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Abstract. The terminal Steiner tree problem is a special version of
the Steiner tree problem, where a Steiner minimum tree has to be found
in which all terminals are leaves. We prove that no polynomial time ap-
proximation algorithm for the terminal Steiner tree problem can achieve
an approximation ratio less than (1− o(1)) ln n unless NP has slightly su-
perpolynomial time algorithms. Moreover, we present a polynomial time
approximation algorithm for the metric version of this problem with a per-
formance ratio of 2ρ, where ρ denotes the best known approximation ratio
for the Steiner tree problem. This improves the previously best known
approximation ratio for the metric terminal Steiner tree problem of ρ + 2.
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1 Introduction

Given a graph G = (V,E) with a length function w : E → R
+ and a subset

R ⊆ V of terminals the Steiner tree problem is to find a minimum length tree
in G that contains all vertices of R. Such a tree is called a Steiner minimum

tree (SMT). The computation of SMTs is an important problem in many ap-
plications and therefore much effort has been spent over the last three decades
to design algorithms for solving this problem. As the Steiner tree problem is
known to be APX-hard [1, 2], unless P=NP, only approximate solutions to the
Steiner tree problem can be found in polynomial time. The best polynomial
time approximation algorithm for the Steiner tree problem that is currently
known is due to Robins and Zelikovsky [10]. They proved that their algorithm
has an approximation ratio of at most 1.55, i.e. it always finds a solution to
the Steiner tree problem that is larger than the optimum solution by at most
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Figure 1: A non-metric instance for the terminal Steiner tree problem. Termi-
nals are indicated by squares, non-terminals by circles.

a factor of 1.55. See the book of Hwang, Richards and Winter [8] for more
background on the Steiner tree problem and the survey paper [7] for more on
the development of approximation algorithms for this problem.

Clearly, all leaves in an SMT are vertices of R, but not all vertices of R

need to be leaves in an SMT. However, in some applications, as for example the
global routing in VLSI-Design, all vertices of R must be leaves in the Steiner
tree. This motivates the study of the terminal Steiner tree problem [9]. This
is a special version of the Steiner tree problem, where a shortest length Steiner
tree has to be found in which all terminals are leaves.

For the Steiner tree problem one may assume that the given graph is metric,
i.e. it is a complete graph and the edge lengths satisfy the triangle inequality.
The reason for this is that in an SMT no two vertices can be connected by an
edge that is longer than a shortest path in the graph connecting these two ver-
tices. Lin and Xue [9] remark that similar to the Steiner tree problem one may
also always assume that a given instance for the terminal Steiner tree problem
is metric. However this assumption is not true. A simple counterexample is
shown in Figure 1. For this graph the optimum solution has length x + 3 while
the optimum solution in the metric case has length at most 5 because x must
have a value of at most 2 to satisfy the metric. As x can be chosen arbitrarily
large in the non-metric case the difference between the metric and non-metric
solution can be arbitrarily large. To avoid these problems one may consider
the restriction of the terminal Steiner tree problem to instances where for each
terminal there is a non-terminal vertex in the instance that has exactly the
same neighbors. In this case the non-metric version can be transformed into an
equivalent metric one.

We show in Section 2 that unless NP = DTIME(nO(log log n)) the non-
metric version of the terminal Steiner tree problem cannot be approximated
to any constant. This will be proved by showing that a constant factor ap-
proximation algorithm for the non-metric terminal Steiner tree problem would
give a constant factor approximation algorithm for the set cover problem. The
latter problem is known to be not approximable better than lnn [5], unless
NP = DTIME(nO(log log n)).

Lin and Xue [9] prove that the metric version of the terminal Steiner tree
problem is APX-hard and they present a factor (2+ρ)-approximation algorithm
for this problem. Here ρ denotes the best approximation ratio for the Steiner
tree problem that can be achieved by a polynomial time algorithm. According
to the result of Robins and Zelikovsky [10] it follows ρ < 1.55. Chleb́ık and
Chleb́ıková proved that ρ > 1.01 must hold if P 6= NP .

In Section 3 we improve the factor 2 + ρ of Lin and Xue [9] by presenting a
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factor 2ρ approximation algorithm for the metric terminal Steiner tree problem.
Note that 2ρ < 2 + ρ for ρ < 2.

2 The hardness result

Given a set S with elements 1, . . . , n and a family F = {S1, S2, . . . , Sm} of
subsets of S, the set cover problem is to find a minimum size subfamily of F
that covers all elements of S. In this section we prove that approximating
the terminal Steiner tree problem is at least as hard as approximating the
set cover problem. For the latter problem Feige [5] has shown that unless
NP = DTIME(nO(log log n)) no polynomial time approximation algorithm can
have a performance guarantee better than (1 − o(1)) ln n.

Theorem 1 For any constant α a polynomial time α-approximation algorithm

for the terminal Steiner tree problem yields a polynomial time α-approximation

algorithm for the set cover problem.

Proof. We use a reduction from set cover similar to the one used for showing
the hardness of the group Steiner tree problem [6]. Consider an instance of the
(unweighted) set cover problem with elements 1, . . . , n and sets S1, . . . , Sm. We
construct from this instance an instance of the terminal Steiner tree problem
as follows. Take a star with the vertex x as its center and m rays ending in
the vertices S1, . . . , Sm. All these rays get a weight of 1. Now add n terminals
T1, . . . , Tn and an extra terminal T0. The terminal T0 is connected to vertex x

by an edge of length 0. For each j connect terminal Tj by edges of length 0
with all vertices Si for which j is an element of the set Si. Now a solution to
the terminal Steiner tree problem contains the vertex x (as terminal T0 must
be connected with the other terminals) and some of the rays emenating from x.
The weight of the solution of the terminal Steiner tree problem is exactly the
number of these rays. All the sets Si that are connected to x by these rays form
a set cover because for each j terminal Tj is connected to other terminals in the
solution of the terminal Steiner tree problem only via sets which contain element
j. Therefore the weight of the solution to the terminal Steiner tree problem is
exactly as large as the solution to the set cover problem that is induced by this
solution. In particular this implies that an α-approximation algorithm for the
terminal Steiner tree problem yields an α-approximation algorithm for the set
cover problem. �

Note that the instance of the terminal Steiner tree problem produced by
this reduction is not metric. Theorem 1 easily extends to the case where α is a
function depending on the input size. Let N denote the number of vertices in an
instance of the terminal Steiner tree problem and let n and m denote the number
of elements and sets in a set cover instance. Then an α(N)-approximation algo-
rithm for the terminal Steiner tree problem yields an α(n+m+2)-approximation
algorithm for the set cover problem. As the hardness result of Feige [5] for set
cover also applies to the case where m = o(n) we get the following corollary.
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Corollary 1 Unless NP = DTIME(nO(log log n)) no polynomial time approxi-

mation algorithm for the terminal Steiner tree problem has a performance ratio

better than (1 − o(1)) ln n. �

3 The approximation algorithm

In this section we present a polynomial time approximation algorithm for the
metric version of the terminal Steiner tree problem which has a performance
ratio of 2ρ, where ρ denotes the best possible performance ratio that can be
obtained in polynomial time for the Steiner tree problem. (As we learned from
an anonymous referee this result has been proved independently in [3].)

In the following we will always assume that a feasable solution to the termi-
nal Steiner tree problem exists. Note that in the metric version of the terminal
Steiner tree problem this is precisely the case if at least one non-terminal ver-
tex exists or the graph has at most two vertices. If the given instance contains
only two vertices the terminal Steiner tree problem is simply a shortest path
problem. Therefore we may assume in the following that the given instance of
the terminal Steiner tree problem contains at least three terminals.

Our algorithm for computing a factor 2ρ approximation for the terminal
Steiner tree problem is based on two crucial operations. The first is a prepro-
cessing step in which all edges in the given graph are removed if they connect
two vertices from R. The second operation is the star-replacement. This op-
eration reduces the degree of a vertex in R to one. It goes as follows (see
Figure 2). Assume r is a vertex in a Steiner tree T for R that has degree
k > 1. Denote by a1, . . . , ak the neighbors of r. By the preprocessing step
all these neighbors must be vertices in V \ R. Without loss of generality as-
sume that w({r, a1}) ≤ w({r, ai}) for 1 ≤ i ≤ k. Then a new Steiner tree
T ′ for R is obtained by replacing the edges {r, a2}, . . . , {r, ak} by the edges
{a1, a2}, . . . , {a1, ak} (see Figure 2). In T ′ vertex r is a leaf while the degree of
all other vertices in R has not changed.
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Figure 2: The star-replacement.

The algorithm TerminalSteiner uses these two operations as a main ingre-
dient and is shown in Figure 3.

Theorem 2 Algorithm TerminalSteiner has performance ratio 2ρ.
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Algorithm TerminalSteiner (G = (V, E), w : E → R
+, R ⊆ V )

1 remove all edges from G that connect two terminals in R

2 compute a ρ-approximate Steiner tree T in G for R

3 for r ∈ R do
4 if r is not a leaf in T

5 then make a star-replacement for r

Figure 3: A 2ρ-approximation algorithm for the terminal Steiner tree problem.

Proof. In line 1 of the algorithm all edges are removed from G that connect
two terminals in R. As an optimal solution to the terminal Steiner tree problem
must not contain such edges, this preprocessing step does not change the value
of an optimal solution. In line 2 of the algorithm a ρ-approximation of a Steiner
minimal tree for the preprocessed graph G is computed. Its length is a lower
bound for the length of an optimal terminal Steiner tree in G. In lines 3–5 of
the algorithm TerminalSteiner the tree T may be modified by star-replacement
operations. Consider one such star-replacement at a terminal r with neigh-
bors a1, . . . , ak in T (see Figure 2). The star-replacement replaces the edges
{r, a2}, . . . , {r, ak} with the edges {a1, a2}, . . . , {a1, ak}. Because the instance
of the terminal Steiner tree problem is metric and edge {a1, r} is shortest from
among the edges {r, ai} we have

k∑

i=2

w({a1, ai}) ≤

k∑

i=2

w({a1, r}) + w({r, ai}) ≤ 2

k∑

i=2

w({r, ai}) .

As no two star-replacements involve the same edges, this proves that the so-
lution returned by the algorithm TerminalSteiner has length at most 2ρ times
the length of an optimum solution. �

Note that the running time of lines 2, 4, 5, and 6 of algorithm Terminal-
Steiner is linear. Therefore the total running time of this algorithm is dominated
by the ρ-approximation algorithm used for the Steiner tree problem.

Acknowledgement

We are grateful to the anonymous referees for useful comments.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof

verification and hardness of approximation problems, 33rd FOCS 1992,
pp. 14–23.

[2] M. Bern, P. Plassmann, The Steiner problem with edge lengths 1 and

2, Information Processing Letters 32 (1989), pp. 171–176.

This paper appeared in: Information Processing Letters 89 (2004), 15–18



[3] Y.H. Chen, C.L. Lu, C. Y. Tang, On the Full and Bottleneck Full

Steiner Tree Problems, In: Proceedings of the 9th Annual International
Conference (COCOON 2003), Big Sky, MT, USA, July 25-28, 2003, LNCS
2697, T. Warnow, B. Zhu (Eds.), Springer, pp. 122–129
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