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Abstract. The 2-Opt heuristic is one of the simplest algorithms for finding good
solutions to the metric Traveling Salesman Problem. It is the key ingredient to
the well-known Lin-Kernighan algorithm and often used in practice. So far, only
upper and lower bounds on the approximation ratio of the 2-Opt heuristic for
the metric TSP were known. We prove that for the metric TSP with n cities, the
approximation ratio of the 2-Opt heuristic is

√
n/2 and that this bound is tight.
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1 Introduction

In the Traveling Salesman Problem (TSP), we are given n cities with their
pairwise distances. The task is to find a shortest tour that visits each city
exactly once. The Traveling Salesman Problem is one of the most intensely
studied problems in combinatorial optimization. It is well known to be NP-
hard [4]. Without any additional assumptions, the Traveling Salesman Prob-
lem is also hard to approximate to any number that is polynomial in n [11].
The metric TSP is a special case of the TSP where the distance function
satisfies the triangle inequality. The metric TSP is also NP-hard [6]. There-
fore, a lot of time has been spent to find polynomial time algorithms with a
small approximation ratio for the metric TSP. In 1976, Christofides [3] pro-
posed an algorithm for the metric TSP with an approximation ratio of 3/2.
To date, no polynomial time algorithm with smaller approximation ratio is
known.

For real-world instances appearing in practice, it turns out that many
simple algorithms often find better solutions than Christofides’ algorithm
(see e.g. [5,1,10]). One of these algorithms is the 2-Opt heuristic, which is
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the key ingredient to the well-known Lin-Kernighan algorithm [8]. Starting
with an arbitrary tour, the 2-Opt heuristic repeatedly replaces two edges of
the tour by two other edges, as long as this yields a shorter tour. The 2-Opt
heuristic stops when no further improvement can be made this way. A tour
that the 2-Opt heuristic cannot improve is called 2-optimal.

Experiments on real-world instances have shown that the 2-Opt heuristic
applied to a greedy tour achieves much better results than Christofides’
algorithm (see e.g. Bentley [1]). The exact approximation ratio of the 2-Opt
heuristic for metric TSP was not known so far. In 1987, Plesńık [9] proved
a lower bound of

√
n/8. In 1999, Chandra, Karloff, and Tovey [2] presented

a proof showing an upper bound of 4
√
n. In 2013, Levin and Yovel [7]

observed that this proof yields the value 2
√

2n. This leaves a gap of factor
8 between the upper bound 2

√
2n and the lower bound

√
n/8. Our main

result determines the exact approximation ratio of the 2-Opt heuristic:

Theorem 1. The length of a 2-optimal tour in a metric TSP instance with
n cities is at most

√
n/2 times the length of a shortest tour and this bound

is tight.

As the 2-Opt heuristic always returns a 2-optimal tour and the 2-Opt
heuristic may start with any tour, we immediately get:

Corollary 1. The 2-Opt heuristic for metric TSP instances with n cities
has approximation ratio

√
n/2 and this result is tight.

To prove Theorem 1, we show in Section 3 that the length of a 2-optimal
tour in a metric TSP instance is bounded by

√
n/2 times the length of a

shortest tour. In Section 4, we provide an infinite family of metric TSP
instances and 2-optimal tours within these instances with length

√
n/2

times the length of a shortest tour. This proves the tightness stated in
Theorem 1. Before proving the upper and the lower bound, we present in
Section 2 some notation and background on the 2-Opt heuristic.

2 Metric TSP and the 2-Opt Heuristic

Let G = (V (G), E(G)) be a complete undirected graph with |V (G)| = n.
The set E(G) contains all

(
n
2

)
possible edges between the n vertices. The

distances between the vertices are defined by a function c : E(G) → R≥0.
A tour in G is a cycle that contains all the vertices of G. The length of a
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tour T in G is defined as c(T ) :=
∑

e∈E(T ) c(e). A shortest tour is a tour of

minimum length among the tours in G. Given a graph G = (V (G), E(G))
and a function c : E(G)→ R≥0, the Traveling Salesman Problem is to find
a shortest tour in G. To simplify the notation, we will denote the length of
an edge {x, y} ∈ E(G) simply by c(x, y) instead of the more cumbersome
notation c({x, y}). In the metric TSP, the distance function c satisfies the
triangle inequality, i.e. we have for any set of three vertices x, y, z ∈ V (G):

c(x, y) + c(y, z) ≥ c(x, z). (1)

An algorithm for the traveling salesman problem has approximation ratio
α(n) ≥ 1 if for every TSP instance with n vertices, it finds a tour that is at
most α(n) times as long as a shortest tour.

The 2-Opt heuristic repeatedly replaces two edges from the tour by two
other edges such that the resulting tour is shorter. Given a tour T and two
edges {a, b} and {x, y} in T , there are two possibilities to replace these two
edges by two other edges. Either we can choose the pair {a, x} and {b, y} or
we can choose the pair {a, y} and {b, x}. Exactly one of these two pairs will
result in a tour again. Without knowing the other edges of T , we cannot
decide which of the two possibilities we have to choose. Therefore, we will
assume in the following that the tour T is an oriented cycle, i.e. the edges
of T have an orientation such that each vertex has exactly one incoming
and one outgoing edge. Using this convention, there is only one possibility
to exchange a pair of edges such that the new edge set is a tour again: two
directed edges (a, b) and (x, y) have to be replaced by the edges (a, x) and
(b, y). Note that to obtain an oriented cycle again, one has to reverse the
direction of the segment between b and x, see Figure 1.

a

y

b

x

a

y

b

x

Fig. 1. A TSP tour (left) and the tour obtained after replacing the edges (a, b) and (x, y) with
the edges (a, x) and (b, y) (right). The orientation of the tour segment between the vertices b
and x has been reversed in the new tour.
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If (a, b) and (x, y) are two edges in a tour T and we have

c(a, x) + c(b, y) < c(a, b) + c(x, y)

then we say that replacing the edges (a, b) and (x, y) in T by the edges
(a, x) and (b, y) is an improving 2-change. Thus, the 2-Opt heuristic can be
formulated as follows:

2-Opt heuristic (G = (V (G), E(G)), c : E(G)→ R≥0)

1 start with an arbitrary tour T
2 while ∃ improving 2-change in T
3 perform an improving 2-change
4 output T

3 The Upper Bound on the Approximation Ratio

Chandra, Karloff, and Tovey [2] proved in 1999 that the 2-Opt heuristic has
an approximation ratio of 4

√
n for metric TSP. In 2013, Levin and Yovel [7]

observed that their proof yields the upper bound 2
√

2n. Here we present a
new proof which improves this bound by a factor of 4:

Theorem 2. The approximation ratio of the 2-Opt heuristic on metric TSP
is at most

√
n
2
.

Proof. Let G = (V (G), E(G)) with c : E(G) → R≥0 and |V (G)| = n be a
metric TSP instance and let T be an optimal tour. We may assume that T
has length 1. We fix an orientation of the tour T and choose two vertices
p, q ∈ V (G) arbitrarily. For each vertex v ∈ V (G), let ip(v) be the length
taken mod 1 of the unique shortest directed p-v path starting in p and
using only edges of T . By our assumption, we have ip : V (G) → [0, 1) and
we define iq similarly. For the following, it helps to think of [0, 1) as the
circle with circumference 1 and of ip as an embedding of the optimal tour
into this circle such that the arc distance of two consecutive vertices on the
circle is the length of the edge between them.

Define the following metric d on the interval [0, 1), interpreted as a circle:
d(x, y) is the length of the shorter of the two arcs between x and y on the
circle, i.e., d(x, y) := min{|x− y|, 1− |x− y|}. For any points x, y, z ∈ [0, 1)
we have d(x, y) + d(y, z) ≥ d(x, z) since combining the two shortest arcs
between x, y and y, z and deleting the overlap results in an arc between
x, z.
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Let T ′ be a 2-optimal tour. As usual, we assume that it is directed. Now
consider for each edge (u, v) of T ′ the set

Sp,q(u, v) = {(x, y) ∈ [0, 1)× [0, 1) : d(x, ip(u)) + d(y, iq(v)) < c(u, v)},

as shown in Figure 2. We claim that all these sets are pairwise disjoint
for distinct edges (u1, v1), (u2, v2) ∈ E(T ′). Suppose that Sp,q(u1, v1) and
Sp,q(u2, v2) intersect in (x, y). Then, by the triangle inequality for c and d,
we have

c(u1, u2) + c(v1, v2) ≤ d(ip(u1), ip(u2)) + d(iq(v1), iq(v2))

≤ d(ip(u1), x) + d(x, ip(u2)) + d(iq(v1), y) + d(y, iq(v2))

< c(u1, v1) + c(u2, v2).

This contradicts the 2-optimality of T ′. Hence, all these sets Sp,q(u, v) are
disjoint.

0
0

1

1

ip(u)ip(a)

iq(v)

iq(b)
Sp,q(a, b)

Sp,q(u, v)

c(u, v)

c(u, v)

Fig. 2. The sets Sp,q(a, b) (red) and Sp,q(u, v) (green) assigned to the edges (a, b) and (u, v) of
a 2-optimal tour. The sets are taken modulo the unit square and thus may consist of up to four
parts.

Next, we want to show that the area of each set is independent of the
choice of p and q. Let p′ and q′ be a different choice. Note that for all
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vertices u, we have ip′(u) = ip′(p) + ip(u) mod 1. In particular, we find
d(x, ip(u)) = d(x + ip′(p) mod 1, ip′(u)) because both points are shifted by
ip′(p) on the circle [0, 1). By the definition of Sp,q(u, v), this means that the
map

t : [0, 1)× [0, 1)→ [0, 1)× [0, 1)

(x, y) 7→ (x+ ip′(p) mod 1, y)

bijectively sends Sp,q(u, v) to Sp′,q(u, v). In other words, we obtain Sp′,q(u, v)
from Sp,q(u, v) by cutting the unit square vertically at 1 − ip′(p) = ip(p

′)
into two rectangles and reassembling them, as described by the following
two translations:

t1 : [0, ip(p
′))× [0, 1)→ [ip′(p), 1)× [0, 1)

(x, y) 7→ (x+ ip′(p), y)

t2 : [ip(p
′), 1)× [0, 1)→ [0, ip(p

′))× [0, 1)

(x, y) 7→ (x− ip(p′), y)

Since they have disjoint domains and disjoint images, their union t = t1∪ t2
is a bijection [0, 1) × [0, 1) → [0, 1) × [0, 1); sends Sp,q(u, v) bijectively to
Sp′,q(u, v); and preserves the area of this set because it consists of transla-
tions. Analogously, we can cut the square horizontally at iq(q

′) to obtain
Sp′,q′(u, v) from Sp′,q(u, v), again preserving its area. We conclude that the
area of Sp,q(u, v) is independent of the choice of p and q.

Now we want to show that the area of Sp,q(u, v) is 2c(u, v)2 for any edge
(u, v) ∈ E(T ′). By the previous paragraph, we can choose p = u and q = v.
Then Su,v(u, v) = {(x, y) ∈ [0, 1) × [0, 1) : d(x, 0) + d(y, 0) < c(u, v)}. This
set consists of four congruent isosceles right-angled triangles whose legs have
length c(u, v). Note that they do not overlap because the metric property

ensures c(u, v) ≤ 1
2
. Hence we have: area(Sp,q(u, v)) = 4 · c(u,v)

2

2
= 2c(u, v)2.

Since the sets Sp,q(u, v) for (u, v) ∈ E(T ′) are pairwise disjoint, their
combined area cannot exceed that of the unit square:

2
∑

e∈E(T ′)

c(e)2 =
∑

(u,v)∈E(T ′)

area(Sp,q(u, v)) ≤ area([0, 1)× [0, 1)) = 1.

Then the inequality of arithmetic and quadratic means implies∑
e∈E(T ′) c(e)

n
≤

√∑
e∈E(T ′) c(e)

2

n
≤ 1√

2n
.

Hence, the length of the 2-optimal tour T ′ satisfies
∑

e∈E(T ′) c(e) ≤
√

n
2
.
ut
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4 The Lower Bound on the Approximation Ratio

To prove a lower bound α on the approximation ratio of the 2-Opt heuristic
for the metric TSP, one has to show that for infinitely many n, there exists
a metric TSP instance with n cities that contains a 2-optimal tour which is
α times longer than a shortest tour.

In 1999, Chandra, Karloff, and Tovey [2] provided such a construction
for all n of the form 4 ·k2 for positive integers k, which shows a lower bound
of 1

4

√
n. Several years earlier, Plesńık [9] had given another construction

without explicitly stating a lower bound. It turns out that his construction
yields a lower bound of 1√

8

√
n and works for all n of the form 8 ·k2−8 ·k+3

for positive integers k.

The following result improves Plesńık’s lower bound by a factor of 2,
and yields the tight result stated in Theorem 1.

Theorem 3. The approximation ratio of the 2-Opt heuristic on the metric
TSP is at least

√
n
2
.

Proof. Let G be a complete graph on n := 2 · k2 nodes with vertex set
V (G) := {vi,j : 1 ≤ i, j ≤ k} ∪ {wi,j : 1 ≤ i, j ≤ k}. For each i with
1 ≤ i ≤ k, we call Vi := {vi,j : 1 ≤ j ≤ k} and Wi := {wi,j : 1 ≤ j ≤ k} a
section of V (G) and the v-vertices and w-vertices the two halves of V (G).

We define a distance function c : E(G)→ R≥0 as follows:

c(vi,j, wi′,j′) = 1 for all 1 ≤ i, i′, j, j′ ≤ k

c(vi,j, vi′,j′) =

{
0 i = i′

2 i 6= i′
for all 1 ≤ j, j′ ≤ k

c(wi,j, wi′,j′) =

{
0 i = i′

2 i 6= i′
for all 1 ≤ j, j′ ≤ k

It is not hard to see that the function c satisfies the triangle inequality:
Let u, v, w be any three vertices in V (G). We want to show that c(u,w) ≤
c(u, v)+c(v, w). As c takes only the values 0, 1, 2, this is obvious if c(u, v) ≥ 1
and c(v, w) ≥ 1. Otherwise, without loss of generality, we may assume
c(u, v) = 0. i.e., u and v are in the same section of V (G). But then the def-
inition of c implies c(u,w) = c(v, w) and the triangle inequality is satisfied.
Therefore, the graph G with cost function c is a metric TSP instance.
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Fig. 3. The optimal tour T (left) and the 2-optimal tour T ′ (right) for k = 4. Note that the
w-vertices on the right are mirrored at the diagonal compared to the w-vertices on the left. Thus,
on the left, vertices within the sections Vi and Wi are in a row. On the right, the vertices in the
sections Vi are in a row while the vertices in a section Wi are within a column. The colored bars
contain the vertices belonging to the same section.

In the following, we will construct two special tours in G, which are
depicted in Figure 3. Let T be the tour consisting of the edges

E(T ) = {(vi,j, vi,j+1) : 1 ≤ i ≤ k, 1 ≤ j < k} ∪
{(wi,j, wi,j+1) : 1 ≤ i ≤ k, 1 ≤ j < k} ∪
{(vi,k, wi,1) : 1 ≤ i ≤ k} ∪
{(wi,k, vi+1,1) : 1 ≤ i < k} ∪
{(wk,k, v1,1)}.

The edges in the first two sets have length 0; the 2k edges in the other
three sets have length 1. Therefore, we have c(T ) = 2k. This tour is optimal
because any tour has to visit all 2k sections of V (G) and the distance of
two vertices from different sections is at least 1.

Next we consider the tour T ′ with

E(T ′) = {(vi,j, wj,i) : 1 ≤ i, j ≤ k} ∪
{(wj,i, vi,j+1) : 1 ≤ i ≤ k, 1 ≤ j < k} ∪
{(wk,i, vi+1,1) : 1 ≤ i < k} ∪
{(wk,k, v1,1)}.
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Each edge of T ′ has length 1. Thus we have c(T ′) = 2k2. We claim that
the tour T ′ is 2-optimal. Assume by contradiction that T ′ is not 2-optimal.
Consider a pair of edges (a, b), (x, y) that allows an improving 2-change to
(a, x), (b, y). Hence c(a, x) + c(b, y) < c(a, b) + c(x, y) = 2 and one of c(a, x)
or c(b, y) must be zero. This means a and x or b and y must be in the same
section. But since a and b are in opposite halves of V (G) (just like x and
y), this means that a and x are in one half of V (G) and b and y in the
other. Hence c(a, x), c(b, y) ∈ {0, 2}. For an improving 2-change, we must
have c(a, x) = c(b, y) = 0. This implies that a and x lie in the same section
of V (G) and b and y lie in the same section of V (G). Thus there must exist
indices i and j with 1 ≤ i, j ≤ k such that a, x ∈ Vi and b, y ∈ Wj or such
that a, x ∈ Wi and b, y ∈ Vj. This implies that there must exist two different
edges from Vi to Wj or from Wi to Vj. However, this is a contradiction as
by definition of T ′, for any pair i, j with 1 ≤ i, j ≤ k, there exists exactly
one edge directed from Vi to Wj (namely the edge (vi,j, wj,i)) and exactly
one edge directed from Wj to Vi. This proves the 2-optimality of T ′.

Combining the above findings we get

c(T ′)

c(T )
=

2k2

2k
= k =

√
2k2

2
=

√
n

2
.

ut

References

1. Jon Jouis Bentley. Fast algorithms for geometric Traveling Salesman Problems. ORSA
Journal on Computing, 4:387–411, 1992.

2. Barun Chandra, Howard Karloff, and Craig Tovey. New results on the old k-opt algorithm
for the Traveling Salesman Problem. SIAM J. Comput, 28:1998–2029, 1999.

3. Nicos Christofides. Worst-case analysis of a new heuristic for the Travelling Salesman
Problem. Technical Report 388, Carnegie-Mellon University, 1976.

4. Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

5. David S. Johnson. Local optimization and the Traveling Salesman Problem. In International
Colloquium on Automata, Languages, and Programming. ICALP 1990, pages 446–461, 1990.

6. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations, pages 85–103, New
York – London, 1972. Plenum Press.

7. Asaf Levin and Uri Yovel. Nonoblivious 2-opt heuristics for the Traveling Salesman Problem.
Networks, 62:201–219, 2013.

8. S. Lin and B. W. Kernighan. An effective heuristic algorithm for the Traveling-Salesman
Problem. Operations Research, 21:498–516, 1973.
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