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Abstract

We present a new exact algorithm for the Steiner tree problem in

graphs which is based on dynamic programming. Known empirically fast

algorithms are primarily based on reductions, heuristics and branching.

Our algorithm combines the best known worst-case run time with a fast,

often superior, practical performance.

1 Introduction

We consider the well-known Steiner tree problem in graphs: Given an undirected
graph G, costs c : E(G) → R≥0 and a terminal set D ⊆ V (G), find a tree Y in
G such that D ⊆ V (Y ) and c(E(Y )) is minimum. The decision version of the
Steiner tree problem is one of the classical NP-complete problems [18], it is even
NP-complete in the special case thatG is bipartite with c ≡ 1. Furthermore, it is
NP-hard to approximate the Steiner tree problem within a factor of 96

95 [5]. While
for a long time the best known approximation algorithms were combinatorial,
including the 1.55-approximation by Robins and Zelikovsky [25], the currently
best known approximation algorithm by Byrka et al. [4] uses polyhedral methods
to achieve a 1.39-approximation. The Steiner tree problem has many practical
applications, in particular in VLSI design [17], where electrical connections are
realized by Steiner trees.

From now on, we will refer to |V (G)| by n, |E(G)| bym and |D| by k. Dreyfus
and Wagner [8] applied dynamic programming to the Steiner tree problem to
obtain an exact algorithm with a run time of O(n(n logn+m) + 2kn2 +3kn) if
implemented using Fibonacci heaps [12]. In 1987, Erickson, Monma and Veinott
[10] improved the run time to O(3kn + 2k(n logn + m)) using a very similar
approach. In 2006, Fuchs et al. [13] proposed an algorithm with a run time of

O((2 + δ)kn(ln(
1

δ
)/δ)ζ ) for every sufficiently small δ > 0 and ζ > 1

2 , improving
the exponential dependence on k from 3k to (2 + δ)k. Vygen [29] developed
an algorithm with a worst-case run time of O(nk2k+log

2
(k) log

2
(n)), which is the

fastest known algorithm if f(n) < k < g(n) for some f(n) = polylog(n) and
g(n) = n

2 − polylog(n). However, for k < 4 logn, the run time obtained by
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Erickson, Monma and Veinott [10] is still the best known. See [29] for a more
detailed analysis of the run times mentioned above.

For graphs with treewidth t, one can solve the Steiner tree problem in time
O(ntO(1)) [3]. An implementation of this algorihm was evaluated in [11]. Polzin
and Vahdati Daneshmand [23] proposed an algorithm with a worst-case run time
of O(n2b log b+3b+log b) where b is a parameter closely related to the pathwidth of
G. They use this algorithm as a subroutine in their successful reduction-based
Steiner tree solver [21, 28].

Except for the last mentioned algorithm, these results have played a very
limited role in practice. Instead, empirically successful algorithms rely on pre-
processing and reduction techniques, heuristics and branching: First, reductions
[2, 9, 22, 27] are applied to reduce the size of the graph and the number of termi-
nals, guaranteeing that optimum solutions of the reduced instance correspond
to optimum solutions of the original instance. These reductions are not limited
to simple local edge elimination tests, but may also rely on linear programming
formulations and optimum solutions of partial instances. Primal and dual [1, 31]
heuristics yield good upper and lower bounds, in many cases even resulting in a
provably optimum solution. If these methods do not already solve the instance,
enumerative algorithms are used. To this end, various authors [1, 6, 19] per-
form branch and cut. However, the solver by Polzin and Vahdati Daneshmand
[21, 28], which achieved the best results so far, uses a branch & bound approach,
where high effort is put into single nodes to minimize the number of branching
nodes.

We propose a dynamic programming based algorithm with a worst-case run
time ofO(3kn+2k(n logn+m)), matching the best known result for small k. Our
new algorithm achieves competitive results on VLSI instances, even without the
use of preprocessing. Instead, good practical performance is achieved by using
future cost estimates, which is a well-known concept to speed up shortest path
computations [14], and effectively pruning partial solutions.

The rest of this paper is organized as follows: In Section 2, we describe our
algorithm and show how to use lower bounds to improve its performance in
practice. Examples of such lower bounds are given in Section 3. Section 4 intro-
duces a pruning technique to further improve practical performance. Section 5
contains a few implementation details and computational results.

2 The Algorithm

For a set X ⊆ V (G), we denote by smt(X) the length of a shortest Steiner
tree for the terminal set X . Our algorithm needs an arbitrary root terminal
t ∈ D. We will call the remaining terminals D′ := D \ {t} source terminals.
Now consider the function l : V (G) × 2D

′

→ R≥0 with l(v, I) := smt({v} ∪ I).
Then, l(t,D′) gives the cost of an optimum Steiner tree. The algorithms by
Dreyfus and Wagner [8] and Erickson et al. [10] as well as our algorithm use
dynamic programming to compute l.

The former two compute l as follows: For each i from 1 to |D′|, they consider
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all I ⊆ D′ with |I| = i one after another and then compute l(v, I) for all
v ∈ V (G). This way, it is guaranteed that when computing l(v, I), the values
l(w, I ′) for all w ∈ V (G) and I ′ ⊂ I are already known. However, this leads to
an exponential best case run time of Ω(2kn). In contrast, our new algorithm
considers all terminal sets simultaneously using a labeling technique similar to
Dijkstra’s algorithm [7]. This way, we do not necessarily have to compute all
values of l. We can further improve practical performance by pruning and
using future cost estimates, a generalization of a speedup technique known from
Dijkstra’s algorithm.

Our new algorithm labels from the source terminals towards the root t.
More precisely, the algorithm labels elements of V (G) × 2D

′

. Each label (v, I)
represents a shortest Steiner tree found so far connecting v with I ⊆ D′. Each
time a label (v, I) becomes active, all neighbors w of v are checked and updated
if the Steiner tree represented by (v, I) plus the edge {v, w} leads to a better
solution for (w, I) than previously known. This operation is well-known from
Dijkstra’s algorithm. In addition, for all disjoint sets I ′ ⊆ D′ \ I it is checked
whether the Steiner trees for (v, I) and (v, I ′) combined to a tree for (v, I ∪ I ′)
lead to a better solution than previously known.

To allow a simpler presentation, we restrict ourselves to instances without
edges of zero cost. Such edges can be contracted in a trivial preprocessing step,
preserving optimum solutions.

Now, we introduce the notion of feasible lower bounds, which are used by the
algorithm to estimate the future cost of a label (v, I). The future cost of a label
is the cost to complete the corresponding partial Steiner tree, which connects v
with I, to a Steiner tree connecting all terminals by a tree connecting v with
D \ I.

Definition 1. Let (G, c,D) be an instance of the Steiner tree problem and t ∈ D.
A function L : V (G) × 2D → R≥0 is called a feasible lower bound if

L(t, {t}) = 0

and

L(v, I) ≤ L(w, I ′) + smt((I \ I ′) ∪ {v, w})

for all v, w ∈ V (G) and {t} ⊆ I ′ ⊆ I ⊆ D.

Note that the values L(v, I) for t /∈ I do not affect whether L is a feasible
lower bound. Also note that by choosing I ′ = {t} and w = t, we have L(v, I) ≤
smt(I ∪{v}), so a feasible lower bound by definition indeed is a lower bound on
the length of a shortest Steiner tree. Moreover, if e = {v, w} ∈ E(G) is an edge,
by choosing I ′ = I, we have

L(v, I) ≤ L(w, I) + smt({v, w}) ≤ L(w, I) + c(e).

This shows that feasible lower bounds generalize future costs (also known as
feasible potentials), which are used in practice to speed up Dijkstra’s algorithm
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by considering reduced edge costs [14]. In fact, our algorithm applied to the
case |D| = 2 is identical to Dijkstra’s algorithm using future costs in the very
same way.

To construct the Steiner tree corresponding to (t,D′), each label (v, I) is
equipped with backtracking data b(v, I) ⊆ V (G) × 2D

′

. If b(v, I) is not empty,
it will always either be of the form b(v, I) = {(w, I)} where w is a neighbor
of v or of the form b(v, I) = {(v, I1), (v, I2)} where I1 and I2 form a partition
of I into non-empty sets. In the first case, i.e., b(v, I) = {(w, I)}, the Steiner
tree represented by the label (v, I) contains exactly one edge incident to v,
which is {v, w}. In the second case, i.e., b(v, I) = {(v, I1), (v, I2)}, the Steiner
tree represented by (v, I) contains at least two edges incident to v and thus
can be split into two Steiner trees for the terminal sets I1 ∪ {v} and I2 ∪ {v},
where I1 and I2 form a partition of I into nonempty sets. To be precise, it
may happen that the subgraph of G corresponding to some label (v, I) contains
cycles. However, since we ruled out edges of zero cost, this can only be the case
as long as the label is not permanent.

By P ⊆ V (G)× 2D
′

we denote the set of permanently labeled elements. For
a vertex v ∈ V (G), we denote by δ(v) the set of edges incident to v. Note that
L ≡ 0 is always a feasible lower bound, which may serve as an example to help
understanding the algorithm. Other examples of feasible lower bounds will be
discussed in Section 3.

Theorem 2. The Dijkstra-Steiner algorithm works correctly.

Proof. We will prove that the following invariants always hold when line 5 is
executed:

(a) For each nonempty I ⊆ D′ and v ∈ V (G) with l(v, I) < ∞:

(a1) l(v, I) =

{

c({v, w}) + l(w, I) if b(v, I) = {(w, I)},
∑

(v,I′)∈b(v,I) l(v, I
′) otherwise,

(a2) I ∪ {v} = {v} ∪ ˙⋃
(w,I′)∈b(v,I)I

′,

(a3) backtrack(v, I) returns a connected subgraph T of G containing {v}∪I
with c(T ) ≤ l(v, I). If T is a tree, we have c(T ) = l(v, I).

(b) For each nonempty I ⊆ D′ and v ∈ V (G) with (v, I) ∈ P :

l(v, I) = smt({v} ∪ I).

(c) For each nonempty I ⊆ D′ and v ∈ V (G) with (v, I) /∈ P :

(c1) l(v, I) ≥ smt({v} ∪ I),

(c2) If I = {v}, then l(v, I) = 0, otherwise
l(v, I) ≤ min{v,w}∈δ(v),(w,I)∈P (l(w, I) + c({v, w})) and
l(v, I) ≤ minI=I1∪̇I2 and (v,I1),(v,I2)∈P (l(v, I1) + l(v, I2)).
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Dijkstra-Steiner algorithm

Input : A connected undirected graph G, costs c : E(G) → R>0, a
terminal set D ⊆ V (G), a root terminal t ∈ D, and a feasible
lower bound L : V (G) × 2D → R≥0.

Output: A shortest Steiner tree for D in G.

1 l(s, {s}) := 0 for all s ∈ D′ := D \ {t} and l(v, I) := ∞ for all other

(v, I) ∈ V (G) × 2D
′

;

2 b(v, I) := ∅ for all (v, I) ∈ V (G)× 2D
′

;
3 P := V (G)× {∅};
4 while (t,D′) /∈ P do

5 Choose (v, I) ∈ (V (G)× 2D
′

) \ P minimizing l(v, I) + L(v,D \ I);
6 for all e = {v, w} ∈ δ(v) do
7 if l(v, I) + c(e) < l(w, I) then
8 l(w, I) := l(v, I) + c(e);
9 b(w, I) := {(v, I)};

10 end

11 end
12 for all ∅ 6= I ′ ⊆ D′ \ I with (v, I ′) ∈ P do
13 if l(v, I) + l(v, I ′) < l(v, I ∪ I ′) then
14 l(v, I ∪ I ′) := l(v, I) + l(v, I ′);
15 b(v, I ∪ I ′) := {(v, I), (v, I ′)};

16 end

17 end
18 P := P ∪ {(v, I)};

19 end
20 return backtrack(t,D′);

Procedure backtrack(v, I)
21 T := ({v}, ∅);
22 V (T ) := V (T ) ∪

⋃

(w,I′)∈b(v,I) V (backtrack(w, I ′));

23 E(T ) :=
⋃

(w,I′)∈b(v,I) E(backtrack(w, I ′));

24 if b(v, I) = {(w, I)} for a neighbor w of v then
25 E(T ) := E(T ) ∪ {{v, w}};
26 end
27 return T ;
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(d) There is a label (v, I) that can be chosen, i.e., (V (G)×2D
′

)\P is not empty.

Assuming (a) – (d), the correctness of the algorithm directly follows: Once we
have (t,D′) ∈ P , (b) implies l(t,D′) = smt({t} ∪D′) = smt(D). Furthermore,
(a3) implies the algorithm returns a connected subgraph T of G containing D
with c(T ) ≤ l(t,D′) = smt(D). Since there are no edges of zero cost, T indeed
is a tree.
Clearly, after line 3 these invariants hold. We have to prove that lines 5 to 18
preserve (a), (b), (c) and (d).
To this end, let (v, I) be the label chosen in line 5 in some iteration. Clearly,
lines 5 to 18 preserve (a) and (c2). Since (c) held before the current iteration,
we have l(v, I) ≥ smt({v} ∪ I). This directly implies

l(v, I) + c({v, w}) ≥ smt({v} ∪ I) + c({v, w})

≥ smt({v, w} ∪ I)

≥ smt({w} ∪ I).

Also, if ∅ 6= I ′ ⊆ D′ \ I is a set chosen in line 12 leading to the change of
l(v, I ∪ I ′), we have

l(v, I ∪ I ′) = l(v, I) + l(v, I ′)

≥ smt({v} ∪ I) + smt({v} ∪ I ′)

≥ smt({v} ∪ I ∪ I ′),

so (c1) indeed is preserved.
We now show that l(v, I) ≤ smt({v} ∪ I). We can assume I 6= {v}, since
l(v, {v}) = 0 = smt({v}). Let Y be a Steiner tree for {v} ∪ I in G and w.l.o.g.
we assume all leaves of Y are contained in {v} ∪ I. For a vertex w ∈ V (Y ), let
Yw be the subtree of Y containing all vertices x for which the unique x−v−path
in Y contains w.
We will now find a vertex w ∈ V (Y ), a nonempty terminal set I ′ ⊆ I ∩ V (Yw)
and a subtree Y ′ of Yw such that

(I) (w, I ′) /∈ P ,

(II) l(w, I ′) ≤ c(Y ′),

(III) Y ′ is a subtree of Yw containing I ′ ∪ {w},

(IV) Y − Y ′ is a tree containing (I \ I ′) ∪ {v, w}.

Here, by Y − Y ′, we refer to the graph ((V (Y ) \ V (Y ′)) ∪ {w}, E(Y ) \ E(Y ′)).
Assuming we have a triple (w, I ′, Y ′) satisfying (I) – (IV), l(v, I) ≤ smt({v}∪I)
can easily be proved: Since L is a feasible lower bound, we have

L(w,D \ I ′) ≤ L(v,D \ I) + smt((I \ I ′) ∪ {v, w})

≤ L(v,D \ I) + c(Y − Y ′)

= L(v,D \ I) + c(Y )− c(Y ′).

(1)
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Adding (II) and (1) yields

l(w, I ′) + L(w,D \ I ′) ≤ c(Y ) + L(v,D \ I).

By the choice of (v, I) in line 5 we have

l(v, I) + L(v,D \ I) ≤ l(w, I ′) + L(w,D \ I ′),

so

l(v, I) ≤ c(Y ).

It remains to be shown that we can find such a triple (w, I ′, Y ′). We call
w ∈ V (Y ) proper if (w, I ∩ V (Yw)) ∈ P before the execution of line 18. If
we have a leaf w ∈ V (Y ) \ {v} which is not proper, we set I ′ = {w} and
Y ′ = ({w}, ∅), clearly satisfying (I) – (IV). Otherwise, since v is not proper,
there is a vertex w in Y which is not proper but all neighbors w1, . . . , wj of w
in Yw are proper. Let J be an inclusion-wise minimal subset of {1, . . . , j} such
that

(

w,
⋃

i∈J(I ∩ V (Ywi
))
)

/∈ P . Since w is not proper and V (G) × {∅} ⊆ P ,
J exists and J is not empty. For i ∈ {1, . . . , j}, let Ywi→w be the subgraph of
Yw with V (Ywi→w) = {w} ∪ V (Ywi

) and E(Ywi→w) = {{w,wi}} ∪ E(Ywi
). We

define

(i) I ′ =
⋃

i∈J (I ∩ V (Ywi
)),

(ii) V (Y ′) =
⋃

i∈J V (Ywi→w) and

(iii) E(Y ′) =
⋃

i∈J E(Ywi→w).

See Figure 1 for an illustration of this setting.
The conditions (I), (III) and (IV) are satisfied by construction. If J = {i}

for some 1 ≤ i ≤ j, by (c2), we have

l(w, I ′) ≤ l(wi, I
′) + c({wi, w})

≤ smt({wi} ∪ I ′) + c({wi, w})

≤ c(Ywi
) + c({wi, w})

= c(Y ′).

Otherwise choose an arbitrary i ∈ J and see again by (c2) that

l(w, I ′) ≤ l(w, I ′ \ V (Ywi
)) + l(w, I ′ ∩ V (Ywi

))

≤ smt({w} ∪ (I ′ \ V (Ywi
))) + smt({w} ∪ (I ′ ∩ V (Ywi

)))

≤ c(Y ′ − Ywi→w) + c(Ywi→w)

= c(Y ′)− c(Ywi→w) + c(Ywi→w)

= c(Y ′).

By the same argument applied to (t,D′), we also see that there always is a label
(v, I) /∈ P with l(v, I) < ∞ which can be chosen in line 5 as long as (t,D′) /∈ P ,
so (d) is preserved as well.
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w1

w2

w3

w

v

Y ′

Figure 1: A possible configuration with J = {1, 2}. Vertices in I are drawn as
squares, proper vertices are drawn in blue.

Note that in line 5, one can actually choose any label (v, I) /∈ P with l(v, I)+
L(v,D \ I) ≤ l(w, I ′) + L(w,D \ I ′) for all (w, I ′) ∈ (V (G) × 2I) \ P . This is
a generalization of the choice as specified in the algorithm. However, in our
implementation, we always choose a label minimizing l(v, I) + L(v,D \ I).

Theorem 3. The Dijkstra-Steiner algorithm can be implemented to run in
O(3kn+2k(n logn+m)+2knfL) time, where n = |V (G)|, m = |E(G)|, k = |D|
and fL is an upper bound on the time required to evaluate L.

Proof. Since |P | increases in each iteration, we have at most n2k−1 iterations.
We use a Fibonacci heap [12] to store all labels (v, I) /∈ P with l(v, I) < ∞,
which allows updates in constant amortized time. Since the heap contains at
most 2k−1n elements, each execution of line 5 takes O(log(2k−1n)) = O(k +
log(n)) amortized time. Line 7 is executed at most 2km times and each execution
takes O(1) amortized time. Furthermore, there are exactly 3k−1 pairs I, I ′ ⊆ D′

with I ∩ I ′ = ∅, since every element in D′ can either be contained in I, I ′ or
D′\(I∪I ′), independently of the others. Thus, line 12 is executed at most 3k−1n
times. By caching values of L, we can achieve that we query L at most once
for each label, resulting in an additional run time of O(2knfL). The run time
of the backtracking clearly is dominated by the previous tasks, since backtrack
is called at most O(kn) times and requires effort linear in the size of its output.
We get a total run time of

O(2kn(logn+ k) + 2km+ 3kn+ 2knfL) = O(3kn+ 2k(n logn+m) + 2knfL),

since 2kk = O(3k).
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In Section 3, we will see that there are non-trivial feasible lower bounds L
which can be used in the algorithm while still achieving a worst-case run time
of O(3kn+ 2k(n logn+m)), matching the result of [10].

3 Lower Bounds

Roughly speaking, the larger the feasible lower bound L is, the faster our algo-
rithm will be. Before we describe examples of feasible lower bounds, we note:

Proposition 4. Let L and L′ be feasible lower bounds. Then, max(L,L′) also
is a feasible lower bound.

Proof. Let v, w ∈ V (G) and I ′ ⊆ I ⊆ D. Then

L(v, I) ≤ L(w, I ′) + smt((I \ I ′) ∪ {v, w})

≤ max(L(w, I ′),L′(w, I ′)) + smt((I \ I ′) ∪ {v, w})

and

L′(v, I) ≤ L′(w, I ′) + smt((I \ I ′) ∪ {v, w})

≤ max(L(w, I ′),L′(w, I ′)) + smt((I \ I ′) ∪ {v, w}),

so

max(L(v, I),L′(v, I)) ≤ max(L(w, I ′),L′(w, I ′)) + smt((I \ I ′) ∪ {v, w}).

Proposition 4 allows the combination of arbitrary feasible lower bounds.
Now, we present three types of feasible lower bounds. A simple feasible lower
bound can be obtained by considering terminal sets of bounded cardinality:

Definition 5. Let (G, c,D) be an instance of the Steiner tree problem, t ∈ D
and let j ≥ 1 be an integer. Then, Lj is defined as

Lj(v, I) = max
{t}⊆J⊆I∪{v},|J|≤j+1

smt(J)

for v ∈ V (G) and {t} ⊆ I ⊆ D. For v ∈ V (G) and I ⊆ D with t /∈ I, set
Lj(v, I) = 0.

Lemma 6. Let (G, c,D) be an instance of the Steiner tree problem, t ∈ D and
let j ≥ 1 be an integer. Then, Lj is a feasible lower bound. Furthermore, we
can implement Lj such that after a preprocessing time of O(3k + (2k)j−1n +
kj−1(n logn+m)), we can evaluate Lj(v, I) for every v ∈ V (G) and {t} ⊆ I ⊆ D

in time O(|I|j−1
), where n = |V (G)|, m = |E(G)| and k = |D|.
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Proof. Let v, w ∈ V (G) and {t} ⊆ I ′ ⊆ I ⊆ D. To prove that Lj is a feasible
lower bound, we have to show

max
{t}⊆J⊆I∪{v}

|J|≤j+1

smt(J) ≤ max
{t}⊆J′⊆I′∪{w}

|J′|≤j+1

smt(J ′) + smt((I \ I ′) ∪ {v, w}).

Consider the map f : I ∪{v} → I ′∪{w} with f(x) = w for x /∈ I ′ and f(x) = x
otherwise. Let J be a set with {t} ⊆ J ⊆ I ∪ {v} and |J | ≤ j + 1. Set
J ′ = {f(x) : x ∈ J}. Then, clearly {t} ⊆ J ′ ⊆ I ′ ∪ {w} and |J ′| ≤ |J | ≤ j + 1.
Moreover,

smt(J) ≤ smt(J ′) + smt((I \ I ′) ∪ {v, w}).

To achieve the given run time, we first compute l(v, I) for all v ∈ V (G) and
I ⊆ D, |I \ {t}| ≤ j − 1 in time O((2k)j−1n + kj−1(n logn + m)) using a
modified variant of the Dijkstra-Steiner algorithm. More precisely, we do not
use a lower bound, do not use a root terminal and consider terminal sets of
increasing cardinality, very similar to [10]. There are O(kj−1) sets I with I ⊆
D, |I \{t}| ≤ j− 1. Since we consider terminal sets of increasing cardinality one
after another, we always have at most n labels in the Fibonacci heap. As a set
of cardinality j has 2j subsets, there are O((2k)j−1n) updates of supersets.

Then, to evaluate Lj(v, I), we exploit

Lj(v, I) = max
{t}⊆J⊆I∪{v},|J|≤j+1

smt(J)

= max

(

max
J⊆I,|J|≤j−1

smt(J ∪ {v, t}), max
{t}⊆J⊆I,|J|≤j+1

smt(J)

)

,

where the first expression can be computed in O(|I|j−1) time using the precom-
puted values l(v, J ∪ {t}) and the second expression does not depend on v and
can be computed in advance for every I ⊆ D in O(3k) time, again using the
precomputed values of l.

Thus, for small j, e.g., j ≤ 3, Lj can be efficiently computed. In experiments
without pruning, this lower bound is useful on low-dimensional instances like
planar rectilinear grid graphs. However, pruning has a much larger impact and
eliminates this effect.

We now present a more effective lower bound. We will use the notion of
1-trees, which have long been studied [16] as a lower bound for the traveling
salesman problem. Given a complete graph H with metric edge costs and a
special vertex v ∈ V (H), a 1-tree for v and H is a tree spanning on H − v
together with two additional edges connecting v with the tree. Since every tour
consists of a path, which is a spanning tree, and a vertex connected to the
endpoints of the path, every tour is a 1-tree. Thus, a 1-tree of minimum cost
is a lower bound on the cost of a tour of minimum cost. Since such a tour of
minimum cost is at most twice as expensive as a minimum Steiner tree, we can
use 1-trees to get a lower bound for the Steiner tree problem.

10
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For v, w ∈ V (G), we denote by d(v, w) the cost of a shortest path connecting
v and w in G. Furthermore, for a set of vertices X ⊆ V , we denote by GX the
distance graph of X , which is the subgraph of the metric closure of G induced
by X . Note that since the edge costs in GX are the costs of shortest paths with
respect to positive edge costs in G, the edge costs in GX are always metric.
Moreover, for X ⊆ V (G), we denote by mst(X) the cost of a minimum spanning
tree in GX .

Definition 7. Let (G, c,D) be an instance of the Steiner tree problem and t ∈ D.
Then, the 1-tree bound L1-tree is defined as

L1-tree(v, I) = min
i,j∈I:i6=j∨|I|=1

d(v, i) + d(v, j)

2
+

mst(I)

2

for v ∈ V (G) and {t} ⊆ I ⊆ D. For v ∈ V (G) and I ⊆ D \ {t}, we set
L1-tree(v, I) = 0.

Lemma 8. Let (G, c,D) be an instance of the Steiner tree problem and t ∈ D.
Then, L1-tree is a feasible lower bound.

Proof. Let v, w ∈ V (G) and {t} ⊆ I ′ ⊆ I ⊆ D. We will show

2L1-tree(v, I) ≤ 2L1-tree(w, I
′) + 2 smt((I \ I ′) ∪ {v, w}),

which translates to

min
i,j∈I:i6=j∨|I|=1

(d(v, i) + d(v, j)) + mst(I)

≤ min
i,j∈I′:i6=j∨|I′|=1

(d(w, i) + d(w, j)) + mst(I ′) + 2 smt((I \ I ′) ∪ {v, w}).

Consider a minimum spanning tree T1 in GI′ and a Steiner tree T2 for
(I \ I ′) ∪ {v, w}. Furthermore, let j1, j2 ∈ I ′ with j1 6= j2 ∨ |I ′| = 1. This
setting is illustrated in Figure 2.
First, we construct a tour C in G(I\I′)∪{v,w} of cost at most 2c(T2) using the
standard double tree argument: If we double each edge in T2, the graph gets
Eulerian and we can find a Eulerian cycle. If we visit the vertices in the order
the Eulerian cycle visits them and skip already visited vertices, we obtain a tour
of at most the same cost exploiting that the edge costs in the distance graph
are metric.
We can decompose the tour into two paths P1 and P2 in GI∪{v,w} with endpoints
v and w such that (I \ I ′) ∪ {v, w} = V (P1) ∪ V (P2) and c(P1) + c(P2) = c(C).
Now, for i ∈ {1, 2}, we define P ′

i = (V (Pi) ∪ {ji}, E(Pi) ∪ {{w, ji}}), which is
the path obtained by appending the edge {w, ji} to Pi.
If I1 := (I \ I ′) ∩ V (P1) is empty, let j′1 be j1, else, let j

′
1 be the first terminal

in I1 when traversing P1 from v to w.
Similarly, if I2 := (I \ I ′) \ V (P1) ⊆ V (P2) is empty, set j′2 = j2, else let j′2 be
the first terminal in I2 when traversing P2 from v to w.
Since I1 and I2 are disjoint and do not contain j1, j2 ∈ I ′, we have

j′1 = j′2 =⇒ (j1 = j′1 = j′2 = j2 ∧ I \ I ′ = ∅),

11
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which together with

j1 = j2 =⇒ |I ′| = 1

implies that

j′1 = j′2 =⇒ |I| = 1.

v
w

j1

j2

2T2 T1

Figure 2: The minimum spanning tree T1, the double Steiner tree 2T2 and the
edges {w, j1} and {w, j2}. Edges in 2T2 contributing to P1 are colored red and
edges contributing to P2 are colored blue. Vertices in I are drawn as squares.

v

j1

j2

j′1

j′2

Q1

Q2

Figure 3: j′1, j
′
2, Q1 and Q2 in the same setting as in Figure 2.

Then, let Qi be the path in GI obtained from the subpath of P ′
i from j′i to

ji by skipping w. This is illustrated in Figure 3. We have

d(v, j′1) + d(v, j′2) + d(Q1) + d(Q2) ≤ d(w, j1) + d(w, j2) + 2c(T2).

12
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Also, we have (I \ I ′) ∪ {j1, j2} ⊆ V (Q1) ∪ V (Q2) and clearly, we can find a
spanning tree in GI with cost at most d(Q1) + d(Q2) + d(T1) by attaching Q1

and Q2 to T1.
Therefore,

min
i,j∈I:i6=j∨|I|=1

(d(v, i) + d(v, j)) + mst(I)

≤ d(v, j′1) + d(v, j′2) + d(Q1) + d(Q2) + d(T1)

≤ d(w, j1) + d(w, j2) + d(T1) + 2c(T2).

Lemma 9. Let (G, c,D) be an instance of the Steiner tree problem and t ∈
D. Then, we can implement L1-tree such that after a preprocessing time of
O(k(n logn + m) + 2kk2), we can evaluate L1-tree for every v ∈ V (G) and
{t} ⊆ I ⊆ D in time O(|I|), where n = |V (G)|, m = |E(G)| and k = |D|.

Proof. First, for every terminal s ∈ D, we compute d(v, s) for all v ∈ V (G) in
O(n logn +m) time using Dijkstra’s algorithm implemented with a Fibonacci
heap [12]. For every I ⊆ D, we compute mst(I) in O(|I|2) time using Prim’s
algorithm [24]. This results in a total preprocessing time of O(k(n log n+m) +
2kk2). Clearly,

min
i,j∈I:i6=j∨|I|=1

(d(v, i) + d(v, j))

can be evaluated in O(|I|) time if d(v, i) is known for all v ∈ V (G) and i ∈ I.

Theorem 10. Let (G, c,D) be an instance of the Steiner tree problem, t ∈ D
and j ≥ 1 be an integer. Then, we can compute smt(D) in time O(3kn +
2k(n logn+m)) using the Dijkstra-Steiner algorithm with L = max(Lj ,L1-tree).

The 1-tree lower bound exploits the fact that 1-trees can be used to compute
lower bounds on the minimum cost of a tour, which in turn is at most twice
as expensive as a minimum cost Steiner tree. Using more preprocessing and
evaluation time, we can eliminate the loss of approximating tours by 1-trees by
using optimum tours to get lower bounds. While it may sound unreasonable to
use optimum solutions for an NP-hard problem to speed up another algorithm,
it turns out we can compute optimum tours for the union of sets of terminals and
at most one vertex quite fast if there are only few terminals. This is due to the
fact that the length of an optimum tour in GI∪{v} only depends on the distances
from terminals to v and shortest Hamiltonian paths with given endpoints in GI ,
which can be computed in advance. For a set of vertices X ⊆ V (G), we denote
by tsp(X) the minimum cost of a Hamiltonian cycle in GX .

Definition 11. Let (G, c,D) be an instance of the Steiner tree problem and
t ∈ D. Then, the TSP bound LTSP is defined as

LTSP (v, I) =
tsp(I ∪ {v})

2
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for v ∈ V (G) and I ⊆ D.

Lemma 12. Let (G, c,D) be an instance of the Steiner tree problem and t ∈ D.
Then, LTSP is a feasible lower bound. Moreover, after a preprocessing time of
O(k(n logn + m) + 2kk3), we can evaluate LTSP (v, I) in time O(|I|2) for all
v ∈ V (G) and I ⊆ D.

Proof. Let v, w ∈ V (G) and {t} ⊆ I ′ ⊆ I ⊆ D. We will show

2LTSP (v, I) ≤ 2LTSP (w, I
′) + 2 smt((I \ I ′) ∪ {v, w}),

which is equivalent to

tsp(I ∪ {v}) ≤ tsp(I ′ ∪ {w}) + 2 smt((I \ I ′) ∪ {v, w}).

First, we choose an optimal tour C1 in GI′∪{w}. Then, we construct a tour C2

in G(I\I′)∪{v,w} of cost at most 2 smt((I \ I ′) ∪ {v, w}) by doubling the edges
of an optimum Steiner tree, finding a Eulerian walk and taking shortcuts. We
have I ∪ {v} = V (C1) ∪ V (C2) and w ∈ V (C1) ∩ V (C2), so we can construct
a tour in GI∪{v} by inserting C2 into C1 after w and taking shortcuts, which
results in a tour of cost of at most

tsp(I ′ ∪ {w}) + 2 smt((I \ I ′) ∪ {v, w}).

We achieve the given run time using a dynamic programming approach very
similar to the TSP algorithm by Held and Karp [15]. The idea is to compute
shortest Hamiltonian paths in the distance graph of the terminals for all pos-
sible pairs of endpoints. Then, one can evaluate LTSP (v, I) in O(|I|2) time by
enumerating all possible pairs of neighbors of v in the tour.

While in most cases the exponential preprocessing time does not pay off, the
TSP bound does improve the performance of our algorithm on instances with
few terminals (< 12) and random underlying graphs.

4 Pruning

In this section, we present techniques to speed up the algorithm further by
discarding labels (v, I) for which we can prove that they cannot contribute to
an optimum solution. This affects the number of iterations, since these labels
then are not chosen in line 5 of the algorithm. Also, it speeds up the execution
of line 12, since we only have to consider existing labels in the merge step. First,
we show how to identify labels that cannot contribute to an optimum solution.
Then we show that we can indeed safely discard them in our algorithm.

Definition 13. Let (G, c,D) be an instance of the Steiner tree problem, (v, I) ∈
V (G)×2D and T be a Steiner tree for D. A tree T1 is said to be a (v, I)-subtree
of T if there exists a tree T2 such that

(i) V (T1) ∪ V (T2) = V (T ),

14
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(ii) V (T1) ∩ V (T2) = {v},

(iii) T1 is a subtree of T containing {v} ∪ I and

(iv) T2 is a subtree of T containing {v} ∪ (D \ I).

For a tree T and a (v, I)-subtree T1 of T , we will also refer to the corre-
sponding subtree T2 by T − T1.

Lemma 14. Let (G, c,D) be an instance of the Steiner tree problem and t ∈ D.
Let L be a feasible lower bound and U ≥ smt(D). Furthermore, let v ∈ V (G),
I ⊆ D \ {t} and T1 be a tree in G containing {v} ∪ I with

c(T1) + L(v,D \ I) > U.

Then, there is no optimum Steiner tree for D containing T1 as a (v, I)-subtree.

Proof. Let T be a Steiner tree for D such that T1 is a (v, I)-subtree of T . Then,

c(T ) = c(T1) + c(T − T1)

≥ c(T1) + smt({v} ∪ (D \ I))

= c(T1) + smt({v, t} ∪ ((D \ I) \ {t})) + L(t, {t})

≥ c(T1) + L(v,D \ I)

> U

≥ smt(D).

Lemma 14 is a trivial exploitation of the lower bound L. Its effect on the
run time of the algorithm is rather limited, since we only discard labels that
would never have been labeled permanently anyway. In contrast, the following
lemma allows significant run time improvements of our algorithm, in particular
on geometric instances. An application is illustrated in Figure 4.

Lemma 15. Let (G, c,D) be an instance of the Steiner tree problem, v ∈ V (G),
I ⊆ D and ∅ 6= S ⊆ D \ I. Furthermore, let T1 be a Steiner tree for {v}∪ I and
Z be a subgraph of G with

(i) (I ∪ S) ⊆ V (Z),

(ii) each connected component of Z contains a terminal in S and

(iii) c(Z) < c(T1).

Then, there is no optimum Steiner tree T for D in G containing T1 as a (v, I)-
subtree.

15
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Proof. Let T be a Steiner tree for D in G containing T1 as a (v, I)-subtree.
Then, there exists a tree T2 containing {v} ∪ (D \ I) with c(T ) = c(T1) + c(T2).
We construct a subgraph T ′ of G containing D by T ′ = T2 + Z. As Z contains
a path from every vertex in Z to some vertex in S, T2 is connected and S ⊆
D \ I ⊆ V (T2), T

′ is connected. Thus,

smt(D) ≤ c(T ′)

≤ c(T2) + c(Z)

= c(T )− c(T1) + c(Z)

< c(T ).

I

I

S

I

I

I

S

Z

Figure 4: By Lemma 15, no label for the set I with cost strictly larger than c(Z)
can be part of an optimum solution. Terminals are drawn as squares, elements
of I and S are labeled with the respective set.

Lemmata 14 and 15 allow us to identify labels that cannot contribute to an
optimum solution. Theorem 17 shows that we can discard these labels without
affecting the correctness of the algorithm. First, we prove an auxiliary lemma
used in the proof of Theorem 17:

Lemma 16. Let (G, c,D) be an instance of the Steiner tree problem and t ∈ D.
Let D′ = D \ {t} and O ⊆ V (G) × 2D

′

be the set of labels (v, I) with the
property that there is an optimum Steiner tree T for D containing a (v, I)-
subtree. Furthermore, let (v, I) ∈ O and T1 be a tree containing {v} ∪ I with
c(T1) = smt({v}∪I). Then, there is an optimum Steiner tree T for D containing
T1 as a (v, I)-subtree.

Proof. Since (v, I) ∈ O, there is an optimum Steiner tree T ′ for D and a tree
T ′
1 which is a (v, I)-subtree of T . Set T = (T ′ − T ′

1) + T1. Then, since T ′ − T ′
1

is a tree containing {v} ∪ (D \ I) and T1 is a tree containing {v} ∪ I, T is a
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connected subgraph of G containing {v} ∪D. Furthermore, we have

smt(D) ≤ c(T ) ≤ c(T ′ − T ′
1) + c(T1)

= c(T ′ − T ′
1) + smt({v} ∪ I)

= c(T ′)− c(T ′
1) + smt({v} ∪ I)

≤ c(T ′)

= smt(D).

Since we do not have edges of zero cost, this shows T is an optimum Steiner
tree and T1 is a (v, I)-subtree of T .

We now formalize a general method of pruning:

Procedure prune

1 Choose a set S ⊂ V (G)× 2D
′

such that for each (v, I) ∈ S, there is no
optimum Steiner tree T for D such that backtrack(v, I) is a (v, I)-subtree
of T ;

2 Set l(v, I) := ∞ for all (v, I) ∈ S;

Note that when considering a not permanently labeled element (v, I) with
l(v, I) < ∞, we cannot guarantee that backtrack(v, I) is a tree, since it may
contain cycles. However, if we are deciding whether we can prune the label we
can assume backtrack(v, I) to be a tree, since otherwise the label can be pruned
anyway.

Theorem 17. The Dijkstra-Steiner algorithm still works correctly if we modify
it to execute procedure prune before each execution of line 18.

Proof. Let O ⊆ V (G) × 2D
′

be the set of labels (v, I) with the property that
there is an optimum Steiner tree T for D containing a (v, I)-subtree. It suffices
that the modified algorithm is correct on O, which we will now prove.
To this end, consider the following invariants, which we will show to hold each
time line 5 is executed in the modified algorithm:

(a’) For each nonempty I ⊆ D′ and v ∈ V (G) with l(v, I) < ∞:

(a’1) l(v, I) ≤
∑

(w,I′)∈b(v,I) l(w, I
′) +

∑

(w,I′)∈b(v,I):w 6=v c({v, w}),

(a’2) I ∪ {v} = {v} ∪ ˙⋃
(w,I′)∈b(v,I)I

′,

(a’3) backtrack(v, I) returns a connected subgraph T of G containing {v}∪
I with c(T ) ≤ l(v, I). If T is a tree, we have c(T ) = l(v, I).

(b’) For each nonempty I ⊆ D′ and v ∈ V (G) with (v, I) ∈ P ∩O:
l(v, I) = smt({v} ∪ I).

(c’) For each nonempty I ⊆ D′ and v ∈ V (G) with (v, I) /∈ P :

(c’1) l(v, I) ≥ smt({v} ∪ I),
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(c’2) If I = {v}, then l(v, I) = 0. Otherwise, let

x1 = min
{v,w}∈δ(v),(w,I)∈P

(l(w, I) + c({v, w})),

x2 = min
I=I1∪̇I2 and (v,I1),(v,I2)∈P

(l(v, I1) + l(v, I2)),

x =min(x1, x2).

If x < ∞, backtrack(v, I) returns a connected subgraph T of G con-
taining {v} ∪ I with c(T ) ≤ x.

(c’3) If there is an optimum Steiner tree T for D such that
backtrack(v, I) returns a (v, I)-subtree T1 of T , we have l(v, I) =
c(T1).

(d’) There is a label (v, I) that can be chosen, i.e., (V (G) × 2D
′

) \ P is not
empty.

The difference between (a) – (d) as used in the proof of Theorem 2 and (a’) –
(d’) are the weaker condition in (a’1), the restriction to labels (v, I) ∈ O in (b’)
and the replacement of (c2) by (c’2) and (c’3). Since (t,D′) ∈ O, the algorithm
is correct assuming that these invariants hold and that we can always find a
label (v, I) /∈ P in line 5 with l(v, I) < ∞.
It is easy to verify that these conditions hold after the initialization.
Lines 5 to 18 preserve (a’) and (c’), which can be seen by the arguments given
in the proof of Theorem 2. We have to show that lines 5 to 18 preserve (b’) and
(d’) and that prune preserves (a’) – (d’).
Clearly, prune preserves (a’2) and (a’3), since (a’) is only checked for labels (v, I)
with l(v, I) < ∞. However, prune also preserves (a’1) since (a’) is only checked
for labels (v, I) with l(v, I) < ∞ and the right hand side of the inequality can
only be increased by prune.
To verify prune preserves (b’), let (v, I) ∈ P ∩ O. Before prune is called, we
have by (b′) that l(v, I) = smt({v} ∪ I). Since (v, I) ∈ O, by Lemma 16 there
is an optimum Steiner tree for D that contains the result of backtrack(v, I) as
a (v, I)-subtree. Thus, prune cannot change l(v, I).
Moreover, (c’) is preserved by prune: Since prune only increases the l-values,
(c’1) and (c’2) are clearly preserved. By the construction of prune, prune cannot
change l(v, I) for labels (v, I) satisfying (c’3).
As prune does not modify P , (d’) is not affected by prune.
To show lines 5 to 18 preserve (b’), we can use the very same argument as in the
proof of Theorem 2. We restrict ourselves to the case where Y is an optimum
Steiner tree, which suffices. Then, we choose the triple (w, I ′, Y ′) the same
way and see that by the choice of that triple we have using (c’2) and (b’) that
backtrack(w, I ′) returns a tree Y ′′ with c(Y ′′) ≤ c(Y ′) = smt({w} ∪ I ′). Then,
by Lemma 16, there is an optimum Steiner tree forD containing backtrack(w, I ′)
as a (w, I ′)-subtree, enabling us to use (c’3) to conclude that l(w, I ′) = c(Y ′).
Using the same argument applied to (t,D′) and an optimum Steiner tree Y for
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D, we see that there always is a label (v, I) /∈ P with l(v, I) < ∞ which can be
chosen in line 5 as long as (t,D′) /∈ P , so (d’) is preserved as well.

Of course, in practice we just avoid the creation of such labels instead of
removing them immediately after creation.

5 Implementation and Results

We implemented the algorithm using the C++ programming language. In our
implementation, we use a binary heap instead of a Fibonacci heap. We represent
terminal sets by bitsets using the canonical bijection 2D → {0, . . . , 2|D| − 1}.
For each vertex v ∈ V (G), we maintain an array containing the labels (v, I)
with l(v, I) < ∞ and a hash table storing for each label its index in the array,
if it exists. This enables us to access labels very quickly and traverse over the
existing labels in linear time, which is important for an efficient implementation
of the merge step:

To implement line 12, we have two options. Either we explicitly enumerate
all sets I ′ ⊆ D′ \ I and check whether the label (v, I ′) exists, or we traverse over
all existing labels at v and omit the labels (v, I ′) with I ′ ∩ I 6= ∅. We always
choose the option resulting in less sets to be considered.

We implement the pruning rule of Lemma 14 using a shortest-paths Steiner
tree heuristic similar to Prim’s algorithm [24], maintaining and extending one
component at a time. This takes O(k(n logn + m)) time. Then, we use the
length of that Steiner tree as an upper bound and apply Lemma 14 each time
we create a new label.

To implement Lemma 15, we maintain an upper bound U(I) on the length of
labels for each set I ⊆ D′ of terminals, which is initially set to infinity. For each
occuring set I ⊆ D′, we compute the distance d(I,D\I) = minx∈I,y∈D\I d(x, y).
Then, each time we extract a label (v, I) from the heap, we update U(I) by

U(I) := min (U(I), l(v, I) + min(d(I,D \ I), d(v,D \ I))) .

Also, we keep track of the set S(I) that was used to generate the currently
best upper bound for the set I. In the routine described above, we always have
|S| = 1. However, when merging two sets I1 and I2, we can use the sum of
their upper bounds as an upper bound for the set I1 ∪ I2 if S(I1) ∩ I2 = ∅ or
S(I2) ∩ I1 = ∅, resulting in S(I1 ∪ I2) = (S(I1) ∪ S(I2)) \ (I1 ∪ I2).

Furthermore, we use the 1-tree bound as a lower bound. Of course, we do
not compute minimum spanning trees for all subsets of terminals in advance.
Instead, each time we consider a set I for the first time, we compute mst(D \I).

Lacking a good selection strategy, we always choose the last terminal of the
instance w.r.t. the order in the instance file as root terminal.

Now, we provide results of the algorithm on instances from the LIN testset
in the SteinLib [20] which is the standard benchmark library for exact Steiner
tree algorithms. We chose the LIN testset since it contains the hardest available
VLSI-derived instances. These are derived from the placement of rectangles in
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the plane and only contain horizontal and vertical segments. Currently, our
implementation is limited to 64 terminals, so we exclude lin28, lin33 and lin37.
As a comparison, we use the best published results which were obtained by
Polzin and Vahdati Daneshmand [21, 28] using one thread on a machine with
900MHz SPARC III+ CPUs. Our results were achieved single-threaded on a
computer with 3.33GHz Intel Xeon W5590 CPUs, which is approximately six
times faster. The run times by Polzin and Vahdati Daneshmand are given in
the last column. Entries which are marked with a * could not be solved by
Polzin and Vahdati Daneshmand using their default set of reductions. Instead,
stronger reductions had to be used.

Instance |V | |E| |D| Opt Time [s] Time PV [s]

lin01 53 80 4 503 0.000 0.1
lin02 55 82 6 557 0.000 0.1
lin03 57 84 8 926 0.000 0.1
lin04 157 266 6 1239 0.000 0.1
lin05 160 269 9 1703 0.001 0.1
lin06 165 274 14 1348 0.002 0.1
lin07 307 526 6 1885 0.001 0.1
lin08 311 530 10 2248 0.001 0.1
lin09 313 532 12 2752 0.002 0.1
lin10 321 540 20 4132 0.012 0.1
lin11 816 1460 10 4280 0.007 0.2
lin12 818 1462 12 5250 0.010 0.3
lin13 822 1466 16 4609 0.010 0.2
lin14 828 1472 22 5824 0.013 0.2
lin15 840 1484 34 7145 0.065 0.2
lin16 1981 3633 12 6618 0.024 0.5
lin17 1989 3641 20 8405 0.060 0.7
lin18 1994 3646 25 9714 0.710 1.4
lin19 2010 3662 41 13268 15.391 1.4
lin20 3675 6709 11 6673 0.017 1.6
lin21 3683 6717 20 9143 0.047 1.2
lin22 3692 6726 28 10519 0.093 2.1
lin23 3716 6750 52 17560 16.686 2.9
lin24 7998 14734 16 15076 0.104 9.6
lin25 8007 14743 24 17803 0.359 12.6
lin26 8013 14749 30 21757 0.446 16.3
lin27 8017 14753 36 20678 2.494 13.7
lin29 19083 35636 24 23765 2.101 31.7
lin30 19091 35644 31 27684 0.920 87.2
lin31 19100 35653 40 31696 44.678 1002 *
lin32 19112 35665 53 39832 218.123 3559 *
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Instance |V | |E| |D| Opt Time [s] Time PV [s]

lin34 38282 71521 34 45018 15.988 9144 *
lin35 38294 71533 45 50559 35.522 8194 *
lin36 38307 71546 58 55608 66.686 763693 *

Table 1: Results on the LIN testset.

Even when compensating for hardware differences, our algorithm outper-
forms the reduction based approach on most of these instances, in particular on
the instances having large underlying graphs. While the worst-case run time
of our algorithm clearly is not reached on these instances, the results are con-
sistent with the exponential dependence on the number of terminals and the
quasilinear dependence on the size of the graph.

We have also done experiments with preprocessing using the publicly avail-
able implementation bossa [30]. However, in most cases the additional prepro-
cessing time does not pay off.

The impact of future cost estimates and in particular pruning on practical
run times depends a lot on the instance structure. For example, on instances
where edges incident to terminals are very expensive, our pruning implementa-
tion has little impact. Examples for such instances are the so called incidence
cost instances and group Steiner tree instances, which can be modeled as Steiner
tree instances by introducing a terminal for each group and connecting the ter-
minal to all vertices of the group using edges of very high cost. On these
instances, other approaches still achieve clearly better results. However, one
may find better lower bounds and pruning strategies that are effective on these
instances.

Note that due to the dynamic programming nature of our algorithm, it can
also be used to compute all optimum Steiner trees or even all Steiner trees up
to a given length. If we enumerate all Steiner trees up to a length of Opt + ∆,
we have to relax the pruning implementations by ∆ and continue labeling until
all labels (v, I) with l(v, I) ≤ Opt+∆ are permanent. Also, we have to save all
predecessors instead of only one optimum predecessor. Then, we can recursively
combine Steiner trees for subsets of terminals. In practice, the additional effort
is linear in the size of the output, allowing the enumeration of millions of near-
optimum Steiner trees in seconds. See [26] for details.

6 Conclusions

In this paper, we have presented a new algorithm based on dynamic program-
ming to solve the Steiner tree problem in graphs to optimality. The algorithm
combines a fast theoretical worst-case run time with competitive results on real-
world instances. The dynamic programming idea by Dreyfus and Wagner has
been used extensively to obtain Steiner tree algorithms with fast theoretical
worst-case behavior. However, in the field of practical solving, it has rather
been disregarded prior to this work. Compared to other exact algorithms, our
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algorithm depends much less on effective preprocessing and performs well on
large graphs. Our approach is very general and not limited to the lower bounds
and pruning strategies proposed in this paper.
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