomial time algorithm can achieve
an approzimation factor of n'=¢ for MAXCLIQUE for arbitrarily small €.

Exercises

Exercise 4.1. Prove Proposition 4.4 for the adaptive case.
Exercise 4.2. PCP(1,logn) =7

Exercise 4.3. What non-approximability result for MAXCLIQUE can be ob-
tained by rerunning the (logn, 1)-restricted verifier O(logn) times, i.e., without
making use of pseudo random bits ?

Exercise 4.4. FPCP(logn, free bits=1) = P

Exercise 4.5. Why did we not have to take into account in the proof of Theo-
rem 4.18 the random bits needed to create the disperser ?

Exercise 4.6. Show that the PCP-Theorem implies that the average number
of queries needed by a (logn, 1)-restricted verifier can be made arbitrarily small,
while increasing the error probability.

