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Abstract. The bottom-left algorithm is a simple heuristic for the Strip Packing Problem. It places
the rectangles in the given order at the lowest free position in the strip, using the left most position in
case of ties. Despite its simplicity, the exact approximation ratio of the bottom-left algorithm remains
unknown. We will improve the more-than-40-year-old value for the lower bound from 5/4 to 4/3 − ε.
Additionally, we will show that this lower bound holds even in the special case of squares, where the
previously known lower bound was 12/11 − ε. These lower bounds apply regardless of the ordering of
the rectangles. When squares are arranged in the worst possible order, we establish a constant upper
bound and a 10/3−ε lower bound for the approximation ratio of the bottom-left algorithm. This bound
also applies to some online setting and yields an almost tight result there. Finally, we show that the
approximation ratio of a local search algorithm based on permuting rectangles in the ordering of the
bottom-left algorithm is at least 2 and that such an algorithm may need an exponential number of
improvement steps to reach a local optimum.

Keywords: Bottom-Left Algorithm · Strip Packing · Approximation Algorithm.

1 Introduction

In the Strip Packing Problem, a rectangular strip of fixed width and infinite height is given.
The task is to find an orthogonal packing of a given set of rectangles into the strip such
that no two rectangles overlap and the total height of the packing is minimal. Rotation of
rectangles is not allowed.

A reduction from the Bin Packing Problem shows that Strip Packing is NP-hard [8]. It
is even strongly NP-hard [6]. Moreover, this reduction establishes that unless P=NP, there
cannot exist a (3/2 − ε)-approximation algorithm for Strip Packing. Currently, the best-
known approximation algorithm achieves an approximation ratio of 5/3 + ε [7,5]. However,
this algorithm is rather complicated and may not be of practical relevance.

In contrast, the bottom-left algorithm is extremely simple. It operates by packing the
rectangles in the given order, positioning them at the lowest available point within the strip.
In situations where there are multiple lowest positions possible, the bottom-left algorithm
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selects the left-most of these positions. An implementation of the bottom-left algorithm with
quadratic time complexity is presented in [3].

The approximation ratio of the bottom-left algorithm heavily depends on the ordering
of the rectangles. It is easy to construct instances and orderings of the rectangles such that
the approximation ratio of the bottom-left algorithm is arbitrarily bad. Baker, Coffman, and
Rivest [1] have shown that this may even happen if the rectangles are ordered by increasing
width. Contrary to this they proved [1] that when the rectangles are ordered by decreasing
width then the bottom-left algorithm has approximation ratio 3. In case that all rectangles
are squares they proved an approximation ratio of 2 for the bottom-left algorithm.

A natural question arising in this context is: What is the approximation ratio of the
bottom-left algorithm if we have a best possible ordering of the input rectangles? It is tempting
to expect that among the n! possible orderings of the given n rectangles there is always one
such that the bottom-left algorithm will find an optimum solution. However, this is not the
case as was shown in 1980 by Brown [2]: There exist instances of the strip packing problem
for which the bottom-left algorithm cannot achieve an approximation ratio better than 5/4
not even for the best ordering of the rectangles. In case of squares it was shown by Baker,
Coffman, and Rivest [1] that for any fixed ε > 0 the bottom-left algorithm cannot achieve
an approximation ratio of 12/11 − ε. Thus there remain large gaps between 5/4 and 3 for
the approximation ratio of the bottom-left algorithm for the Strip Packing Problem in case
of rectangles and between 12/11− ε and 2 in case of squares. We will narrow these gaps by
improving the lower bound in both cases to 4/3− ε. This is the first improvement on these
bounds after more than 40 years.

Theorem 1. For all ε > 0 the approximation ratio of the bottom-left algorithm for the
Square Strip Packing Problem cannot be better than 4/3− ε even if the squares are ordered
in the best possible way.

Additionally, instead of looking at the best ordering, we will also look at the worst
ordering. As mentioned above the approximation ratio of the bottom-left algorithm might
be unbounded when the rectangles are badly ordered. On the contrary, we can show that for
squares the approximation ratio of the bottom-left algorithm is always bounded, regardless
of the ordering. We also construct a 10/3− ε lower bound for this case improving the so far
best lower bound of 2− ε [1].

Theorem 2. The bottom-left algorithm has constant approximation ratio for the Square
Strip Packing Problem, for all possible orderings of the squares. This approximation ratio
cannot be better than 10/3− ε.
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Our lower bound also applies to an online version of the bottom-left algorithm that was
studied in [4] and was shown to have approximation ratio 3.5. We therefore get an almost
tight result for this case:

Corollary 1. The online BottomLeft algorithm from [4] has approximation ratio between
10/3 and 3.5.

Last of all, we study a local search variant of the bottom-left algorithm. The bottom-
left k-local search algorithm starts with an initial bottom-left packing and in each iteration
the algorithm tries to permute k rectangles such that the bottom-left algorithm on the new
ordering returns a packing with strictly lower height. Firstly, we show a lower bound equal
to 2 for the bottom-left k-local search algorithm, implying that this algorithm cannot find
an ordering such that the bottom-left algorithm has approximation ratio better than the
currently best-known (5/3 + ε)-approximation ratio from [7]. Secondly, we also show that
the local search algorithm may need an exponential number of iterations before reaching a
local optimum.

Theorem 3. The approximation ratio of the k-local search bottom-left algorithm is bounded
from below by 2, even in case of squares. Moreover, this algorithm may need an exponential
number of iterations to find a local optimum.

Outline of the paper After starting with some basic definitions in Section 2 we will present
in Section 3 our new lower bounds for the bottom-left algorithm assuming a best possible
ordering of the rectangles. We first consider the general Strip Packing case, and afterwards
show that the lower bound 4/3−ε also holds in the Square Strip Packing case. Next, Section 4
shows that in case of squares the approximation ratio of the bottom-left algorithm is bounded
by a constant, even for the worst ordering of the squares. We also prove a lower bound of
10/3− ε for this case. Last of all, Section 5 studies the bottom-left k-local search algorithm.
We prove that this novel local search algorithm has approximation ratio no better than 2.
Moreover, we show that this algorithm might take an exponential number of improvement
steps to reach a local optimum.

2 Preliminaries

A Strip Packing instance I consists of a vertical strip of fixed width W and infinite height
together with a set R = {r1, . . . , rn} of n closed rectangles. Each rectangle ri has a given
height hi := h(ri) and width wi := w(ri). Assume that max{wi : 1 ≤ i ≤ n} ≤ W . A
packing of R into the strip is defined by specifying the lower left coordinate (xi, yi) for each
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ri ∈ R. A packing of R is feasible if all rectangles lie within the strip and no two rectangles
overlap within their interior, i.e., the following two conditions have to be satisfied:

xi ≥ 0, xi + wi ≤ W, yi ≥ 0 for all 1 ≤ i ≤ n,

(xi, xi + wi)× (yi, yi + hi) ∩ (xj , xj + wj)× (yj, yj + hj) = ∅ for all 1 ≤ i < j ≤ n.

The height of a feasible packing is the maximum of {yi+hi : 1 ≤ i ≤ n}. The goal of the
Strip Packing Problem is to compute a feasible packing of minimum height for a given Strip
Packing Instance I. We denote this value by hOPT(I). Note that our definition of the Strip
Packing Problem does not allow to rotate the rectangles by 90 degrees. The Square Strip
Packing Problem is the special case of the Strip Packing Problem where all rectangles are
squares. We will abbreviate the Strip Packing Problem respectively the Square Strip Packing
Problem by SPP respectively SSPP.

Given a Strip Packing Instance I with rectangles R = {r1, . . . , rn} the bottom-left al-
gorithm places the rectangles in the given order at a lowest free position in the strip, using
the left most position in case of ties. More formally, the bottom-left algorithm will place
rectangle r1 at position (0, 0). This is a feasible packing of the first rectangle. Assume that
the bottom-left algorithm has obtained a feasible packing of the first i − 1 rectangles into
the strip. Then it chooses a position (xi, yi) that results in a feasible packing for the first i
rectangles such that (yi, xi) is lexicographically minimal among all possible choices for the
position (xi, yi). The height of the packing computed by the bottom-left algorithm on an
instance I is denoted by hBL(I). This height may heavily depend on the ordering of the
rectangles in the instance. We are therefore also interested in the best possible height that
the bottom-left algorithm can achieve for a given set of rectangles, i.e., the minimum height
among all n! orderings of the n rectangles. We define this value as hbest

BL . Similarly, we define
the maximum height among all n! orderings as hworst

BL .

The approximation ratio achieved by the bottom-left algorithm on an instance I is defined
as the ratio hBL(I)/hOPT(I). We are also interested in the best possible and worst possible
approximation ratio of the bottom-left algorithm which are defined as hbest

BL (I)/hOPT(I) and
as hworst

BL (I)/hOPT(I).

3 An improved lower bound for the best bottom-left packing

Even for the best possible ordering of rectangles, the bottom-left algorithm might produce a
non-optimal packing. Baker, Coffman, and Rivest [1] were the first to show that for all ε > 0
the bottom-left algorithm cannot have an approximation ratio better than 12/11− ε. Later
an improvement was given by Brown [2], showing that there exists a set of eight rectangles for
which the bottom-left algorithm cannot have an approximation ratio below 5/4. Up to now,
this was the best-known lower bound for the ratio between the height of a best bottom-left
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Fig. 1: The two optimum solutions for packing the rectangles (3, 2), (3, 2), (2, 1), (2, 1), (2, 1),
(2, 1), (1, 1) into a strip of width 7.

packing and the height of an optimal packing. Furthermore, the value 12/11−ε from [1] was
the best-known lower bound for SSPP-instances.

In Section 3.1 we improve the lower bound on the best possible approximation ratio for
the bottom-left algorithm from 5/4 to 4/3 − ε by constructing an SPP-instance using only
seven rectangles. In our proof we use similar arguments as Brown [2]. We extend this result
in Section 3.2 to the special case of square packing. We present a construction for large SSPP
instances that yield a lower bound of 4/3− ε. This significantly improves upon the old lower
bound of 12/11− ε [1]. Our construction requires substantially novel arguments.

3.1 Rectangular case

The main idea in this section to show a better lower bound for the best bottom-left algorithm
is to construct an instance that has an optimum packing with bottom-left structure such
that the optimum packing is unique up to symmetries. After that, the instance is slightly
modified, preserving the uniqueness (up to symmetry) of the optimum packing, but loosing
the bottom-left structure for the optimum packing. This will result in the desired lower
bound.

Theorem 4. For all ε > 0 the approximation ratio of the bottom-left algorithm for the Strip
Packing Problem cannot be better than 4/3− ε even if the rectangles are ordered in the best
possible way.

Proof. Consider an instance with rectangles (3, 2), (3, 2), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1) and
strip width 7. The packings of this instance in Fig. 1 with height 3 are tight, i.e., all space
is occupied. Hence these packings are optimal.

Claim: The packings from Fig. 1 are the only optimal packings. To prove this claim,
consider the three disjoint 1 × 7 horizontal rows for an arbitrary optimal packing. Let the
type of a row be a multiset of the sizes of rectangles that the row intersects. There are three
possible types: (a) {3, 3, 1}, (b) {3, 2, 2} and (c) {2, 2, 2, 1}.
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Let a, b, and c denote the number of rows of type (a), resp. type (b), resp. type (c). There
is a total of three rows, therefore it holds that a + b + c = 3. Furthermore, there is exactly
one rectangle of width 1 and this rectangle has height 1, hence it holds that a+ c = 1, thus
it follows that b = 2. Now, there are four rectangles of width 2, these rectangles all have
height 1, so 2b+ 3c = 4, this implies that c = 0. In conclusion, required is that a = 1, b = 2,
and c = 0.

Both rectangles of width 3 have height 2, hence the row of type (a) must be in the middle,
as otherwise there must be another row of type (a), contradicting that a = 1. Furthermore,
if the square of width 1 is placed at one of the sides of the strip, then either in the top or
bottom row another rectangle of width 1 is needed. As there is no other rectangle of width
1, the square of width 1 must be placed in the middle. Thus the packings in Fig. 1 are the
only possible packings with one row of type (a) and two rows of type (b). This proves the
claim.

Next, we modify the instance slightly so that the two rectangles of width 3 become a bit
thinner, and the square of size 1 becomes a bit higher. More formally, for ε > 0 sufficiently
small, let (3 − ε, 2), (3 − ε, 2), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1 + ε) be the rectangles of the
modified instance Iε. Let the width of the strip still be 7. The preceding proof shows that
(to within ε) the packings of Fig. 1 are still optimum and have height 3 + ε. However, for
each of the optimal solution, the packing cannot be a bottom-left packing.

Consider the first packing of Fig. 1, the two top rectangles of size (2, 1) have to be packed
last in the bottom-left algorithm. However, as the (3, 2) rectangle shrinks to size (3 − ε, 2),
there is no space to fit two (2, 1) rectangles, unless if the top right (3 − ε, 2) is shifted a
bit to the right, breaking the bottom-left structure. The packing obtained by the bottom-
left algorithm is depicted in Fig. 2(a). Next, consider the second packing of Fig. 1. If the
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Fig. 2: (a) The bottom-left packing of I0.2 resulting from the optimum solution shown in the
left of Fig. 1. (b) The bottom-left packing if the rectangle of size (1, 1 + ε) is placed before
the two top rectangles of size (2, 1) resulting from the optimum solution shown in the right
of Fig. 1. (c) The best possible bottom-left packing if at least one of the two top rectangles
of size (2, 1) is placed before the rectangle of size (1, 1 + ε).

rectangle of size (1, 1+ε) is packed before the two top right rectangles of size (2, 1), then the
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bottom-left algorithm returns the packing shown in Fig. 2(b). Else if one of the rectangles
of size (2, 1) is placed before the rectangle of size (1, 1 + ε), then the best packing that can
be obtained by the bottom-left algorithm is shown in Fig. 2(c).

In conclusion, the best bottom-left packing has height 4 while an optimum packing has
height 3+ ε. For ε′ := 4ε/(9+3ε) we get a lower bound of 4

3
− ε′ on the approximation ratio

of the bottom-left algorithm. ⊓⊔

The instance from Theorem 4 can be scaled such that all rectangles have integer side
lengths. Let h ∈ N and consider the instance with two rectangles of size (4, 2h), four rect-
angles of size (3, h), one rectangle of size (1, h+ 1) and let the strip width be 10. Using the
same arguments as before, the best bottom-left packing has height 4h while an optimum
packing has height 3h+ 1, resulting in a lower bound of 4h/(3h+ 1).

3.2 Square case

There is an easy modification of the instance from Theorem 4 such that all rectangles are
squares. In Corollary 2 it is shown that this results in a 6/5− ε lower bound for the bottom-
left algorithm for SSPP-instances. After that, Corollary 2 is generalized to get a 4/3 − ε
lower bound for the bottom-left algorithm for SSPP-instances.

Corollary 2. For all ε > 0 the approximation ratio of the bottom-left algorithm for the
Square Strip Packing Problem cannot be better than 6/5− ε even if the squares are ordered
in the best possible way.

Proof. Consider the collection of squares of sizes 3, 3, 2, 2, 2, 2, 1. Let the width of the strip
be 7. Note that the widths of these squares are the same as the widths of the rectangles from
the instance in the proof of Theorem 4. Using similar reasoning as in the proof of Theorem 4,
the two packings of Fig. 3(a) and Fig. 3(b) are the only optimal packings.

Let ε > 0, and consider the modified instance Iε where the squares of size 3 get size
3−2ε, and the square of size 1 gets size 1+ε. Like in Theorem 4, the packings from Fig. 3(a)
and Fig. 3(b) are still optimum, but do not have the bottom-left structure.

We may assume 1
5
≥ ε. If the squares of size 3 − 2ε are on top of each other, then the

packing has height at least 6−4ε, and as Fig. 3(c) shows there is a bottom-left packing with
height 6 − 4ε. If the squares of size 3 − 2ε are not on top of each other, then a bottom-left
packing has height at least 6−ε. Namely, suppose the height of the packing is less than 6−ε,
then each column containing a square of size 3 − 2ε contains at most one other square of
size 1+ε or size 2. Furthermore, the squares of size 3−2ε are either adjacent or non-adjacent.
If these squares are adjacent, then there must be a column with a square of size 3− 2ε and
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Fig. 3: (a) and (b) show the two optimal packings for the squares of sizes 3, 3, 2, 2, 2, 2, 1
in a strip of width 7. (c) shows the best bottom-left packing for the modified square packing
instance I0.1.

two squares of size 2, hence the height of the packing is not less than 6− ε. Otherwise, if the
squares of size 3−2ε are not adjacent, then the packing must be as in Fig. 3(a) or Fig. 3(b),
however, these are not bottom-left packings. Thus if the two squares of size 3−2ε are not on
top of each other, then the height of a bottom-left packing is at least 6 − ε. Note that this
corresponds to a packing of Fig. 3(a) or Fig. 3(b) where the square of size 1+ ε is placed last
on top of the packing. Thus the best bottom-left height is 6− 4ε while an optimum solution
has height 5 + ε. Therefore the ratio equals (6 − 4ε)/(5 + ε). Setting ε′ := 26ε/(25 − 5ε)
results in the ratio 6/5− ε′. ⊓⊔

Next Theorem 1 will improve the 6/5 − ε lower bound by making the instance larger
in width, height and number of squares. After constructing the larger instance, the proof
continues similar to the proof of Theorem 4. The resulting lower bound is equal to 4/3− ε.

Theorem 1. For all ε > 0 the approximation ratio of the bottom-left algorithm for the
Square Strip Packing Problem cannot be better than 4/3− ε even if the squares are ordered
in the best possible way.

Proof. Let h ≥ 2 be an integer. Consider the instance with one square of size h, 4h squares
of size h+1 and 2h squares of size 2h+ 1. Let the width of the strip be W = 4h2 + 3h. The
packing in Fig. 4 uses 2h squares of size h + 1 on the bottom left, h squares of size 2h + 1
on the top left, and conversely 2h squares of size h + 1 on the top right, and h squares of
size 2h+ 1 on the bottom right. Thus, this leaves a gap in the middle for the square of size
h. The packing is tight and hence the optimal packing has height 3h+ 2.

Consider the 4h2+3h disjoint 1× (3h+2) vertical columns. There are two possible types
(a) {h + 1, h + 1, h} and (b) {2h + 1, h + 1}. Let a respectively b denote their number. In

8



0

h+ 1

2h+ 1

3h+ 2

0 h+ 1 (2h− 2)(h+ 1) 2h(h+ 1) 4h2 + 3h

· · ·

· · ·

· · ·

· · ·

Fig. 4: The unique optimal square packing up to symmetry.

total there are 4h2 + 3h columns, hence it holds that a + b = 4h2 + 3h. Furthermore, there
is only one square of size h, thus a = h. This implies that b = 4h2 + 2h.

From a = h it follows that either the square of size h is above (symmetrically below)
two rows of squares of size h + 1 or it is between squares of size h + 1. The first case is
not possible, as this creates a gap of height h which cannot be filled by another square, this
is demonstrated by the red area in Fig. 5(a). In the second case, either the two squares of
size h+ 1 above and below the square of size h go over the same side of the square of size h
as in Fig. 5(b), then no other square can fill the red space, hence this is not possible. Thus
the square above and below the square of size h must go in different directions over the left
respectively right boundary of the square of size h, as depicted in Fig. 5(c). As b = 4h2+2h,
it follows that each other column with a square of size h + 1 also contains a square of size
2h+ 1. Thus the structure in Fig. 5(d) must be part of the optimal solution.

Next, building on the structure in Fig. 5(d), b− 2 more columns of type (b) are required.
As the optimal packing is tight, it follows that next to the square of size h+1 in the bottom
left, there must be other squares of size h + 1, and similar next to the square of size 2h+ 1
in the top left, there must be other squares of size 2h+ 1. More precisely, there must be at
least 2h− 1 squares of size h+ 1 next to the square of size h+ 1 and at least h− 1 squares
of size 2h+1 next to the square of size 2h+1, because those are the smallest numbers such
that the left side of the left most square of size h + 1 is at the same place as the left side
of the left most square of size 2h + 1. In other words, the width of placing 2h squares of
size h + 1 next to each other equals 2h(h + 1), which is the same as the width of placing h
squares of size 2h+1 next to each other together with the width of the square of size h, that
is, h(2h + 1) + h. The same holds for the right side of the structure in Fig. 5(d). As there
are only 4h squares of size h + 1 and 2h squares of size 2h + 1, it follows that the packing
in Fig. 4 (up to symmetry) is the unique optimal packing.

Let ε > 0 be sufficiently small and consider the slight modification where the squares
of size 2h + 1 have size 2h + 1 − ε and the square of size h has size h + ε. The packing
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0
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3h+ 2

(a) (b) (c) (d)

Fig. 5: (a) shows that if the square of size h is above two rows of squares of size h+ 1, then
there is no other square that can fill the red area. (b) shows that if the square of size h
is between squares of size h + 1, then there is no other square that can fill the red area.
The only possibility where the square of size h is between squares of size h + 1 is (up to
symmetry) shown in (c). Up to symmetry the structure shown in (d) must be part of the
optimal packing.

of Fig. 4 has height 3h+2− ε and still is the unique optimal packing (up to symmetry), but
it does not have the bottom-left structure. Now, similar to Corollary 2, the packing in Fig. 6
is an optimal bottom-left packing and has height 4h+ 2− 2ε. Because if the squares of size
2h+ 1 − ε are not on top of each other, then the height of a bottom-left packing is at least
4h+ 2, because there is a column containing the squares of size 2h+ 1− ε, h+ 1 and h+ ε.

0

h+ 1

2h+ 1− ε

2h+ 2

3h+ 2 + ε

4h+ 2− 2ε

· · ·

· · ·

· · ·

· · ·

Fig. 6: An optimum bottom-left packing of the modified instance.

Thus for sufficiently small ε > 0, and every h ≥ 2, there exists an instance Iε,h such that

hbest
BL (Iε,h)

hOPT(Iε,h)
=

4h− 2ε+ 2

3h+ 2− ε
.
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Setting ǫ′ := (2+2ε)/(9h+6−3ε) we get a lower bound of 4/3−ε′ on the approximation ratio
of the bottom-left algorithm in case of squares. As ε′ gets arbitrarily small for sufficiently
large h this proves the result. ⊓⊔

Consequently, even when 90-degree rotation of rectangles is allowed, there exists an in-
stance such that the ratio between the height of a bottom-left packing using the best ordering
and the height of an optimal solution is at least 4/3−ε. Namely, the instance from Theorem 1
is a set of rectangles that is invariant under rotation, because each rectangle is a square.

4 Bounds for the worst-order bottom-left packing

If the rectangles are badly ordered, the ratio between the height of a bottom-left packing
and the height of an optimal packing can be arbitrarily large. This might even happen if
the rectangles are ordered by increasing width [1]. On the contrary, for SSPP-instances we
can be show that the approximation ratio of the bottom-left algorithm remains bounded
regardless of the ordering of the squares and also improve the so far best-known lower bound
of 2− ε [1] for this case:

Theorem 2. The bottom-left algorithm has constant approximation ratio for the Square
Strip Packing Problem, for all possible orderings of the squares. This approximation ratio
cannot be better than 10/3− ε.

Proof. Our proof for the constant upper bound is very similar to a proof presented in [4]
to show that the online BottomLeft algorithm has approximation ratio 3.5. The main idea
is to prove that the holes in a bottom-left packing can be covered by surrounding squares.
Contrary to [4] we do not aim to get the best possible constant. This makes our proof shorter
than the one presented in [4] at the cost of getting a worse constant (16 instead of 3.5). We
present the details of our proof for the upper bound in the appendix.

To prove the lower bound of 10/3−ε we start with the so-called checkerboard construction
from [1].

Construction 1 (m-checkerboard). Let m ≥ 2 be even and define ε = 2
m3(m2+1)

. Con-

sider the instance consisting of squares of size 2 − iε for i = 1, . . . , m2 together with m3 +
(m−1)m

2
unit squares. Let the strip width be

W =

m2∑

i=1

(2− iε) = 2m2 − ε
m2(m2 + 1)

2
= 2m2 −

1

m
.
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The bottom-left packing of the squares ordered by decreasing size is shown in Fig. 7
(blue squares). By definition, all large squares fit precisely next to each other on the strip
bottom. Furthermore, these squares are ordered by decreasing size, hence the unit squares
on top of these large squares are placed from right to left. Since two unit squares are wider
than any of the large squares, it follows that only one unit square is placed on top of each
large square. This type of placement repeats in the second row because the gaps between
the unit squares in the first row all have width less than 1. In general, the i-th row of unit
squares alternates gaps and squares except for the initial and final squares of the row, these
form almost solid triangles. More precisely, the i-th row contains m2 + i − 1 unit squares,
and there are precisely m such rows, because

m∑

i=1

(m2 + i− 1) = m3 +
(m− 1)m

2
.

Last of all, each row fits into the strip. The i-th row consists of m2 + (i − 1) unit squares
and m2 − i gaps between these squares of size less than 1, hence each row has width less
than 2m2−1 < W . From this we conclude that the bottom-left packing as depicted in Fig. 7
(blue squares) is correct. Moreover, the height of this bottom-left packing equals m+ 2− ε.

m+ 2− ε

m+ 3

Fig. 7: In blue the m-checkerboard example for m = 4, together with the reset row in green.

Next, to construct an upper bound on the height of an optimum packing, observe that
2m2−1 unit squares fit next to each other in one row. Hence, all unit squares fit into m/2+1
rows of height 1, because (2m2−1)(m/2+1) = m3+2m2−m/2−1 > m3+(m−1)m/2. The
squares of size 2 − iε fit into one row of height 2, thus it holds that hOPT ≤ m/2 + 1 + 2 =
m/2+3. Consequently, the bottom-left algorithm for the m-checkerboard has approximation
ratio at least m+2−ε

m/2+3
which approaches 2 as m becomes large.

Adding one large square of size m/2 at the end to the m-checkerboard example already
results in a lower bound approaching 3 for the worst-order bottom-left algorithm. Further-
more, the lower bound can be improved to 10/3−ε when adding a construction with density
1
3
to the checkerboard and ending with one large square. This 1

3
-dense construction requires

a flat foundation on top of the checkerboard, therefore we add one extra row of squares to
the checkerboard such that the height of the top face of these squares is the same and no
large gaps exist in this row.

12



Construction 2 (Reset row). Let m be even. There are m2 +m− 1 unit squares in the
m-th row of the m-checkerboard from Construction 1. Let hi be the height of the top face
of the i-th square in the m-th row (from left to right). It holds that

hi =

{
m+ 2− iε if 1 ≤ i ≤ m2,

m+ 2−m2ε if m2 < i < m2 +m,

because the i-th such unit square leans onto the i-th bottom row square of size 2− iε. The
reset row consists of m + 1 squares of size 1 + m2ε, and a square of size 1 + iε for each
m < i < m2 and odd 1 ≤ i ≤ m. Bottom-left place them in decreasing size order on top of
the m-checkerboard, then the square of size 1 + iε is going to be placed on top of hi, hence
the height of the top face of these almost unit squares equals

hi + (1 + iε) = (m+ 2− iε) + (1 + iε) = m+ 3.

Thus the top face of all squares in the reset row have the same height. Moreover, all gaps
between squares in this construction have width less than 1. Fig. 7 depicts the reset row in
green.

The main idea to obtain the 10/3− ε lower bound is to construct exponentially growing
rows above the m-checkerboard with gaps of approximately twice the width of the squares in
that row. To this end, consider an integer n ≥ 1 and let m be the largest even number such
thatm ≤ 4

3
2n. Consider them-checkerboard together with the reset row from Construction 2.

After that, bottom-left pack the pattern consisting of four unit squares followed by one square
of size 2 + (ai + 1)ε for 1 ≤ i ≤ ⌊W

6
⌋ where ai = 1 if i is odd and ai = 0 otherwise. These

squares fit into one row on top of the reset row and the gaps between these squares is 4.
If the space at the end of this row is at least 4 + 2ε, then add more squares of size 2 + ε
at the end. Next, for 2 ≤ j ≤ n − 1, bottom-left pack squares of size 2j + (ai + 2j−1)ε for
1 ≤ i ≤ ⌊ W

2j+2j+1 ⌋. Each j constitutes a row because the gaps between the squares in the
previous row have width less than

(2j−1 + (1 + 2j−1)ε) + (2j−1 + 2j−1ε) + (2j + jε)− 2jε = 2j+1 + (j + 1)ε

which can be shown by induction together with the observation that the squares in the j-th
row are placed on the squares in the (j − 1)-th row for which ai = 0. If the space at the end
of a row is larger than 2j+1+2jε, then add extra squares of size 2j +2j−1ε to this row. After
placing the n− 1 rows, finish with bottom-left placing one square of size 2n + 2n−1ε on top
of the packing. This bottom-left packing is depicted in Fig. 8. A lower bound on the height
of this bottom-left packing is

hworst
BL ≥ m+

n−1∑

i=1

2i + 2n ≥
10

3
· 2n,

13



because them-checkerboard has height at least 4
3
2n, the squares in the middle of the structure

of Fig. 8 have height at least
∑n−1

i=1 2i, and on top of that a square of size at least 2n is placed.

As mentioned, the gap between the squares of size 2j+(ai+2j−1)ε is at most 2j+1+(j+1)ε,
hence each row is approximately for 1

3
occupied by squares. Furthermore, the checkerboard is

approximately half-occupied, and the top row with only a square of size 2n+2n−1ε is almost
entirely empty as n becomes large, because the width of the strip is quadratic in m. Thus
the total amount of occupied area is approximately

1

2
·
4

3
2n +

1

3
·
n−1∑

i=1

2i + 0 · 2n =
2

3
2n +

1

3
2n +O(1) = 2n +O(1).

As the squares get exponentially small, it is not difficult to construct an optimum packing of
height 2n +O(1). Hence there exists ε > 0 such that the lower bound for the worst ordering
in the bottom-left algorithm is

hworst
BL

hOPT
≥

10
3
· 2n

2n +O(1)
=

10

3
− ε.

⊓⊔

· · ·

...

Fig. 8: Exponentially growing squares of size 2j + (ai + 2j−1)ε and gaps of size at most
2j+1 + (j + 1)ε.

The lower bound also holds in an online context, where the squares are placed in the
order given, without having all squares available from the start. In this online setting, a 3.5-
upper bound on the competitive ratio of the bottom-left algorithm is known that additionally
satisfies the Tetris and gravity constraints [4]. The Tetris constraint requires that when a
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square is placed, there is a path from the top of the strip to the final position along which
the square can be moved without intersecting the already placed squares. Furthermore, the
gravity constraint restricts this path from going up. The best-known lower bound for the
bottom-left algorithm with Tetris and gravity constraints was 3/2 [4]. Our 10/3 − ε lower
bound also applies to the Tetris-gravity bottom-left algorithm, closing the gap to the 3.5-
upper bound significantly.

Corollary 1. The online BottomLeft algorithm from [4] has approximation ratio between
10/3 and 3.5.

5 Bottom-left k-local search

The bottom-left k-local search algorithm computes the height of the bottom-left packing
of an instance and tries to improve the height by permuting at most k rectangles in the
ordering and comparing if the new bottom-left packing has a smaller height. The algorithm
continues until a local optimum is reached, i.e., no more improvement steps exist. We denote
by hk-BL(I) the height of a solution returned by this algorithm for an instance I. It turns
out that there are (Square) Strip Packing instances with approximation ratio at least 2 when
starting with a bad ordering.

Theorem 5. For every k ∈ N, there exists a (S)SPP-instance I such that hk-BL(I) =
2 · hOPT(I).

Proof. The idea is to have one row of alternating small and big squares followed by one big
square, such that for each permutation of k squares, always one big square is on top, while
the optimal packing has all the big squares in the same row. More precisely, consider the
instance consisting of 2k + 4 unit squares and 2k + 5 squares of size k + 2. Let the strip
width be W = (2k + 4)(k + 3). An optimum packing of the instance is given in Fig. 9(a).
Notice that 2k+5 squares of size k+2 together with two unit squares fit next to each other,
because it holds that

(2k + 5)(k + 2) + 2 = 2k2 + 9k + 12 ≤ 2k2 + 10k + 12 = (2k + 4)(k + 3) = W.

Moreover, since the 2k + 4 unit squares fit into two unit-width columns of height k + 2, it
follows that the height of the optimum packing is hOPT = k + 2.

Next, bottom-left place unit squares and big squares alternately, followed by another big
square, as illustrated in Fig. 9(b). There does not exist a permutation of k squares such that
the height of this bottom-left packing improves. First of all, even when k of the unit squares
are removed, the big top square does not fit in the resulting gap, because

(2k + 5) · (k + 2) + (2k + 4− k) · 1 = 2k2 + 10k + 14 > 2k2 + 10k + 12 = W.
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k + 2 · · · k + 2
...

2k + 5

k + 2

(a)

k + 2 k + 2 · · · k + 2 k + 2

k + 2

2k + 4

(b)

Fig. 9: (a) is an optimum packing of the instance. (b) is an optimal bottom-left k-local search
packing of the instance. The unit and large square on the bottom of the strip repeat a total
of 2k + 4 times.

Secondly, permuting k large squares with unit squares amounts to swapping at most k/2 such
pairs, in which case at most 2 · k

2
+1 = k+1 unit squares are adjacent in the bottom row, thus

the top square does not fit on top of those k + 1 unit squares as its size is k + 2. Therefore,
the packing is k-local optimal and we have hk-BL = 2(k + 2). Now we get hk-BL/hOPT =
2(k + 2)/(k + 2) = 2 as claimed. ⊓⊔

Moreover, the bottom-left k-local search algorithm might need an exponential number of
improvement steps until reaching a local optimum:

Theorem 6. For each k ∈ N, there exists a SPP-instance such that the bottom-left k-local
search algorithm takes an exponential number of improvement steps with respect to the in-
stance size.

Proof. Consider an instance consisting of rectangles ri =
(
1
k
, 2i

)
and r′i =

(
1, 1

k

)
for i =

0, . . . , k− 1. Let the strip width be 1. Order the rectangles as r0, r
′
0, r1, r

′
1, . . . , rk−1, r

′
k−1. As

depicted in Fig. 10, the height of the bottom-left packing with regards to the initial ordering
of the instance equals

1 +
1

k
+ 2 +

1

k
+ 4 +

1

k
+ · · ·+

1

k
+ 2k−1 +

1

k
= 2k − 1 + k ·

1

k
= 2k.

The rectangles ri are vertical and r′i are horizontal. There exists a sequence of k-permutations
of the vertical rectangles such that the height of the bottom-left packing counts down from
2k to 2k−1+1. Namely, after the p-th permutation the height of the bottom-left packing must
be 2k − p. Write the number 2k − p− 1 in its unique binary representation

∑k−1
j=0 aj2

j with

aj ∈ {0, 1}. Now permute the vertical rectangles such that 2j with aj = 1 is placed before
all 2ℓ with ℓ < j and aℓ = 0 and after all 2ℓ with ℓ > j and aℓ = 1. Obviously, the height of
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this bottom-left packing is 2k − p, because the rectangles of size 2ℓ with aℓ = 0 fit into holes
and do not account to the height of the packing, while all rectangles with aℓ = 1 do account
to the height of the packing. As the height of the sequence counts down, it follows that the
number of improvement steps is exponential in the input size. ⊓⊔

16

15

14

13

12

11

10

9

Fig. 10: Sequence of improvement steps of an instance in the bottom-left k-local search
algorithm with k = 4.

It remains an open question whether the bottom-left k-local search performs better when
the initial solution is guaranteed to be in some form. For example, is the approximation ratio
better-than-2 when the initial instance is ordered by decreasing width. Another question is
whether the k-local search algorithm takes a polynomial number of improvement steps when
the algorithm always selects the best permutation.
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6 Appendix

In this appendix we present our proof for the upper bound stated in Theorem 2, i.e. we show
that for every instance of the Square Strip Packing problem, the ratio between the height of
the bottom-left packing using the worst ordering of the squares and the height of the optimal
packing is smaller than a constant. The remainder of this section is dedicated to proving
that such a constant exists. While it might be interesting to find a constant that is as small
as possible, this will not be our objective.

The main strategy, to prove that the approximation ratio is bounded, is to cover the
unoccupied space in a bottom-left packing of a SSPP-instance by a fixed number of copies
of the squares. This will imply that the ratio between the height of the bottom-left packing
and the height of an optimal packing is bounded. To find a covering of all the unoccupied
space in a packing, it is first necessary to study the structure of the bottom-left packing.
More precisely, the relation between the relative positions of adjacent squares that form the
boundary of unoccupied space is studied.

Instead of looking at a concrete packing, often the packing is replaced by an abstract
representation of the packing in the form of a digraph. Section 6.1 defines this so-called
adjacency graph which is the bedrock of the language for this section. Next, the core result
of Section 6.2 is the structure theorem (Theorem 7) describing the relative relation between
squares that form the boundary of unoccupied space. The structure theorem is used to
construct a partition of unoccupied space. The cover partition is the subject of Section 6.3.
In Section 6.4, the local cover theorem (Theorem 9) uses the cover partition together with
the structure theorem to locally cover unoccupied space by squares that form its boundary.
Section 6.5 studies unoccupied space that is not bounded by squares and also describes local
coverings of these so-called trenches. It turns out that all these local coverings are compatible
with each other, in the sense that there is no square that is used in arbitrarily many local
coverings. Hence, there exists a constant f , such that the unoccupied space can be covered by
at most f copies of the squares. The compatibility of the local coverings is demonstrated in
the global cover theorem (Theorem 13) in Section 6.6. Finally, Section 6.7 brings everything
together and shows that the approximation ratio hworst

BL /hOPT is bounded for SSPP-instances.

6.1 The adjacency graph

This section introduces the language of the structure theorem. First, the unoccupied space is
partitioned in different categories. Next, the relation between the squares forming the bound-
ary of unoccupied space is studied by defining the so-called adjacency graph. This digraph
induces different types of arrows. These arrow types play a crucial role in the formulation of
the structure theorem (Theorem 7) in Section 6.2.
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In easy terms, the unoccupied space is all the space in the substrip [0,W ]× [0, hBL] of a
bottom-left packing that is not occupied by squares. The following definition describes con-
nected unoccupied space that gets bounded after placing the i-th square from the instance.
Although some parts of this unoccupied space might be filled by squares later, in the sequel
it will be useful to have considered the unoccupied space and its surrounding squares at the
moment it gets bounded.

Definition 1. Let BL : S → [0,W ] × [0,∞) be the bottom-left packing of S in the order
SA = (S1, . . . , Sn). For 1 ≤ i ≤ n, define the i-subinstance (SA)i to be the subinstance of SA

consisting of the first i squares, that is SA = (S1, . . . , Si). Inductively define (unoccupied)
i-pieces to be the bounded connected maximal subspace U i

1, . . . , U
i
ni

of

([0,W ]× [0,∞)) \ ({BL(S) | S ∈ (SA)i} ∪ {Uk
j | 1 ≤ k < i, 1 ≤ j ≤ nk}).

Notice that ni is the number of i-pieces in the packing. Often an unoccupied i-piece is
just called an unoccupied piece if the value of i is redundant. An unoccupied piece is an open
polygon whose boundary consists of horizontal and vertical line segments, because a piece is
bounded by squares that are closed subsets and whose faces are horizontal and vertical line
segments. This remark makes it possible to talk about the top, bottom, left and right face
of an unoccupied piece.

Definition 2. Define the top, bottom, left, respectively right face of a piece U (or a square)
by

tf(U) = max{y | (x, y) ∈ U},

bf(U) = min{y | (x, y) ∈ U},

lf(U) = min{x | (x, y) ∈ U},

rf(U) = max{x | (x, y) ∈ U}.

Two unoccupied pieces are never adjacent, because pieces are maximal by definition. Two
squares are adjacent if their intersection is non-empty. However, as squares are closed subsets
and pieces are open subsets, this definition is not compatible to adjacency between a square
and a piece. Hence, in the next definition, to compare a piece and a square the closure of
the piece is taken. The closure of U is denoted by U .

Definition 3. Let σ be an orthogonal packing of a SPP-instance I. Then S1, S2 ∈ S are
adjacent if it holds that σ(S1) ∩ σ(S2) 6= ∅. And an unoccupied piece U is adjacent to S1 if
σ(U) ∩ σ(S1) 6= ∅.

Next, three different kind of unoccupied pieces are defined depending on the position of
the piece in the strip.
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Definition 4. An unoccupied piece is called a left piece if the piece is adjacent to the left
strip boundary. It is a right piece if the piece is adjacent to the right strip boundary. Otherwise
a piece is called a middle piece.

The three classes of pieces partition the collection of all pieces. Observe that a piece
can never be a left piece and a right piece at the same time, because this would violate the
bottom-left structure of the packing, as then there is a path contained in the piece from
the left boundary to the right boundary, hence a square above the path could have been
placed lower. Thus the three classes are disjoint, hence forming a partition of the collection
of unoccupied pieces. There can also be unbounded unoccupied space in the packing of the
strip [0,W ]× [0,∞). This unbounded unoccupied space is the topic of Section 6.5.

Next, three formal squares are defined that represent the boundary. The position of these
formal squares is fixed for each packing. The main reason to introduce formal squares is
to be able to generalize a lot of statements in the upcoming sections, instead of having to
distinguish between left, middle and right pieces.

Definition 5. Let I = (S,W ) be a SSPP-instance. Define the formal squares Sleft, Sright

and Sbottom such that under each orthogonal packing σ it holds that

σ(Sleft) = {0} × R≥0,

σ(Sright) = {W} × R≥0,

σ(Sbottom) = [0,W ]× {0}.

Define the formal instance of I to be Î = (Ŝ,W ) where Ŝ = S ∪ {Sleft, Sright, Sbottom}.

Definition 6. Consider a feasible packing of a (formal) SSPP-instance I = (S,W ). Define
the adjacency graph Gadj(I) as the directed version of the graph with vertex set S and an
edge between two vertices if the corresponding squares are adjacent.

The adjacency graph is a connected planair digraph that describes all the adjacency rela-
tions in the packing of an instance. On the contrary, the following definition only represents
the adjacency relations between (formal) squares adjacent to an unoccupied piece. This is
the graph that will be used most throughout this section.

Definition 7. Let I = (S,W ) be an SSPP-instance and Îi the formal instance of i-sub-

instance Ii. Let U be an unoccupied i-piece and assume that S ′ ⊆ Ŝi are the (formal) squares

adjacent to U . Then define the adjacency graph of U to be the adjacency graph of Îi restricted
to S ′, that is,

Gadj(U) := Gadj(Îi)[S
′].
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The adjacency graph can be seen as an undirected graph or as a digraph, because as digraph
it has for every arrow another arrow going the opposite direction. The main reason to talk
about arrows is to define the four different types: up, down, right and left type.

Definition 8. Let (S1, S2) be an arrow in the adjacency graph Gadj(I) of a SSPP-instance.

(a) (S1, S2) is of left type if lf(S1) = rf(S2).
(b) (S1, S2) is of right type if rf(S1) = lf(S2).
(c) (S1, S2) is of up type if tf(S1) = bf(S2).
(d) (S1, S2) is of down type if bf(S1) = tf(S2).

(a) (b) (c) (d)

Fig. 11: Left type, right type, up type and down type respectively.

For an illustration of the different arrow types see Fig. 11. Furthermore, be cautious of
the special case where two squares are only adjacent on a corner. For example, let the bottom
right corner of S1 be adjacent to the top left corner of S2, then (S1, S2) is of right type as
well as of down type. Moreover, notice that the arrow from the formal square Sbottom to Sleft

is of left type as well as of up type. Similarly, the arrow from Sbottom to Sright is of right type
as well as of up type.

6.2 The structure theorem

The structure theorem (Theorem 7) describes the relative position of adjacent squares in
the adjacency graph of an unoccupied piece. In more detail, this section introduces a few
special squares, among which are the start square and end square. There are two paths in
the adjacency graph from the start square to the end square, the top path going over the
unoccupied piece and the bottom path going under the unoccupied piece. Essentially, the
structure theorem describes the different types of arrows that occur in the top and bottom
path. In Section 6.3 and 6.4 the structure theorem will be exploited to construct a covering
of the unoccupied space in a bottom-left packing.

The adjacency graph of an unoccupied piece contains a closed walk surrounding the piece,
because a piece is bounded by definition and the adjacency graph contains the formal squares,

22



hence every point on the boundary of a piece is part of a (formal) square. Actually, Lemma 1
will show something stronger, namely, that there exists a Hamiltonian circuit surrounding
a piece in the adjacency graph of the piece. This circuit will be used to define the top and
bottom paths that are required in the formulation of the structure theorem. The main idea
for the proof of Lemma 1 is to use the natural ordering induced by the boundary of the
unoccupied piece and show that this closed walk is already a Hamiltonian circuit.

Lemma 1. Let U be an unoccupied piece. There exists a Hamiltonian circuit in the adjacency
graph of U that surrounds U .

Proof. For each square adjacent to U there is at least one point on the boundary ∂U of
the piece that intersects the square and for each point on the boundary there are at most
three squares intersecting this point. The boundary ∂U is homeomorphic to a circle, thus
an orientation of the circle naturally gives an ordering of the squares adjacent to U . Hence
this induces a closed walk W in the adjacency graph of U that surrounds U and visits each
vertex at least once.

S
S1

S3
S2

S4

X1X2

Fig. 12: The arrows (S1, S), (S, S2), (S3, S) and (S, S4) together with X1 and X2. In this
example, F1 is either the right or top face of S and F2 is either the left or top face of S.

Claim: W is a Hamiltonian circuit, that is, W visits each square exactly once. This
claim is proven by contradiction. Suppose that there is a square S that is visited twice. Then
there are four arrows (S1, S), (S, S2), (S3, S) and (S, S4) such that the path from S4 to S1

surrounds the piece. This is illustrated in Fig. 12. Let X1 ⊆ ∂S be the part of the boundary
of S between S1 and S2 that is adjacent to U . Similar, let X2 ⊆ ∂S be that between S3

and S4 adjacent to U . Let F1 and F2 be faces of S such that F1 ∩X1 respectively F2 ∩ X2

do not have measure zero as subset of F1 or F2. Distinguish the following cases depending
on the position of F1 and F2 relative to S.

Case 1: Let F1 and F2 be the same face of S. Regardless of which face F1 is, there is a
square on the path between S2 and S3 that can be placed more bottom-left, because exactly
one of the sets X1 or X2 is either left or below of S2 and S3.
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Case 2: Let F1 and F2 be opposite faces of S. Then X1 and X2 are on the same side
of S2 respectively S3, that is, either both X1 below S2 and X2 below S3, etc. In each case,
there is a square on the path between S2 and S3 that can be placed more bottom-left.

Case 3: Let F1 and F2 be two adjacent faces of S. If F1 and F2 are the left and bottom
face of S, then the path between S2 and S3 can be placed more bottom-left, as this path
does not surround U . Otherwise, at least one of the sets X1 or X2 is left or below S2 and S3,
hence also a square on the path between S2 and S3 can be placed more bottom-left. ⊓⊔

The Hamiltonian circuit from Lemma 1 will be split into two directed paths, called the
top path and the bottom path. These two paths start in the start square and end in the end
square. The next definition defines these squares. Additionally, a few other special squares
are introduced that are relevant in the subsequent sections.

Definition 9. Let U be an unoccupied piece and let W be the Hamiltonian circuit in the
adjacency graph of U that surrounds U . Assume that W is clockwise oriented.

(a) The start square Sstart is a square corresponding to a vertex in the adjacency graph of U
whose top face is as low as possible and among those squares it is the left most.

(b) The top square Stop is a square corresponding to a vertex in the adjacency graph of U
whose bottom face is as high as possible and among those squares it is the right most.

(c) The end square Send is the square after Stop on the oriented Hamiltonian circuit W .
(d) The pre-top square Spre is the square before Stop on W .
(e) The penultimate square Spen is the square after Send on W .

The adjacency graph of an unoccupied piece always has at least four vertices, because
the boundary of an unoccupied piece consists of horizontal and vertical line segments, hence
a rectangle is the smallest polygon enclosing unoccupied space. It follows that the start
square and the top square cannot be adjacent in the adjacency graph, as then the lowest top
face and the highest bottom face are on the same height, in which case the piece is empty.
Consequently, the start, top, end and pre-top square are always different squares. Contrarily,
the penultimate square might be the same as the start square.

The next definition splits the Hamiltonian circuit from Lemma 1 into two paths between
the start square and the end square. This is also illustrated in Fig. 13.

Definition 10. Let U be an unoccupied piece and let W be the Hamiltonian circuit in the
adjacency graph of U that surrounds U . The top path is the directed path in W from the start
square to the end square traversing the top square. The bottom path is the directed path in W
from the start square to the end square not traversing the top square.

Observe that the unoccupied piece is always to the right of the top path when traversed from
start to end square. Analoguously, the unoccupied piece is to the left of the bottom path.
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Sstart

Stop

Spre

Send

Spen

U

Fig. 13: Example of an unoccupied piece U together with the top and bottom path in the
adjacency graph. Only the squares adjacent to the piece are depicted, however, this particular
example does exist in a bottom-left packing of squares. The top square is drawn as a rectangle
for the sake of saving space.

Now, the structure theorem describes the types of the arrows in the top and bottom path.
The structure theorem is true for left, middle and right pieces.

Theorem 7 (Structure theorem). Let U be an unoccupied piece. Then

(a) All arrows in the top path between the start and pre-top square are either of left type or
of up type.

(b) The arrow from the pre-top square to the top square is either of right type or of up type.
(c) The arrow from the top square to the end square is either of right type or of down type.
(d) Each arrow in the bottom path between the start square and the penultimate square is

either of right type or of down type.
(e) The arrow from the penultimate square to the end square is either of right or up type.

Proof. Let S0, . . . , Sℓ be the top path and let Sℓ, Sℓ+1, . . . , Sℓ+r be the bottom path in reversed
order. That is, Sstart = S0 = Sℓ+r, Spre = Sℓ−2, Stop = Sℓ−1, Send = Sℓ and Spen = Sℓ+1. The
unoccupied piece is always on the right of the oriented circuit S0, . . . , Sℓ+r.

Consider the arrows (Sstart, S1) and (Sstart, Sℓ+r−1). Neither (Sstart, S1) nor (Sstart, Sℓ+r−1)
can be of down type, as then S1 or Sℓ+r−1 would be below Sstart, contradicting that Sstart is the
lowest square adjacent to the unoccupied piece. Also, not both (Sstart, S1) and (Sstart, Sℓ+r−1)
can be of left type, as then at least one of tf(S1) and tf(Sℓ+r−1) is below tf(Sstart). With
the same reasoning, not both (Sstart, S1) and (Sstart, Sℓ+r−1) can be of right type. Hence, as
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(Sstart, S1) is on the top path, it is of left or up type and as (Sstart, Sℓ+r−1) is on the bottom
path, it is of right or up type.

Next, consider the first arrow (Si, Si+1) on the circuit that is not of left or up type. Such
an arrow exists, because if all arrows are of left and up type, then the circuit never returns
to the start square. Also it holds that i ≥ 1, because (S0, S1) is of left or up type by the
previous paragraph. Hence it is always possible to consider the square Si−1.

Case 1: Suppose (Si, Si+1) is of down type. Then (Si−1, Si) cannot be of left type, as
otherwise Si can be placed more to the left, because Si−1 must be above Si+1 and the
unoccupied piece is to the right-hand side of the path Si−1, Si, Si+1. Thus (Si−1, Si) must be
of up type. Now as (Si, Si+1) is of down type, it follows that each arrow (Sj , Sj+1) with j > i
must be of left or up type. Otherwise, let (Sj, Sj+1) with j > i be the first that is not of left
or up type. Suppose (Sj, Sj+1) is of right type, then Sj could have been placed lower. And
suppose (Sj , Sj+1) is of down type, then Sj could have been placed more to the left. Thus it
follows that Si must be the top square, i.e., i = ℓ− 1.

Case 2: Suppose that (Si, Si+1) is of right type. Then (Si+1, Si+2) must be of down type
as otherwise Si+1 could have been placed lower. Now with the same argument as before, all
the arrows (Sj , Sj+1) with j > i+ 1 must be of left or up type. Thus either Si or Si+1 is the
top square depending on which one has a bottom face that is higher. Thus this implies (a).

If (Sℓ−1, Sℓ) is of down type, then (Sℓ−2, Sℓ−1) is of up type as mentioned in Case 1, this
implies (b) and (c). If (Si, Si+1) is the first arrow of right type, then there are two cases.
First, if bf(Si) > bf(Si+1), then Si is the top square. It must hold that (Si−1, Si) is of up
type as otherwise Si could have been placed lower, this implies (b) and (c). Secondly, if
bf(Si) ≤ bf(Si+1), then Si+1 is the top square, this immediately implies (b), and it follows
from Case 2 that also (c) is true.

All arrows on the path Sℓ+1, . . . , Sℓ+r are of left or up type according to the argumen-
tation above. Thus each arrow in the bottom path between the start square Sℓ+r and the
penultimate square Sℓ+1 is of right or down type, this implies (d). If (Sℓ−1, Sℓ) is of down
type, then (Sℓ, Sℓ+1) is of left type, as else Sℓ could have been placed more to the left. This
implies (e). Last of all, if (Sℓ−1, Sℓ) is of right type, then (Sℓ, Sℓ+1) must be of down type,
implying (e). ⊓⊔

In line with the structure theorem, an illustration of the different types of arrows in the
top and bottom path is given in Fig. 14. The next section studies the consequences of the
structure theorem and applies it to find a covering of the unoccupied space by squares.
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U

Sstart

Send

StopSpre

Spen

Fig. 14: Example of the top and bottom path around a piece U . The green arrows are either
of left or up type, the blue arrows are either of right or up type, and the red arrows are
either of right or down type.

6.3 Cover partitions

The main objective of this section is to divide an unoccupied piece into easily coverable parts
called subpieces. The idea of the so-called cover partition is that the width of each horizontal
line in a subpiece increases with the height of the position of the horizontal line. Hence, if a
square is wider than the top of a subpiece, then it is wider than any horizontal line in the
subpiece. This will make it possible to cover the subpiece by the squares around it when the
height of the subpiece is bounded by its width.

This section starts by defining the line space, this makes it possible to talk about hori-
zontal lines in an unoccupied piece. After that, the cover partition is defined formally. The
line space is the set of all horizontal lines in an unoccupied piece.

Definition 11. Let V be a subspace of an unoccupied piece U . The (horizontal) line space
of V is defined as the set

LV = {connected components of V ∩ ℓy | ℓy = [0,W ]× {y}, y ∈ [0, hBL]}.

Here V denotes the closure of V .

To compare lines in the line space with each other, a projection map is defined. Moreover,
the width of a line is defined in the obvious way.

Definition 12. Let V be a subspace of an unoccupied piece U . The projection of horizontal
lines in V is the map

φ : LV → 2[0,W ] : ℓ = [x0, x1]× {y} 7→ [x0, x1].
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The width of a horizontal line in V is defined as

w : LV → R≥0 : ℓ = [x0, x1]× {y} 7→ x1 − x0.

With these tools, the cover partition of an unoccupied piece is introduced to be the
smallest partition of the piece into connected subpieces, such that a pair of projections of
horizontal lines is either included in one another depending on which horizontal line is higher,
or their intersection is empty.

Definition 13. Let U be an unoccupied piece. A cover partition Pcov(U) = {V1, . . . , Vs} is a
minimal partition of U such that

(1) For every 1 ≤ i ≤ s, the subspace Vi of U is connected.
(2) For every 1 ≤ i ≤ s and every pair of horizontal lines ℓ, ℓ′ ∈ LVi with ℓ below ℓ′, it holds

that either φ(ℓ) ⊆ φ(ℓ′) or φ(ℓ) ∩ φ(ℓ′) = ∅.

Call the sets V1, . . . , Vs the subpieces of U . Here minimal means that the cover partition is
not the refinement of another partition satisfying (1) and (2).

Fig. 16 depicts an example of a cover partition. A cover partition of an unoccupied piece
is not necessarily unique. An explicit construction of a cover partition is given in Theorem 8.
This construction will use that there is only one so-called peak in the adjacency graph of an
unoccupied piece. Intuitively, a peak square is a local top square, as shown in Fig. 15.

Definition 14. Let S0, . . . , Sℓ, Sℓ+1, . . . , Sℓ+r be the top path followed by the reversed bottom
path in the adjacency graph of a piece U . For a vertex Si, let Sk be the vertex with k < i
maximal such that bf(Sk) 6= bf(Si) and let Sj be the vertex with j > i minimal such that
bf(Sj) 6= bf(Si). Then Si is a peak square if it holds that bf(Sk) < bf(Si) and bf(Sj) < bf(Si).

USi−1

Si

Si+1

Fig. 15: Example of a peak square Si.

There can be at most two peak squares next to each other, as otherwise a peak square
in the middle can be placed lower, contradicting the bottom-left placement rules. Evidently,
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the top square is a peak square, because it is the square adjacent to U with highest bottom
face. Moreover, Lemma 2 shows that the structure theorem implies that there can be at
most two peak squares, namely the top square, and possibly the pre-top square. This will
be useful for explicitly constructing a cover partition.

Lemma 2. An unoccupied piece U has at most two peak squares, which are the top square
and possibly the pre-top square.

Proof. Let S0, . . . , Sℓ, Sℓ+1, . . . , Sℓ+r be the top path followed by the reversed bottom path
of U , such that Sℓ−1 is the top square. Consider a peak square Si. Let Sk with k < i be the
vertex closest to Si such that bf(Sk) 6= bf(Si). And similarly, let Sj with j > i be the vertex
closest to Si such that bf(Sj) 6= bf(Si). Then the bottom face of Si is on the same height as
the bottom face of all the squares Sn with k < n < j. Therefore, all the arrows (Sn, Sn+1)
with k < n < j − 1 are of right type. According to the structure theorem (Theorem 7), only
the arrow from the pre-top square to the top square, and the arrow from the top square to
the end square can be of right type. However, notice that bf(Send) 6= bf(Stop), as the end
square is more to the right than the top square, hence contradicting the definition of the top
square. Thus for all i /∈ {ℓ− 2, ℓ− 1}, with Si a peak square, it follows that Sk = Si−1 and
Sj = Si+1.

Now (Si−1, Si) is either of right or up type and (Si, Si+1) is either of right or down type,
otherwise there is no space on the bottom face of Si between Si−1 and Si+1 that is adjacent
to U . Thus there are four combinations. First of all, let both arrows be of right type, this
never happens as then Si could have been placed lower. Secondly, let (Si−1, Si) be of right
type and (Si, Si+1) be of down type, then by the structure theorem Si is the top square or
the end square. However, the end square cannot be a peak square as the bottom face of the
top square is always above the bottom face of the end square, thus in this case Si is the
top square. Thirdly, let (Si−1, Si) be of up type and (Si, Si+1) be of right type, then by the
structure theorem Si is the pre-top square or the top square. Last of all, let (Si−1, Si) be of
up type and (Si, Si+1) be of down type, then Si is the top square according to the structure
theorem.

All in all, the pre-top and the top are the only possible peak squares. Moreover, if both
are peak squares, then the bottom faces of the peak squares are on the same height because
the pre-top square and the top square are adjacent. ⊓⊔

Finally, Theorem 8 gives an explicit construction of a cover partition, called the natural
cover partition. An example of a natural cover partition is given in Fig. 16. In Section 6.4
this construction is used to inductively cover an unoccupied piece.

Theorem 8. There exists an explicit construction of a cover partition for each unoccupied
piece U , called the natural cover partition.
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S1

S2

Fig. 16: Example of the natural cover partition of an unoccupied piece. There are four sub-
pieces indicated by the green, yellow, purple and orange area. Green is V1, yellow is V2, purple
is Vend and orange is Vtop. The top square is drawn as a rectangle for the sake of convenience.

Proof. Let S0, . . . , Sℓ be the top path of U and let Sℓ, . . . , Sℓ+r be the bottom path in reversed
order. Consider the path P = Sℓ, . . . , Sℓ+r = S0, . . . , Sℓ−1. Let Sij be the j-th vertex on
P such that rf(Sij) > rf(Sij−1) and (Sij−1, Sij ) is of up type. This gives a sequence of
squares Si1 , . . . , Sis on the path P . Furthermore, the structure theorem (Theorem 7) states
that there is at most one arrow on path P of down type, this is the arrow from the end
square to the penultimate square, that is, (Sℓ, Sℓ+1).

If (Sℓ, Sℓ+1) is of down type, then consider the sequence of vertices Sℓ, Si1, . . . , Sis.
Otherwise just consider the sequence Si1, . . . , Sis without the end square Sℓ. Sort bf(Sℓ),
bf(Si1), . . . , bf(Sis) by increasing height and partition U in this order. Inductively define
the subpiece Vj to be the space below bf(Sij ) that is connected to the bottom face of Sij

and disjoint from the already constructed subsets of U . For the end square Sℓ denote the
subpiece by Vend. At last, let Vtop be the space connected to the bottom face of the top
square and disjoint from Vend, V1, . . . , Vs. In the end this gives a collection of subspaces
Pcov = {V1, . . . , Vs, Vend, Vtop} (or without Vend). Discard the sets of measure zero. Call Sij

the square corresponding to Vj.

Claim 1: The collection Pcov partitions U . To prove this claim, observe that by definition
the sets are disjoint. Furthermore, suppose that there is a point p in U that is not covered
by the sets in Pcov. Then also none of the space directly above p is covered by the sets, nor
any space next to this vertical line. In other words, this uncovered space must be adjacent
to a peak square. By Lemma 2 the top square and possibly the pre-top square are the only
peak squares. Hence the point p is actually covered by Vtop. Thus, it follows that the sets in
Pcov cover all the space in U . Hence these sets form a partition of U .
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Claim 2: The collection Pcov forms a cover partition of U . In other words, it has to be
shown that the sets in Pcov are a minimal partition satisfying (1) and (2) from Definition 13.
Property (1), connectedness of the sets in Pcov, follows by definition. For property (2) use
contradiction. Suppose that V ∈ Pcov does not satisfy property (2), then there exists a pair
of lines ℓ, ℓ′ ∈ LV with ℓ below ℓ′ such that φ(ℓ)∩φ(ℓ′) 6= ∅ and one of the endpoints of φ(ℓ)
is outside of φ(ℓ′). Now distinguish two cases.

Case 1: The left endpoint of φ(ℓ) is outside of φ(ℓ′). Let S be a square on the path P
intersecting the left endpoint of ℓ and let S ′ be a square on the path P intersecting the
left endpoint of ℓ′ Then it holds that rf(S ′) > rf(S) and S lies before S ′ on the path P .
It follows that there is a vertex Sim in the constructed sequence that is between S and S ′

on the path P . Therefore, the spaces Vm corresponding to Sim and V overlap, contradicting
that Pcov is a partition.

Case 2: The right endpoint of φ(ℓ) is outside of φ(ℓ′). Now, let S be a square in the
path P intersecting the right endpoint of ℓ and S ′ be a square in the path P intersecting the
right endpoint of ℓ′. It holds that lf(S ′) < lf(S) and S ′ comes before S on the path P . These
two properties can only be satisfied if there is an arrow of right or down type between S ′ and
S on the path P . By the structure theorem (Theorem 7), there does not exists a right type
arrow on the path P . As mentioned above, the only arrow on the path P of down type is the
arrow from the end square to the penultimate square. Now it follows that Vend intersects V .
This contradicts that Pcov forms a partition.

Finally, it remains to show that the partition is minimal. Let Vj and Vj′ be two sets
in the partition with j < j′. Suppose that the union is connected, then Vj′ is above Vj,
as otherwise Vj could have been chosen larger in the inductive definition. Now the square
corresponding to Vj shows that Vj ∪ Vj′ cannot satisfy property (2). Thus Vj ∪ Vj′ is either
disconnected or does not satisfy property (2), thus the cover partition is minimal. This proves
Claim 2. The constructed cover partition is called the natural cover partition. ⊓⊔

In the following, it will be useful to switch between a subpiece Vj of the natural cover
partition and the square Sij corresponding to this subpiece in the inductive definition of the
proof of Theorem 8.

Definition 15. Let Pcov(U) = {V1, . . . , Vs, Vend, Vtop} be the natural cover partition of an
unoccupied piece. The square corresponding to Vj is defined as the square Sij in the path P
such that rf(Sij) > rf(Sij−1) and (Sij−1, Sij ) is of up type. The end square is the square
corresponding to Vend and the top square is the square corresponding to Vtop.

The square corresponding to the green area in Fig. 16 is S1 and the square corresponding
to the yellow area is S2. Furthermore, the end square is the square corresponding to the
purple area and the top square is the square corresponding to the orange area.
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6.4 The local cover theorem

The preceding sections studied the relation of squares relative to each other in the bottom-
left placement of a SSPP-instance. However, it was never actually used that all rectangles
were squares, that is, the statements would also hold for SPP-instances. On the contrary, this
section will make extensive use of the fact that all rectangles are squares. The fact that the
width and height of a square are equal is important information to find a feasible covering
of the unoccupied space.

This section starts by defining the width and height of an unoccupied piece and its
subspaces. Next, Lemma 3 relates the size of a subpiece in the natural cover partition to the
size of the square corresponding to the subpiece. This will be the bedrock of the local cover
theorem (Theorem 9) that covers a left or middle unoccupied piece by at most four copies of
the squares that are adjacent to it. Furthermore, Theorem 10 shows that right pieces can also
be covered by at most four copies of the squares adjacent to it, however, this requires more
work as part of the right boundary of a right piece is the right strip boundary. Section 6.5
will discuss how to cover the remaining unoccupied space and Section 6.6 unites all these
local coverings into a global covering that uses at most twelve copies of the squares of the
instance to cover all the unoccupied space.

The width of a subspace of an unoccupied piece is defined as the maximum width of a line
in its linespace. The height of an unoccupied piece is defined as the height of its bounding
box, that is, of the smallest rectangle bounding the piece.

Definition 16. Let V be a subspace of an unoccupied piece U . The width of V is defined as

w(V ) = max{w(ℓ) | ℓ ∈ LV }.

The height of V is defined as

h(V ) = sup{y − y′ | [x0, x1]× {y} ∈ LV, [x′
0, x

′
1]× {y′} ∈ LV }.

For a cover partition, the fact that higher lines in a subpiece have larger width implies
that the width of a subpiece is always attained in the highest line.

For each square in the bottom-left packing there is a (formal) square adjacent to the left
face as otherwise the square could have been placed more to the left. Similarly, there is a
(formal) square adjacent to the bottom face, as otherwise the square could have been placed
lower. Inductively it follows that for each square there is a path in the adjacency graph
consisting of right type arrows from the left strip boundary to the square. Analoguously,
there is a path consisting of up arrows from strip bottom to the square. The next definition
describes two subgraphs of the adjacency graph of an instance that contain such paths.
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Definition 17. The right type adjacency graph Gright(I) is the subgraph of the adjacency
graph Gadj(I) consisting of all vertices together with all right type arrows. Similarly, the up
type adjacency graph Gup(I) is the subgraph consisting of all up type arrows.

Lemma 3 relates the width of a subpiece in the natural cover partition to the width of the
square corresponding to the subpiece. Moreover, in the case that the arrow in the bottom
path from the penultimate square to the end square is of up type, the lemma says even more
about the width of the pretop square and top square. In the proof it will be significant that
an i-piece is not yet bounded when only the first i− 1 squares of the instance are placed.

Lemma 3. Let U be an i-piece. Let Pcov(U) = {V1, . . . , Vs, Vend, Vtop} be the natural cover
partition of U for the subinstance Ii consisting of the first i squares of SSPP-instance I.
Then

(a) For every square S corresponding to subpiece V ∈ Pcov(U)\{Vend}, it holds that S > w(V ).

Furthermore, if the arrow from the penultimate square to the end square is of up type, then

(b) The pretop square is larger than the height difference between the bottom face of the top
square and the bottom face of the end square, that is, Spre > bf(Stop)− bf(Send).

(c) The top square is larger than the penultimate square plus the width of a line in the line
space of U just under the bottom face of the end square, that is, Stop > Spen + w(Vend).

Proof. Let S be the square corresponding to V ∈ Pcov(U)\{Vend} and let ℓ = [x, x+w(V )]×
{y} be the highest line in LV . Consider the space K = [x, x + w(V )] × [y, y + S] of width
w(V ) and height S above the line ℓ. Notice that S ∩K is non-empty, as part of the line ℓ is
adjacent to the bottom face of S. Assume that S is the j-th square that is placed.

Claim 1: The interior ofK is unoccupied when only the first j−1 squares are placed. This
claim is proven by contradiction. Suppose that there is a square S ′ intersecting the interior
ofK. Then there is a path Pright from the left strip boundary to S ′ in the right type adjacency
graph Gright(Ij−1) consisting of the first j−1 squares. Similarly, there is a path Pup from the
strip bottom to S ′ in Gup(Ij−1). It holds that bf(S

′) < tf(S) and lf(S ′) > rf(S), because S ′

intersects the interior of K. It follows that the path Pup is to the right of S. Furthermore,
suppose that Pright goes over S, then U was already bounded by the paths Pright and Pup

when the first j−1 squares were placed, contradicting the definition of an i-piece. Thus, the
path Pright goes underneath S. This means that Pright crosses V , because V is just under K
and all arrows in Pright are of right type, hence this contradicts that V is unoccupied. This
proves the claim.

Suppose that S ≤ w(V ), then S could have been placed lower as K is unoccupied.
Therefore, it holds that S > w(V ). This proves part (a).

33



Now, assume that the arrow from the penultimate square to the end square is of up
type. Claim 2: The end square is the i-th square of the instance, that is, it is the square
that bounds U . The path from the end square to the left strip boundary in the right type
adjacency graph has to go over U , because the arrow from the penultimate square to the
end square is of up type and the unoccupied piece is on the left of the bottom path. Thus
when the end square is placed the piece is bounded, implying the claim.

The structure theorem (Theorem 7) implies that the arrow from the pretop square to the
top square is of up type and the arrow from the top square to the end square is of right type.
Now, suppose it holds that Spre ≤ bf(Stop) − bf(Send), then as the pretop square is placed
before the end square, and bf(Stop) − bf(Send) ≤ Send, it follows that the pretop square
could have been placed lower at the position of the end square. This proves part (b).

Finally, part (b) implies that bf(Send) ≥ bf(S) for all squares S ∈ Pcov \{Stop}. Similar to
part (a), consider the highest horizontal line ℓ = [x, x+w(Vend)]×{y} in the line space LVend

and define the space K = [x, x+ w(Vend) + Spen]× [y, y + Stop] of width w(Vend) + Spen and
height Stop above the line ℓ. Now, the interior ofK is unoccupied when only the squares before
the top square are placed. This is proven with contradiction in the same way as Claim 1.
Next, suppose that it holds that w(Stop) ≤ w(ℓ) + w(Spen), then the top square could have
been placed lower as K is unoccupied. Hence, it holds that w(Stop) > w(ℓ) + w(Spen). This
implies part (c). ⊓⊔

Finally, the local cover theorem (Theorem 9) constructs a cover of a left or middle unoc-
cupied i-piece using at most four copies of the squares adjacent to the piece. The main idea
is to cover each subpiece in the natural cover partition by at most two copies of the square S
corresponding to the subpiece, this is possible as the width of the subpiece is smaller than S.
However, the height of the subpiece might be larger than S, in that case, the other square
adjacent to the subpiece on the same height as S is also used to cover the subpiece.

Theorem 9 (Local cover theorem). Let U be a left or middle i-piece in the bottom-left
packing of the subinstance Ii. Then U can be covered by at most four copies of the squares
that are adjacent to U .

Proof. Let Pcov(U) = {V1, . . . , Vs, Vend, Vtop} be the natural cover partition of U . Distinguish
two cases depending on the type of the arrow from the penultimate square to the end square.

Case 1: Let the arrow from the penultimate square to the end square be of right type.
Then let Si1 , . . . , Sis be the squares corresponding to V1, . . . , Vs and let Stop be the top square
corresponding to Vtop. Observe that Vend does not exist. For 1 ≤ j ≤ s, let Qj be the path
from Sij−1 to Send that traverses the top path in reversed order followed by the bottom path.
And define Skj to be the first vertex on the path Qj such that tf(Skj) > bf(Sij ). Obviously, Skj

is adjacent to Vj as otherwise Vj could have been chosen to be larger. Now split Vj into V ⊥
j
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and V ⊤
j , where V ⊥

j is everything below the bottom face of Skj and V ⊤
j everything above the

bottom face of Skj , that is,

V ⊥
j = Vj ∩ ([0,W ]× [0, bf(Skj )]) and V ⊤

j = Vj ∩ ([0,W ]× [bf(Skj),∞)).

The structure theorem (Theorem 7) states that all arrows in the path Qj are either of right
or down type. Thus for each square on Qj , the effect it has on the height of Vj is less than the
effect it has on the width of Vj. Therefore it follows that w(V ⊥

j ) > h(V ⊤
j ). Now by part (a)

of Lemma 3 it holds that Sij > w(Vj), hence Sij can cover V ⊤
j . Furthermore, if Sij ≥ Skj ,

then Sij can also cover V ⊤
j . Otherwise if Sij < Skj , then Skj can cover V ⊤

j . This is illustrated
in Fig. 17.

Sij

Skj

V ⊤

j

V ⊥

j

(a)

Sij

Skj

V ⊤

j

V ⊥

j

(b)

Fig. 17: In Figure 17a the square corresponding to Sij is larger than the square corresponding
to Skj , so Sij is used twice to cover V ⊤

j and V ⊥
j . Furthermore, in Figure 17b the square

corresponding to Sij is smaller than the square corresponding to Skj , so Sij is used once to
cover V ⊥

j and the area in Skj directly next to V ⊤
j is used once to cover V ⊤

j .

In the same way, let V ⊥
top be all the space in Vtop under bf(Send) and V ⊤

top all the space
in Vtop that is above bf(Send). Again, part (a) of Lemma 3 states that Stop > w(Vtop), thus
either two copies of Stop or one copy of Stop and one copy of Send cover Vtop.

All in all, at most three copies of the squares adjacent to U cover the unoccupied piece.
Namely, for each subpiece use at most two copies of Sij and at most one copy of Skj . Observe
that if Skj is used to cover V ⊤

j , then only Skj ∩ ([0,W ] × [bf(V ⊤
j ), tf(V ⊥

j )]) is needed, thus
Skj can be used to cover multiple subpieces. Thus each square might be used at most three
times in the covering of the piece U .

Case 2: Let the arrow from the penultimate square to the end square be of up type. Now,
let Si1, . . . , Sis be the squares corresponding to V1, . . . , Vs, let Stop the square corresponding
to Vtop and Send the square corresponding to Vend. Cover Vtop and Vj for 1 ≤ j ≤ s in the
same way as Case 1.
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Next, the subpiece Vend is covered by at most two copies of the top square. Again split Vend

into V ⊥
end and V ⊤

end, where V
⊥
end is everything in Vend that is under bf(Spen), and V ⊤

end everything
above bf(Spen). By part (c) of Lemma 3 it holds that Stop > Spen+w(Vend), this implies that
Stop > Spen and Stop > w(Vend). Now by the same argumentation as before, the structure
theorem (Theorem 7) states that all arrows on the bottom path are of right or up type,
therefore, each square in the bottom path adjacent to V ⊥

end adds more to the width than
to the height, thus w(V ⊥

end) > h(V ⊥
end). This implies that the top square can cover V ⊥

end.
Furthermore, Stop > Spen implies that the top square can cover V ⊤

end.

All in all, at most four copies of the squares adjacent to U cover the unoccupied piece.
Each subpiece Vj uses at most two copies of Sij . At most one copy is needed of a square that
plays the role of some Skj . And the top square is used at most four times, namely, at most
twice to cover Vtop and at most twice to cover Vend. As a top square is never used in the role
of Skj , it follows that at most four copies of the squares adjacent to U suffices to cover the
piece. ⊓⊔

Later, the global cover theorem (Theorem 13) will construct a global covering of the
unoccupied space using the local cover theorem (Theorem 9) multiple times. It will be crucial
that each square is only used a limited number of times to cover different local coverings. As
mentioned in the end of the previous proof, a square can be used to cover unoccupied space
in two different roles. First of all, a square can be used to cover a subpiece Vj in the role of
the square Sij corresponding to Vj . Secondly, a square can be used to cover V ⊤

j in the role
of the square Skj , which is the first square on the path Qj such that the top face of Skj is
strictly above the bottom face of Sij . The next definition makes this distinction formal.

Definition 18. A square S is a left cover square if S is used to cover a subpiece Vj of an
unoccupied piece U in the role of the square Sij corresponding to Vj. A square is a right
cover square if S is used to cover a subpiece Vj in the role of the square Skj , which is the
first square on the path Qj between the square Sij−1 and the end square containing the start
square such that tf(Skj) > bf(Sij ).

The local cover theorem (Theorem 9) gives a recipe for covering left and middle pieces,
thus it remains to construct a covering for right pieces. The covering from before does not
work, because for a subpiece Vj the right cover square Skj on the path Qj might be the formal
right strip boundary square and this cannot be used to cover Vj . Despite of this, Theorem 10
constructs a cover that heavily relies on the local cover theorem (Theorem 9). Namely, it
uses the local cover theorem for subpieces that have a right cover square adjacent to it, and
it uses other squares in the top path to cover the other unoccupied space.

Theorem 10 (Right piece local cover theorem). Let U be a right i-piece in the bottom-
left packing of the subinstance Ii. Then U can be covered by at most four copies of the squares
adjacent to U .
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Proof. Let Pcov(U) = {V1, . . . , Vs, Vtop} be the natural cover partition of U . Note that Vend

does not exist for a right piece. For each subpiece Vj such that Skj does not equal the
formal right strip boundary, use the same covering with Sij and Skj as in Theorem 9. Now
let Vl1 , . . . , Vlt be the other subpieces that are not yet covered (including Vtop).

For each 1 ≤ j ≤ t it holds that Silj
> w(Vlj) by part (a) of Lemma 3. However, the height

of Vlj can be significantly larger than Silj
, because there is not a bottom path consisting of

right and down type arrows on the right of the subpiece. Instead, let ℓ be the bottom-left most
horizontal line in LVil and let S be a square adjacent to the left endpoint of ℓ. Consider the
path w1, . . . , wq from S to Silj

. By the structure theorem (Theorem 7) this path consists of

left and up type arrows. Next the piece Vj is partitioned into q classes W1, . . . ,Wq where Wk

is the unoccupied space in the rectangle [rf(wk),W ]× [tf(wk−1), tf(wk)] that is connected to
the square wk. These sets form a partition, because if there is other unoccupied space in the
rectangle corresponding to Wk, then there is another square wk′ on the top path such that
right of that square there is another set Wk′ of the partition. Each Wk is covered by either
wk, wk+1 or Sij depending on the arrow types of (wk−1, wk) and (wk, wk−1).

Case 1: Let (wk−1, wk) and (wk, wk−1) be of left type. Then the effect of wk on the height
of Vj is strictly less than the effect on the width of Vj. Thus cover Wk with Sij .

Case 2: Let (wk−1, wk) and (wk, wk−1) be of up type. Then it holds that w(Wk) < wk+1,
because otherwise wk+1 could have been placed lower. Now if wk < wk+1, then as wk = h(Wk)
it is possible to cover Wk with wk+1. Otherwise if wk ≥ wk+1, then it holds that wk > w(Wk),
thus Wk can be covered with wk.

Case 3: Let (wk−1, wk) be of left type and (wk, wk−1) of up type. This is similar to Case 2.
If wk < wk+1, then cover Wk with wk+1. Otherwise cover Wk with wk.

Case 4: Let (wk−1, wk) be of up type and (wk, wk−1) of left type. Then the effect of wk

on the height of Vj equals the effect on the width of Vj . Thus cover Wk with Sij .

Let Wm1
, . . . ,Wmr

be the sets from the partition that were covered with Sij in Case 1
and 4. As mentioned above, for each Wk it holds that Sij > w(Wk). Furthermore, as the
effect of wmk

on the height of Vj is less or equal to the effect on the width of Vj it follows
that

∑r
x=1wmx

≥
∑r

x=1 h(Wmx
). Hence it holds that

Sij > w(Vj) ≥
r∑

x=1

wmx
>

r∑

x=1

h(Wmx
).

Thus one copy of Sij is enough to cover Wm1
, . . . ,Wmr

.

All in all, a square is used at most three times to cover subpieces of the natural cover
partition by the local cover theorem (Theorem 9), because the arrow from the penultimate
square to the end square is of right type. Furthermore, a square can be in at most two of the
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four cases above. Hence at most two copies of a square are needed to cover the W1, . . . ,Wq,
namely, at most once in Case 2, at most once in Case 3 and at most once in Case 1 and 4.
Moreover, a square that is used more than twice to cover subpieces in the local cover theorem
can only belong to Case 1 above (or to none of the cases). This is true because such a square
is a left and right cover square, hence there is unoccupied space in U adjacent to the left
face and to the right face of the square. Therefore, it follows that the arrow to and from this
square in the top path must be of left type by the construction in Lemma 1. Therefore it
follows that in total at most four copies of the squares adjacent to the right piece are needed
to cover it. ⊓⊔

6.5 Trenches

The unoccupied space of a bottom-left packing is usually larger than just the unoccupied
pieces. In particular, there can be space in the top of the packing that is unbounded in the
strip. These subspaces are called trenches. Informally, a trench looks like an unoccupied piece
without a top square. Theorem 11 and Theorem 12 reduce trenches to left, middle or right
pieces to show that part of a trench can be covered by at most four copies of squares that
are adjacent to it. This will be used in Section 6.6 to construct a global covering of all the
unoccupied space of the packing.

Definition 19. Let I be a SSPP-instance and let U be the set of all unoccupied pieces.
A trench is a bounded connected maximal subspace T of

([0,W ]× [0, hBL − hmax]) \ (BL(I) ∪ U).

Here hmax is the height of the largest square. Let T = {T1, . . . , Ts} be the set of trenches.

All trenches have the same properties except for one special trench called the right trench.
The right trench is the trench that is adjacent to the right strip boundary. In the reduction
theorems, the right trench is reduced to a right piece instead of a left or middle piece.

Definition 20. The right trench is the unique trench that is adjacent to the right strip
boundary. The other trenches are called top trenches.

The definition of trenches directly implies the following corollary describing the unoccu-
pied space in a bottom-left packing in terms of unoccupied pieces and trenches.

Corollary 3. The unoccupied space of a bottom-left packing in the [0,W ]× [0, hBL − hmax]
substrip is contained in the union of the unoccupied pieces and the trenches, that is U ∪ T .
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Next, Theorem 11 shows that top trenches can be covered by at most four copies of
the squares adjacent to it when a substrip of height 3hmax is cut off the top of the strip.
Section 6.7 will show that cutting of such a substrip does not effect the boundedness of the
approximation ratio. The main idea for covering the top trenches is to first reduce the top
trenches to left and middle pieces, and then use the local cover theorem (Theorem 9) to
cover the unoccupied space with squares adjacent to the trench.

Theorem 11 (Top trench reduction theorem). Let T be a top trench. Then the space

T ∩ ([0,W ]× [0, hBL − 3hmax])

can be covered by at most four copies of the squares adjacent to T .

Proof. Let ℓ be the highest horizontal line in the line space of T . There is a square above
the line ℓ, since at least one square touches the top of the strip at height hBL, hence it holds
that w(ℓ) < hmax. Place a square S of size hmax on top of the line ℓ to reduce the top trench T
to a left or middle piece. Use the local cover theorem (Theorem 9) to cover the piece with
at most four copies of the squares adjacent to T . The square S of size hmax is the top square
of the unoccupied piece T . Now S is used at most four times to cover T , and S is only used
to cover unoccupied space that is at most 2hmax under the line ℓ. Therefore, all the space
in T ∩ ([0,W ]× [0, hBL − 3hmax]) is covered by actual squares that are adjacent to T . ⊓⊔

It remains to cover the right trench. This is done similar to top trenches. However, the
difference is that the right trench is reduced to a right piece by adding a copy of the largest
square of the instance to the top of the trench. Next, Theorem 10 shows a way to cover the
right piece by at most four copies of the squares adjacent to it.

Theorem 12 (Right trench reduction theorem). The right trench T can be covered
by at most four copies of the squares adjacent to T together with a square of size hmax.

Proof. Let ℓ be the highest horizontal line in the line space of T . There is a square above
the line ℓ, hence w(ℓ) < hmax. Place a square S of size hmax on top of the line ℓ to reduce
the right trench T to a right piece. Use Theorem 10 to cover T by at most four copies of
the squares adjacent to the right piece T . It follows that this space can be covered by at
most four copies of the squares that are actual adjacent to the right trench T together with
a square of size hmax. ⊓⊔

6.6 The global cover theorem

The global cover theorem (Theorem 13) combines the different reductions with the local
cover theorems to obtain a global covering of the unoccupied space in a bottom-left packing
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of squares restricted to the [0,W ] × [0, hBL − 3hmax] substrip. The main caveat is to show
that each square is only used a limited number of times to cover unoccupied space locally.
Essentially, the reductions from the trenches to the unoccupied pieces show that each square
covers unoccupied space as left cover square, as right cover square, or it covers a right piece.
The idea of the global cover theorem is to show that if a square is used multiple times as left
or right cover square, then still only a limited number of copies of this square is required.

Theorem 13 (Global cover theorem). At most twelve copies of the squares from a
SSPP-instance are needed to cover the [0,W ]× [0, hBL − 3hmax] substrip.

Proof. By Corollary 3 all the unoccupied space of the substrip [0,W ] × [0, hBL − 3hmax] is
contained in the union of the pieces and trenches. Use the local cover theorem (Theorem 9)
to cover the left and middle unoccupied pieces, use Theorem 10 to cover the right pieces,
use Theorem 11 to cover the top trenches and use Theorem 10 to cover the right trench. It
remains to show that each square is only used a limited number of times to cover unoccupied
space.

Claim 1: If a square S is used multiple times as left cover square, then still at most
six copies of the square are needed. Let U1, . . . , Ul be the different pieces that use S as left
cover square in their local covering. Then S is the top square of each Uj except possibly for
one such piece. Without loss of generality, let S be the top square of the pieces U1, . . . , Ul−1.
Let V1, . . . , Vl−1 be the subpieces of the natural cover partition of U1, . . . , Ul−1 that use S
in their local covering. Obviously, it holds that

∑l−1
j=1w(Vj) < S as S is the top square of

all these pieces. Furthermore, the top faces of the end squares of U1, . . . , Ul−1 are on the
same height and the arrow from the top square S of Uj to the end square of Uj is of down
type. This implies that the arrow from the penultimate square to the end square of Uj for
1 ≤ j ≤ l− 1 is of right type. Hence, to cover Vj for 1 ≤ j ≤ l− 1 at most two copies of the
space in S directly above Vj are needed. Furthermore, at most four copies of S are required
to cover Vl according to the local cover theorem (Theorem 9). Thus in total at most six
copies of S are needed for S in the role of left cover square to cover the unoccupied space.

Claim 2: If a square is used multiple times as right cover square, then at most one copy
of the square is needed. To prove this claim, let V1, . . . , Vl be the different subpieces that
use S as right cover square in their local covering. These subpieces might belong to different
pieces. For each j, the square S is used to cover V ⊤

j as defined in the proof of the local cover

theorem (Theorem 9). Now it holds that
∑l

j=1 h(V
⊤
j ) < S, because each point on the right

boundary of V ⊤
j is adjacent to S. Furthermore, for each j it holds that w(V ⊤

j ) < S, thus
in total at most one copy of S is needed for S in the role of right cover square to cover the
unoccupied space.

Claim 3: Each square is needed at most twelve times to cover unoccupied space. A
square is used at most six times as left cover square and at most one time as right cover
square. Furthermore, to cover the right trench an extra copy of the largest square is needed.

40



Last of all, a square never has to cover more than one right piece, and this requires at most
four copies of the square. Thus 6 + 1 + 1 + 4 = 12 copies of the squares suffices to cover all
the unoccupied space in the bottom-left packing restricted to the [0,W ] × [0, hBL − 3hmax]
substrip. ⊓⊔

6.7 Boundedness for SSPP

We now show that the approximation ratio of the bottom-left algorithm for any ordering of
squares is bounded by a constant. Therefore, even when the worst ordering of the squares is
used, the approximation ratio remains bounded.

Although it might be interesting to get an approximation ratio as small as possible, this
section only cares about boundedness. Theorem 14 expresses the bound in terms of abstract
numbers, illustrating that improvement can be found by lowering any of the constants in-
volved. Most certainly improvement is possible by either constructing a different covering or
by enhanching the analysis of this section. Next, Corollary 4 substitutes the numbers found
in the global cover theorem (Theorem 13) to obtain a 16-approximation.

Theorem 14. Let I be a Square Strip Packing instance, then

hworst
BL (I)

hOPT(I)
≤ f + g + 1.

Here f is the number of copies of the squares in the instance that is required to cover the
unoccupied space in the [0,W ]× [0, hBL − ghmax] substrip for some constant g.

Proof. The total area of the strip [0,W ]× [0, hBL] equals the total area of the squares Asquares

plus the unoccupied area Aunocc. The unoccupied area is bounded by f copies of the squares
plus the area outside of the [0,W ]× [0, hBL − ghmax] substrip. In other words, it holds that

Aunocc ≤ fAsquares + ghmaxW.

Furthermore, the total area of the squares is bounded by the total area of an optimum
packing, therefore it holds that

hBLW = Asquares + Aunocc ≤ (f + 1)Asquares + ghmaxW ≤ (f + 1)hOPTW + ghmaxW.

It holds that hmax ≤ hOPT. Thus this implies that

hBL ≤ (f + 1)hOPT + ghmax ≤ (f + g + 1)hOPT.

⊓⊔
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The analysis of the previous proof actually gives an asymptotic approximation ratio,
namely it shows that hBL ≤ (f+1)hOPT+ghmax. However, this is irrelevant for boundedness.
Next, Corollary 4 uses the global cover theorem (Theorem 13) and Theorem 14 to show that
the approximation ratio of an SSPP-instance using any order is bounded by 16.

Corollary 4. The bottom-left algorithm has constant approximation ratio for the Square
Strip Packing Problem, it holds that hworst

BL (I) ≤ 16 · hOPT(I).

Proof. According to the global cover theorem (Theorem 13), at most twelve copies of the
squares from the instance I are needed to cover the unoccupied space in the [0,W ]×[0, hBL−
3hmax] substrip. Hence, Theorem 14 implies that

hworst
BL (I)

hOPT(I)
≤ f + g + 1 = 12 + 3 + 1 = 16.

⊓⊔
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