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Abstract

Deciding realizability of a given polyhedral map on a (compact, connected) surface
belongs to the hard problems in discrete geometry, from the theoretical, the algorithmic,
and the practical point of view.

In this paper, we present a heuristic algorithm for the realization of simplicial maps,
based on the intersection edge functional. The heuristic was used to find geometric
realizations in R

3 for all vertex-minimal triangulations of the orientable surfaces of genus
g = 3 and g = 4. Moreover, for the first time, examples of simplicial polyhedra in R

3 of
genus 5 with 12 vertices were obtained.

1 Introduction

A polyhedral map on a surface is a (finite) set of polygons (with at least three sides), which
are glued together (topologically) along edges to form the surface, such that there are no
self-identifications on the boundaries of the polygons, and two polygons are either disjoint or
intersect in exactly one edge or one vertex only. We thus can think of a polyhedral map as
a combinatorial model for a surface.

For a given polyhedral map it is natural to try to visualize it as a polyhedron in three-
space (or in higherdimensional space R

d) such that every polygon is the convex hull of its
vertices and two polygons are either disjoint in R

d, they intersect in a common edge and are
not coplanar, or they intersect in a common vertex only. Such a realization usually is called
a geometric or polyhedral realization, with straight edges, plane polygons, and no non-trivial
intersections (with neighboring polygons being not coplanar).

Example 1: A polyhedral map on the 2-sphere S2 consisting of the polygons 123, 12478,
13568, 2354, 4567, and 678 together with a corresponding realization in R

3 is displayed in
Figure 1.

Realizability of maps on the 2-sphere S2 was proved by Steinitz ([48], [49]; cf. also [27,
Ch. 13], [60, Lec. 4]): Every polyhedral map on the 2-sphere S2 is geometrically realizable
in R

3 as the boundary complex of a convex 3-polytope.

However, not all polyhedral maps are realizable. For example, simple polyhedral maps
(i.e., maps with all vertices of valence three) on surfaces different from the 2-sphere S2 are
not realizable in any R

d (see Grünbaum [27, Ex. 11.1.7, Ex. 13.2.3]).
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Figure 1: A polyhedral map on S2 and a corresponding geometric realization in R
3.

Example 2: All 6-3-equivelar maps on the torus (i.e., maps consisting of only 6-gons with
every vertex belonging to exactly three 6-gons) are simple and therefore cannot be realized
in any R

d. The smallest example (see Figure 2) of the family is the combinatorial dual of
Möbius’ 7-vertex triangulation of the torus [39]. A “realization” of this torus with flat, but
non-convex 6-gons was given by Szilassi [55], the Szilassi-torus.

Betke and Gritzmann [8] further found the following combinatorial obstruction to geo-
metric realizability: Let W be any subset of the set of odd valent vertices of a polyhedral
map M2 and let FW be the set of facets containing some vertex of W . If 2|FW | ≤ |W |, then
M2 is not realizable in any R

d.
Again, the Betke-Gritzmann obstruction rules out realizability of 6-3-equivelar maps on

the torus. The obstruction was also used by McMullen, Schulz, and Wills [38] to show
non-realizability for other, non-simple families of equivelar maps.

Apart from Steinitz’ theorem and the two above obstructions, rather little is known on
the realizability of (polyhedral maps on) orientable surfaces in R

3.
In a simplicial (i.e., triangulated) map every triangle contains at most three odd valent

vertices, from which it can be deduced that |FW | ≥ |W | for every subset W of odd valent
vertices. In particular, the Betke-Gritzmann obstruction cannot be applied to simplicial maps
to show non-realizability. Almost 40 years ago, Grünbaum proposed:

Conjecture 1 (Grünbaum [27]) Every triangulated torus is realizable geometrically in R
3.

Until recently, no computational tools were available to actually find realizations for ori-
entable simplicial surfaces, not even for examples of small genus with few vertices: In the
past 25 years the most promising approach to obtain a polyhedral realization for a given tri-
angulation was to try to build a physical model, for example, with the rubber band technique
of Bokowski [9].

In this paper, we present a heuristic algorithm for finding polyhedral realizations for
orientable simplicial surfaces, which, for the first time, gives stronger results than the physical
approach. In particular, we will show that all vertex-minimal triangulations of orientable
surfaces of genus g = 3 and g = 4 are realizable and that there are examples of vertex-
minimal simplicial polyhedra of genus 5 with 12 vertices.

In the following Section we give a brief survey on realizability results for surfaces,
minimal triangulations, and algorithmic aspects of deciding realizability. Our realization
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Figure 2: The non-realizable 6-3-equivelar map with 14 vertices on the torus.

heuristic is then presented in Section 3 and computational results are given in Section 4.
An extension of our approach to convex realizations of triangulated spheres is discussed in
Section 5.

2 Realizability of Polyhedral Surfaces

and Polyhedral Complexes

In general, every d-dimensional simplicial complex (with n vertices) is polyhedrally embed-
dable in R

2d+1, as it can be realized as a subcomplex of the boundary complex of the cyclic
polytope C(n, 2d+2); cf. Grünbaum [27, Ex. 25, p. 67]. However, van Kampen [57] and Flo-
res [26] showed that d-dimensional simplicial complexes cannot always be embedded topolog-
ically in R

2d, e.g., the d-skeleton Skd(∆2d+2) of the (2d+2)-simplex ∆2d+2 is not embeddable
in R

2d (for further examples and references see Matoušek [37, 5.1], Novik [40], and Schild [46]).

For smooth d-manifolds, Whitney [58] proved that they can smoothly be embedded in R
2d,

and Penrose, Whitehead, and Zeeman [41] showed that for 0 < 2(k + 1) ≤ d every k-
connected PL (i.e., piecewise linear) d-manifold has a PL embedding in R

2d−k. In particular,
surfaces have PL embeddings in R

4. Orientable surfaces (with or without boundary) and
non-orientable surfaces with boundary are even PL embeddable in R

3 (which follows from
the classification of surfaces by Dehn and Heegaard [24]). Closed non-orientable d-manifolds
cannot be embedded topologically in R

d+1; cf. Bredon [15, p. 353].

Thus, for triangulated orientable surfaces (with or without boundary) and for triangulated
non-orientable surfaces with boundary we have:

• PL embeddability in R
3

• and polyhedral realizability in R
5.

Triangulations of closed non-orientable surfaces are

• not (topologically) embeddable in R
3,

• but are PL embeddable in R
4,

• and are polyhedrally realizable in R
5.

Perles showed (cf. [27, 11.1.8]) that a polyhedral map is realizable in some R
d if and only

if it is realizable in R
5.

A natural approach to establish geometric realizability in R
3 for orientable surfaces of

genus g > 1 is to identify a given polyhedral map as a subcomplex of the boundary complex
of a convex 4-polytope P . The Schlegel diagram of P then yields coordinates for the real-
ization in R

3; see, for example, McMullen, Schulz, and Wills [38] for realizations of equivelar
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maps obtained this way, and cf. Altshuler [1], [2] for combinatorial properties on maps that
guarantee realizability via Schlegel diagrams.

Altshuler and Brehm [4] gave a polyhedral map T8 on the torus with only 8 vertices which
is realizable (cf. also Simutis [47]), but not via Schlegel diagrams. In fact, the map T8 is not
isomorphic to a subcomplex of the boundary complex of any convex polytope [4].

Realizability (via subcomplexes of convex 5-polytopes) of triangulations of the torus and
the projective plane in R

4 was proved by Brehm and Schild [19], herewith sharpening Bar-
nette’s result [6] on the geometric realizability of triangulations of the projective plane in R

4.
Polyhedral surfaces that are obtained by projections (of 2-dimensional subcomplexes) of

higherdimensional polytopes together with obstructions to projectability are discussed by
Sanyal, Schröder, and Ziegler [44].

For further results and references on polyhedral maps see Brehm and Wills [21], Brehm
and Schulte [20], and Ziegler [59].

2.1 Simplicial Maps

Let M be a (closed) triangulated surface with n = f0 vertices, f1 edges, and f2 triangles,
i.e., M has face-vector f = (n, f1, f2). If M has Euler characteristic χ(M), then by Euler’s
equation,

n − f1 + f2 = χ(M).

Double counting of the incidences between edges and triangles of a triangulation yields 2f1 =
3f2. So together,

f = (n, 3n − 3χ(M), 2n − 2χ(M)).

According to Heawood’s bound [29] from 1890, triangulations of a 2-manifold M have at least

n ≥
⌈

1

2
(7 +

√

49 − 24χ(M))
⌉

(1)

vertices. Heawood’s bound is sharp for all surfaces, except for the cases of the orientable
surface of genus 2, the Klein bottle, and the non-orientable surface of genus 3, where an extra
vertex has to be added to the lower bound, respectively.

Corresponding vertex-minimal triangulations of the real projective plane RP2 with 6
vertices and of the 2-torus with 7 vertices (Möbius’ torus [39]) were already known in the
19th century, but it took until 1955 to complete the construction of series of examples of
minimal triangulations for all non-orientable surfaces (Ringel [43]) and until 1980 for all
orientable surfaces (Jungerman and Ringel [32]).

If a given triangulation of an orientable surface is realizable in R
3, then so are subdivisions

of it. Thus, vertex-minimal triangulations apparently are good candidates for non-realizable
maps. Hereby, triangulations with

n = 1

2
(7 +

√

49 − 24χ(M)) (2)

are of particular interest (cf. [23]), as for these we have f1 =
(

n

2

)

, that is, the respective trian-
gulations are neighborly with complete 1-skeleton (which should make realizability difficult).

A polyhedral realization of the combinatorially unique vertex-minimal 7-vertex triangu-
lation of the torus with f = (7, 21, 14) was given by Császár [23], [34] (although realizability
was possibly known already to Möbius; cf. [39, p. 553], [42]).
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The next case of equality (2) yields 59 examples of vertex-minimal 12-vertex triangulations
of the orientable surface of genus 6 [3]; see below.

2.2 Realizability vs. Non-Realizability of Simplicial Maps

For every individual triangulation of an orientable surface, realizability (in R
3) can be decided

algorithmically by the following two-step procedure, cf. [10], [14, Ch. VIII]:

1. Enumerate all oriented matroids compatible with the given triangulation. If there are
none, then the triangulation is not realizable, else

2. decide realizability of the oriented matroids from 1. via solving associated polynomial
inequality systems.

Theoretically, the second step can be done algorithmically (for example, with Collin’s Cylin-
drical Algebraic Decomposition algorithm [22]). In practice, however, there are no methods
known that would work sufficiently fast to yield results even for small examples. (For more
comments on this and also for algebraic tools such as final polynomials see [10], [14, Ch.
VIII].)

In a first breakthrough, Bokowski and Guedes de Oliveira [13] showed (using 10 CPU
years) that one of the 59 vertex-minimal 12-vertex triangulations of the orientable surface of
genus 6 has no compatible orientable matroid and therefore is not realizable.

Recently, Schewe [45] substantially improved the enumeration of compatible orientable
matroids and was able to show that, in fact, all 59 vertex-minimal 12-vertex triangulations
of the orientable surface of genus 6 are non-realizable. Moreover, he found three examples of
non-realizable vertex-minimal 12-vertex triangulations of the orientable surface of genus 5.
At least for one of these examples it is possible to remove a triangle from the triangulation
while maintaining non-realizability. Connected sums with other triangulations then still are
non-realizable. Thus, for every orientable surface of genus g ≥ 5 there are triangulations that
cannot be realized geometrically in R

3.

Apart from the approach via oriented matroids, non-realizability results (for simplicial
maps in R

3) seem to be difficult to achieve: Novik [40] associated an integer program with
a given triangulation, which, if it has no solution, yields non-realizability. Improved systems
have been proposed by Timmreck [56]. So far, however, for orientable surfaces all tested
systems were found to have solutions or turned out to be computationally intractable. In
a different approach, Brehm [17] used a linking number argument to show that there is a
non-realizable triangulation of the Möbius strip with 9 vertices.

2.3 Heuristics for the Realization of Simplicial Maps

Until recently, it was considered to be rather difficult and time-consuming to actually find
realizations for given triangulations. Examples of polyhedral realizations of vertex-minimal
triangulations of the orientable surfaces of genus 3 and 4 with 10 and 11 vertices, respectively,
were constructed by hand by Bokowski and Brehm [11], [12] and Brehm [16], [18]. Some of
these examples were found by exploiting combinatorial symmetries of the triangulations,
others with the rubber band technique of Bokowski [9].

A first (and simple) computer heuristic (by choosing coordinates randomly) was used
in [36] to show that at least 864 of the 865 examples of vertex-minimal triangulations of the
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orientable surface of genus 2 are realizable. The remaining case then was settled by Bokowski
with the rubber band method [9]. All 865 examples were later found to have realizations
with small coordinates [30], i.e., all these examples are realizable with integer coordinates in
general position in the (4 × 4 × 4)-cube. Moreover, realizations in the (5 × 5 × 5)-cube were
obtained for 17 of the 20 vertex-minimal triangulations with 10 vertices of the orientable
surface of genus 3 by isomorphism-free enumeration of possible coordinate configurations in
general position [31].

In the following, we will discuss an improved heuristic to obtain polyhedral realizations
in R

3 for triangulations of orientable surfaces. In particular, we will show that all vertex-
minimal triangulations of orientable surfaces of genus g = 3 and g = 4 are realizable and that
there are examples of simplicial polyhedra of genus 5 with 12 vertices.

3 Realization with the Intersection Edge Functional

As mentioned in the previous section there have been so far three major heuristics for the
realization of simplicial surfaces (of genus g ≥ 1) in R

3:
• by explicit geometric construction [11], [12], [16], [18] (e.g., via the rubber band tech-

nique of Bokowski [9]);
• by choosing coordinates randomly [36];
• by enumeration of realizations with small coordinates [30], [31].

As a more sophisticated approach we suggest to proceed as follows. For a given triangulation
(at least for orientable surfaces of small genus)

1. start with random coordinates for the vertices of the triangulation
2. and then “move vertices around” to eventually obtain a realization.

For the second step we take as an objective to minimize the intersection edge functional :

Let M2 be a triangulated orientable surface with vertex-set V and let VR3 be a
set of |V | vertices in general position in R

3. Then every pair of triangles of M2

coordinatized with the coordinates of VR3 either has empty intersection in R
3 or

intersects in an edge; see Figure 3 for the intersection edge u–x of two triangles.
The sum of the lengths of the intersection edges over all pairs of (non-neighboring)
triangles is the intersection edge functional.

We require that the points are in general position, i.e., no three points are on a line and no
four points are on a plane, in order to avoid degenerate intersections of triangles. Further,
we use integer coordinates and therefore move the points in the second step above on the
integer grid only.

Our aim will be to find integer coordinates in general position for which the intersection
edge functional vanishes for the given triangulation.

From an initial set of random coordinates we proceed to minimize the intersection edge
functional by a local search of hill-climbing type:

In every step, we randomly pick a vertex v ∈ VR3 and a coordinate direction,
±x, ±y, or ±z, and then move the vertex v one integer step into the respective
direction. If the resulting set of coordinates is in general position and the new
value of the intersection edge functional is strictly smaller than before, the move
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Figure 3: Two intersecting triangles.

is accepted and the next step is executed. Otherwise the move is discarded and we
start anew from the previous set of coordinates.

If all possible choices of moves have been tested for some set of coordinates without
improvement, then we are stuck in a local minimum. In this case, for one step
only, we choose one of the admissible moves, i.e., a move that yields a set of
coordinates in general position, but which not necessarily decreases the intersection
edge functional. From there, we then try to continue to decrease the intersection
edge functional in a new direction.

Example 3: Local minima can occur even for small triangulations. For example, the
boundary of the octahedron with triangles

123 124 135 145 236 246 356 456

and furnished with coordinates

1: (4,4,6) 2: (5,6,6) 3: (9,7,4) 4: (5,9,1) 5: (4,6,3) 6: (1,5,7)

attains a local minimum for the intersection edge functional with value 3.17. Figure 4 provides
a visualization.

3.1 Details of the Algorithm

Initially the vertices of the triangulation are placed randomly at general positions in a (50×
50 × 50)-cube. This cube is chosen at the center of a larger (250 × 250 × 250)-cube that we
take as bounding box for all possible positions of the vertices during the local search. After
the choice of the starting positions the smaller cube is not used anymore.

• Thus, we allow the diameter of the vertex-set to increase moderately (which possibly
helps to decrease the intersection edge functional by unfolding the initial shape).

• At the same time there is a fixed lower bound for the change, at every step, of the
intersection edge functional (determined by the size of the bounding box and the fact
that we admit integer coordinates only). This way we avoid that the sequence of
improvements for the functional converges to zero.

7
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Figure 4: A non-realization of the octahedron with locally minimal functional.

An admissible step then is a movement of one vertex by one integer in one of the coordinate
directions such that the resulting set of coordinates is in general position and is within the
bounding box.

• If the intersection edge functional becomes zero, a realization for the given triangulation
is found.

• If a realization is not found within a fixed period of time T , the whole process is restarted
for the triangulation, beginning with the random selection of the starting coordinates
(in the smaller cube). In doing so we try to overcome situations in which the process
cycles between different local minima.

A standard problem with local search algorithms is to appropriately choose the parame-
ters that govern the procedure. For some of the 20 examples of vertex-minimal 10-vertex
triangulations of the orientable surface of genus 3 we tried the following variants:

• We chose different sizes for the initial cube, ranging from 5× 5× 5 to 500× 500× 500.
• We allowed the bounding box to be between 1 up to 8 times the size of the initial cube.
• If the edge functional decreases by moving one vertex in one direction, we moved the

vertex as far as possible in this direction (until the intersection edge functional starts
to increase again).

• In case of a local minimum we determined all pairs of vertices for which the exchange of
their positions decreases the intersection edge functional. We then executed one such
exchange at random. If there is no such pair, we randomly exchanged two arbitrary
vertices.

• Instead of minimizing the intersection edge functional we tried to minimize the normal-
ized intersection edge functional, which is obtained from the intersection edge functional
by dividing by the total length of the edges of the polyhedral map.

• We first generated 10000 sets of initial coordinates of which we selected the set with
the smallest functional before starting the local search.

From all these variants the previously described one turned out to have the best performance.
This variant then was used to find realizations for other triangulations.
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Figure 5: Subdivisions of a triangle and of an edge.

Figure 6: Expansion (respectively contraction) of an edge.

3.2 Examples of Minimal Triangulations

If some triangulation of an orientable surface is realizable, then so are all subdivisions of it: In
the case of the two elementary subdivisions of a triangle and of an edge of the triangulation
(see Figure 5), we can always place the new vertex slightly above or below the respective
triangle or the respective edge of the given realization. For finer subdivisions, we can proceed
iteratively.

For orientable surfaces of genus g ≥ 1, the set of minimal triangulations that are not
subdivisions is infinite, as it comprises all triangulations that have only vertices of degree at
least 5. A finite subset of particular interest to test realizability is the set of vertex-minimal
triangulations. If these are realizable, this should give a strong indication that, in fact, all
triangulations of the surface are realizable.

A somewhat larger, but still finite set of triangulations that are not subdivisions is de-
fined as follows: If we take edge expansions (with edge contractions as inverses; see Figure 6)
instead of subdivisions, then for every surface there is only a finite set (see Barnette and
Edelson [7]) of irreducible triangulations for which no edge can be contracted without chang-
ing the topological type of the triangulation. However, it is not clear whether a realizable

9
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Table 1: Numbers of vertex-minimal triangulations of the orientable surfaces of genus g ≤ 6.

g nmin Types

0 4 1

1 7 1

2 10 865

3 10 20

4 11 821

5 12 751.593

6 12 59

triangulation of an orientable surface of genus g ≥ 1 remains realizable after the expansion
of an edge.

It follows from the work of Steinitz [49, §46] that every triangulated 2-sphere can be
reduced to the boundary of the tetrahedron by a sequence of edge contractions. In other
words, the boundary of the tetrahedron is the only irreducible triangulation of the 2-sphere.

Grünbaum and Lavrenchenko [33] determined the number of irreducible triangulations of
the torus: there are 21 such examples with up to 10 vertices and they are all realizable. Re-
cently, Sulanke [51], [52], [53] has shown that there are exactly 396.784 examples of irreducible
triangulations (with up to 17 vertices) of the orientable surface of genus 2.

Although it might be desirable to test realizability for a larger set of irreducible triangula-
tions, we restricted ourselves to vertex-minimal ones. There is only one unique vertex-minimal
triangulation of the torus, i.e., Möbius 7-vertex torus [39] for which Császár [23] gave an ex-
plicit polyhedral model. Vertex-minimal triangulations of the orientable surfaces of genus
2 and 3 were enumerated in [36], those of genus 4 and 5 in [54], and the vertex-minimal
examples of genus 6 in [3]; see Table 1 for the corresponding minimal numbers of vertices
nmin and the respective numbers of combinatorial types of triangulations.

4 Computational Results

Geometric realizations for the 865 vertex-minimal triangulations of the orientable surface
of genus 2 were found in [9] and [36]; see also [30] for corresponding realizations with small
coordinates. Moreover, for 17 of the 20 vertex-minimal triangulations of the orientable surface
of genus 3 realizations with small coordinates were obtained in [31]. Thus, the first task for
our program was to realize the remaining three examples.

Theorem 2 All 20 vertex-minimal 10-vertex triangulations of the orientable surface of
genus 3 are geometrically realizable in R

3.

The resulting sets of coordinates for the realizations can be found online at [35].
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Figure 7: Histogram of the natural logarithms of the used local search steps for 626 realiza-
tions of genus 4

Genus 4

With our algorithm we found realizations for 626 of the 821 vertex-minimal triangulations
of the orientable surface of genus 4. Realizations for the remaining 195 triangulations were
obtained by recycling of coordinates, i.e., whenever a new realizations was found we tried to
reuse the respective set of coordinates for other triangulations. We also slightly distorted
the coordinates and then tried to use these coordinates for other triangulations; see [36] for
additional comments.

Theorem 3 All 821 vertex-minimal 11-vertex triangulations of the orientable surface of
genus 4 are geometrically realizable in R

3.

We needed a total of 9.51 · 1011 steps of the local search process to realize the 626 triangu-
lations. As time interval T we chose 15 minutes, so if after 15 minutes a realization was not
reached, the search was restarted with new initial coordinates.

Figure 7 displays a histogram of the natural logarithms of the number of used steps. The
picture indicates that the logarithms of the used steps are normally distributed, i.e., the used
steps underlie a log-normal distribution. To confirm this, we ran as a goodness-of-fit-test [50,
Ch. 30] the Anderson-Darling test (cf. [25, p. 10]) to specify whether the logarithms of the
used steps follow a normal distribution.

The Anderson-Darling test for a normal distribution of the natural logarithms of the used
steps estimates the mean to be 19.3 and the standard deviation to be 2. It yields a p-value
of 0.5 which is far above the rejection value of 0.05. Therefore we can view the logarithms of
the used steps to be normally distributed with the estimated parameters.
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Figure 8: A polyhedron of genus 5.

Our implementation of the local search process is performing about 3.6 · 105 steps per
minute on a 3.5 GHz processor. Therefore, we needed a total of 5 CPU years to realize
all triangulations. On average, it took 2.9 CPU days for finding a realization for a single
triangulation.

Genus 5

As mentioned in Section 2, Schewe [45] recently showed that there are at least three examples
of vertex-minimal 12-vertex triangulations of the orientable surface of genus 5 that cannot
be realized geometrically in R

3.
In order to complement Schewe’s result, we tried to find realizations for at least some

of the 751.593 triangulations. To this aim we started our process on randomly selected
triangulations out of all the 751.593 vertex-minimal triangulations. If after 15 minutes a
realization was not found, a new triangulation was selected at random. This way, we tried
about 94.000 triangulations, using a total of 7.52 · 1011 local search steps – a CPU time of
approximately 4 years – and succeeded in realizing 15 triangulations.

Theorem 4 At least 15 of the 751.593 vertex-minimal 12-vertex triangulations of the ori-
entable surface of genus 5 are geometrically realizable in R

3.

Example 4: Figure 8 displays one of the polyhedra of genus 5 with 12 vertices, which has
triangles

123 124 135 146 157 168 179 18 10 19 10 236
245 258 26 10 28 11 29 11 29 12 2 10 12 35 11 368 378
37 10 39 10 39 11 459 46 11 478 47 12 489 4 10 11 4 10 12
569 56 10 57 10 58 12 5 11 12 679 67 12 6 11 12 89 12 8 10 11

and coordinates

1: (137,124,141) 2: (107,118,143) 3: (132,130,125) 4: (122,127,129)
5: (124,129,132) 6: (126,130,124) 7: (126,129,129) 8: (122,125,138)
9: (124,128,136) 10: (119,133,134) 11: (120,130,135) 12: (121,128,133).
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Figure 9: The standard (3 × 10)-torus.

The coordinates for the other 14 examples can be found online at [35].

Combining the result of Schewe [45] (that there are non-realizable triangulations of the
orientable surface of genus 5) with our finding (that all vertex-minimal triangulations of
surfaces of genus g ≤ 4 are realizable) gives rise to:

Conjecture 5 Every triangulation of an orientable surface of genus g ≤ 4 is geometrically
realizable.

4.1 Examples with More Vertices

We also tried our program on some triangulations of tori with more vertices. It turned out
that it still is possible to find realizations, although it takes much longer for every step of
the local search process: There are O(|V |2) pairs of triangles that have to be considered for
the computation, respectively for the update, of the intersection edge functional. Moreover,
there are 6|V | possible moves from a current set of coordinates that lead to a new set of
coordinates. In the worst case, we are forced to test almost all these moves just to carry out
a single improvement step. Finally, the initial value of the intersection edge functional will
be larger for triangulations with more vertices, thus, forcing us to perform more steps.

Example 5: For the standard (3×10)-torus (Figure 9) we started with random coordinates
(Figure 10, left) and an initial value 7924.26 of the intersection edge functional. It then took
3042 local search steps to obtain a proper realization, as given in Figure 10 at the right.

5 Convex Realizations

If a set of n points in general position in R
3 allows for a convex realization of a triangulated

2-sphere with n vertices, then there are no intersections between a face of the triangulation
with 1, 2, or 3 elements and a non-face with 2, 3, or 4 elements with respect to the given
coordinates.

Thus, by adding to the intersection edge functional the lengths of intersection edges for
all pairs of triangles consisting of a triangle of the triangulation and a triangle that does not
belong to the triangulation the resulting extended intersection edge functional can be used
to obtain convex realizations for triangulated 2-spheres.
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Figure 10: The standard (3 × 10)-torus with random coordinates and a proper realization.

Proposition 6 If a triangulated 2-sphere has no vertex of degree 3, then the extended in-
tersection edge functional is zero if and only if a convex realization (with vertices in general
positions) has been reached.

Proof. If a convex realization has been reached, then obviously the extended intersection
edge functional is zero.

For the other direction, assume that the functional is zero. In case there is a vertex v

that is contained in the convex hull of the other n − 1 vertices, then this vertex is contained
in the convex hull of some subset {v1, v2, v3, v4} of four of the n − 1 vertices. Without loss
of generality, we can assume that no other of the n − 1 vertices is contained in the convex
hull of the four vertices {v1, v2, v3, v4}. Since the vertex v has degree at least 4, at least
one of its triangles has to intersect the boundary of the tetrahedron spanned by the vertices
v1, v2, v3, v4, contradiction. Thus, the n vertices have to be in convex position. If there is
a triangle {w1, w2, w3} of the triangulation which is not a boundary triangle of the convex
polytope spanned by the n vertices, then there are two vertices w4 and w5 of the triangulation
which lie on different sides of the hyperplane spanned by the triangle {w1, w2, w3}. Since the
five points w1, w2, w3, w4, w5 are in convex position, there is one vertex wi, i ∈ {1, 2, 3}, such
that the triangles {w1, w2, w3} and {wi, w4, w5} intersect, contradiction. 2

In case a triangulation has vertices of degree 3, we can recursively remove these vertices
from the triangulation. The resulting triangulation then either is the boundary of a tetrahe-
dron or a triangulation with vertices of degree at least four. After obtaining a realization for
the simplified triangulation, the removed vertices can be added back by placing them suitably
above the triangles which they subdivide.

We successfully tested our approach for some smaller triangulations of S2: there are 233
triangulations of S2 with 10 vertices of which 12 have no vertices of degree 3. It took, on
average, about 5 minutes to obtain convex realizations for these examples.
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Remark: Not all simplicial 3-spheres are polytopal. (The Brückner-Grünbaum sphere [28]
and the Barnette sphere [5], both with 8-vertices, are the smallest non-polytopal simplicial
3-spheres.)

However, for a given simplicial 3-sphere one might try to carry out the same procedure as
above in order to obtain a convex realization for it in R

4, this time by using an intersection
area functional.
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senschaften mit Einschluss ihrer Anwendungen, Dritter Band: Geometrie, III.1.1., Heft 1
(W. Fr. Meyer and H. Mohrmann, eds.), Chapter III AB3, 153–220. B. G. Teubner,
Leipzig, 1907.

[25] B. S. Everitt. The Cambridge Dictionary of Statistics. Cambridge University Press,
Cambridge, 1998.
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Elementarverwandtschaft. Gesammelte Werke II (F. Klein, ed.), 515–559. Verlag von
S. Hirzel, Leipzig, 1886.

[40] I. Novik. A note on geometric embeddings of simplicial complexes in a Euclidean space.
Discrete Comput. Geom. 23, 293–302 (2000).

[41] R. Penrose, J. H. C. Whitehead, and E. C. Zeeman. Imbedding of manifolds in Euclidean
space. Ann. Math. 73, 613–623 (1961).
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Basel.

[57] E. R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg
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P. Schröder, and G. M. Ziegler, eds.), Oberwolfach Seminars, Birkhäuser, Basel.
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