
1

BonnCell: Automatic Cell Layout in the 7nm Era
Pascal Cremer, Stefan Hougardy, Jannik Silvanus, and Tobias Werner

Abstract—Multi patterning technology used in 7nm technology
and beyond imposes more and more complex design rules on the
layout of cells. The often non local nature of these new design
rules is a great challenge not only for human designers but also
for existing algorithms. We present a new flow for automatic
cell layout generation that is able to deal with these challenges
by globally optimizing several design objectives simultaneously.
Our transistor placement algorithm not only minimizes the total
cell area but at the same time guarantees the routability of the
cell and finds a best arrangement and folding of the transistors.
Our routing engine computes a detailed routing of all nets
simultaneously. It computes a netlength optimal routing using
a mixed integer programming formulation. Additional DFM
constraints are added to this model to improve yield and reduce
chip manufacturing costs.

We present experimental results on current 7nm designs. Our
approach allows to compute optimized layouts within a few
minutes, even for large complex cells. The algorithms are used
for the design of logic cells compatible with a published 7nm
technology from a leading chip manufacturer where they meet
manufacturability requirements and significantly reduced design
turn around times.

Index Terms—automated cell generation, cell design, multiple
patterning lithography, design for manufacturability

I. INTRODUCTION

In a hierarchical design of a complex chip the cells are
the functional units at the lowest level of the hierarchy. A
cell realizes simple logical functionality as for example an
AND-function, a buffer or a latch. These cells are used many
times on a chip and therefore much effort is spent to find area
optimized transistor level layouts. This reduces the overall chip
area and thereby improves chip costs. A standard cell library is
a collection of these cells that contains many implementations
of the same logic function, differing in the number of inputs,
power level, and timing behavior. The total number of cells
contained in a standard cell library is in the range between 100
and 2,000 cells. Some applications require custom cells, i.e.
cells not contained in the standard cell library. An example is
the design of high-speed SRAM, where dynamic logic is used
which cannot be mapped to standard logic gates.

Lacking high-quality automatic cell layout generators, these
custom cells have so far been built manually by experienced
designers. The design rules and DFM (design for manufac-
turability) requirements become increasingly complex with
each new technology and the number of different cells used
in modern designs is growing steadily. In addition, time-to-
market pressure is increasing. The manual layout of a complex
cell can take several days making this process a severe
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Fig. 1. Schematic view of a 7nm layout showing a single finFET and some
wiring. Fins (yellow), M0, and M2 are horizontal while PC, TS, and M1 are
vertical layers. The diffusion area is denoted by RX. The via layers are CA,
V0, and V1.

bottleneck in turnaround time, particularly due to increased
automation in other design steps. This drives the need for high-
quality automatic cell layout generators.

In this paper, we present a new flow for the automatic
generation of cell layouts, both for placement and routing.
Our approach provides solutions that are provably optimal
in terms of area consumption and guarantees routability.
All cells produced by our algorithm are guaranteed to be
LVS (Layout Vs Schematic) and DRC (Design Rule Check)
clean. We have implemented cell level design rules consistent
with [14] which describes Globalfoundries’ proposed 7nm
technology and consistent with the SADP trim shape process
as described in [2], [12]. We consider all these design rules
already during the placement and the routing phase. This is
a crucial requirement for the current 7nm technology and
beyond as design rule cleanness can no longer be achieved
by local post processing operations alone. We also consider
many DFM rules to optimize the yield.

In Globalfoundries’ 7nm node all cell internal layers are
uni-directional (see Fig. 1). The layers PC and TS are used
to contact gates and source/drain contacts of the finFETs. A
finFET can have more than one gate. We refer to the number
of gates as the number of fingers of the transistor. A transistor
is called folded if it has more than one finger. Three additional
wiring layers M0, M1, and M2 are used that alternately have
horizontal and vertical orientation. As M2 is mainly used for
inter cell connections, it should be used for internal cell wiring
only if necessary. The wiring layers are connected by via layers
CA, V0, and V1, where CA connects both PC and TS with
M0, V0 connects M0 with M1, and V1 connects M1 with M2.
Different multiple patterning techniques are applied for these
layers. SAQP (self aligned quadruple patterning) is used for
the fins, SADP (self aligned double patterning) for the metal
layers, and up to four times litho-edge for the via layers [26].

The cell layout problem can be described as follows. As
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(a) Placement containing power bus (green), PC (blue), TS (brown),
and FET boundaries (black). FETs are arranged in two horizontal stacks
containing five FETs each.
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(b) DRC clean routing with optimal manufacturability and wire length.

Fig. 2. Example results after (a) placement, (b) routing and DFM post processing.

input an image of the cell is given, i.e. an area with predefined
horizontal power tracks at the top and bottom of the cell,
equidistant vertical tracks for PC, TS, and M1, fin positions,
and (not necessarily equidistant) horizontal tracks for M0 and
M2. The finFETs, partitioned into p-FETs and n-FETs, have
to be placed in two horizontal stacks in between the power
tracks (see Fig. 2a). The electrical connectivity of the FETs
and their sizes is described in a netlist. The task is to decide
how many fingers a FET should use and to assign a location
to each FET. Both choices are subject to the design rules
and DFM constraints. Here, the width of the cell is the most
important optimization criterion as this determines the area of
the cell on the chip. Given a placement of FETs, the goal
in routing is to find an embedding of rectilinear Steiner trees
which realizes the given netlist. This has to be done meeting
the design rules and DFM constraints, as well. As the overall
goal in routing, we minimize weighted net length, with the
topmost available layer M2 being more expensive than other
layers. Other objectives (e.g. pin accessibility [25], number
of vias, or electromigration reliability [11], [17], [26]) can be
included as well.

A crucial point for the placement algorithm is to guaran-
tee routability without making pessimistic assumptions. We
achieve this by fully integrating the routing algorithm into our
placement algorithm. This way we are able to find area mini-
mum placements which are guaranteed to be routable. Among
all such placements, our algorithm finds one that minimizes
the estimated weighted netlength, or if more running time is
allowed, it even guarantees to find an area optimum solution
that minimizes the weighted netlength.

Simple sequential rip-up and reroute approaches turned out
to fail for most of our placements. Moreover, these approaches
do not allow to guarantee the routability of a given placement.
Instead, we use an approach that allows us to route all nets
simultaneously and consider all design rules already while
building up the nets. The latter is required because only few
design rule violations can be fixed after routing due to the
limited space of our compact placements. Our router respects
DFM constraints in the post processing phase. We also have
successfully extended our approach to multi-row cells (see
Section II-K).

A. Related Work

Most previous work on cell layout only focuses on subprob-
lems or restricted versions of the general cell layout problem
and is not directly applicable to 7nm layouts. Moreover, design
rules and DFM requirements are more restrictive in 7nm than
in previous 14nm/15nm [13] and 10nm finFET technology
nodes.

Many different approaches have been suggested for the
transistor placement problem. In [1] and [10] combinatorial
algorithms are presented that optimize the cell area but assume
a given transistor folding. The authors of [6] use an integer
programming approach that optimizes cell area and includes
transistor folding but they assume the possibility to pair n-
FETs and p-FETs. In [19] a branch and bound approach is
used for transistor placement that allows to optimize additional
objectives, but transistor folding is not considered.

The placement algorithm has to consider the complicated
dependencies between positions of n-FETs and p-FETs that
arise due to the design rules of the SADP trim mask for
the FEOL (front end of line) layers. Several approaches to
handle SADP in automated design have been suggested, e.g.
[24], [26]. Our approach differs in that we allow variable
gate widths during trim mask generation and guarantee to find
valid solutions if existent. Moreover, our placement algorithm
guarantees routability by applying the routing algorithm while
constructing a placement. To the best of our knowledge,
our placement algorithm is the first to guarantee a routable
placement without wasting cell area.

For intra cell routing many different approaches are known.
Traditional channel routing [22] and simple rip-up and reroute
strategies [15] fail in recent technologies. More successful are
SAT-based [18] and the closely related integer-programming
based [25] approaches. In these approaches, a set of candidate
solutions is generated for each net. A SAT-formulation or an
integer linear program is used to select one realization for each
net so that all design rules are met.

Our routing approach is also based on an integer program-
ming formulation. However, we do not need to pre-compute
candidate solutions for each net but instead implicitly generate
all possible routings for all nets simultaneously while packing
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Fig. 3. Chart of our proposed new flow. Routing steps are in blue. Details of the branch and bound placement algorithm are given in Sections II-D to II-J.
Note that the placement algorithm involves queries to a routability oracle which is a key feature of our new flow.

them. Using this approach we do not have to restrict the
candidate solutions in advance (e.g. by restricting them to lie
within some bounding box around the terminals) but are able
to consider all possible routings. While this makes the search
space much larger, our well chosen integer programming
formulation turns out to be quickly solvable by standard MIP
solvers. In [9] a conversion from an integer programming
formulation to a SAT-formulation is used to speed up solution
times.

Only few approaches exist so far that simultaneously solve
the placement and routing problem for a cell. One such
example is [8]. However, all these approaches have to simplify
the placement and/or routing problem to reduce the search
space complexity. Our approach does not require any sim-
plifications and therefore is able to guarantee optimality of
solutions without requiring too much running time. Typically,
our approach is able to place and route cells with up to 15
FETs within a few minutes.

Previous work on BonnCell appeared in [3]. Compared to
this earlier version, many improvements have been made. Most
importantly, our placement algorithm now, for the first time,
allows computing routable layouts minimizing total cell area.

Our new flow is depicted in Fig. 3, the details will be
described in the following sections: In Section II, we discuss
the placement algorithm, followed by the routing algorithm in
Section III. Section IV reports the results of our implementa-
tion on cells at the 7nm technology node.

II. PLACEMENT

A. Problem Definition
The input of the cell placement problem is a set F of

FETs, a set N of nets and a large number of technology-

specific constraints. A FET is characterized by a tuple
(Smin, Smax, Ng, Ns, Nd, t, v), where
• [Smin, Smax] ⊆ N2 is the legal size interval of the FET

measured in the number of fins intersected by the gates,
• Ng, Ns, and Nd are the nets connected to gate, source,

and drain, respectively,
• t ∈ {n-FET, p-FET} is the FET’s type, and
• v ∈ N is its VT level.
A legal realization of a FET must intersect S ∈ [Smin, Smax]

fins. By using an interval for possible FET sizes, we allow
optimizations over the size of the FET, if the design allows
the flexibility. Otherwise, an interval containing a single FET
size can be specified. We allow each FET to be folded, i.e.
allow realizations with different numbers of fingers. Therefore,
solving the placement problem does not only include the
assignment of locations to each transistor but also deciding
how large the FET should be exactly and how many fingers
should be used. The total size S of a FET can be distributed
to several fingers. Using only one finger, the FET is realized
with one gate, intersecting S fins. Using a larger number of
fingers, the FET is realized with several gates, located next to
each other, which in total intersect S fins. If, for example, the
size of a FET is 6 (measured in fins) it can be realized with 1,
2, 3, and 6 fingers, each covering 6, 3, 2, and 1 fin respectively.
The number of fins intersected by a single finger is called the
height of a FET. Depending on the used cell image, some FET
heights can be forbidden, e.g. most images do not allow FET
heights of 1 and there is also an upper bound on the allowed
height. A FET realized with f fingers has f gates and f + 1
source and drain contacts. A FET with several fingers connects
source and drain nets alternately. The placement algorithm is
also allowed to swap FETs. In this case, the source and drain
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Fig. 4. A FET of size 4 realized with 1 finger, 2 fingers, and 2 fingers
swapped. The heights are 4, 2, and 2 fins respectively. Gates are shown in
blue, source and drain contacts in gray.

contacts of the FET exchange their places. Fig. 4 shows the
same FET realized in three different ways. The transistors are
arranged in two horizontal stacks, one next to each power rail.
One stack consists of the cell’s n-FETs and is placed directly
next to the lower power rail, whereas the other stack contains
the p-FETs and is placed directly next to the upper power rail.

Definition 1. The configuration c of a FET is defined as the
tuple (x, f, h, s) with
• location x ∈ N (measured in PC tracks),
• finger number f ∈ N>0,
• height h ∈ N>0 (measured in fin intersections per finger),

and
• swap status s ∈ {true, false}.

For s = false the leftmost contact belongs to the source net,
for s = true it belongs to the drain net. Given a configuration
c the terms x(c), f(c), h(c), and s(c) give the location, finger
number, height, and swap status of c respectively.

Definition 2. Given n FETs F1, . . . , Fn, a placement C is
defined as a tuple (c1, . . . , cn), where ci is a configuration for
FET Fi.

The output of the placement algorithm is a placement C and
the routability guarantee (see Section II-F) of the placement.
This information is then passed to the routing algorithm (see
Section III).

B. Design Rules

There are many design rules which have to be obeyed. We
split them into two sets, legality and routability.

Legality. The cell image guarantees that FETs do not overlap
vertically. In horizontal direction FETs need to stay within the
cell image which is given by the cell width Wcell. They also
need to obey some minimum horizontal distance to each other
depending on their configurations. This rule only applies to
neighboring FETs. Two FETs of a placement are neighbors if
there is no other FET in between.

Two neighboring FETs are allowed to share contacts if they
have the same VT level, same height, and the overlapping
source and drain contacts belong to the same net. More
formally, this is captured by the following definition.

Definition 3. Two neighboring FETs F1, F2 with configura-
tions c1 = (x1, f1, h1, s1), c2 = (x2, f2, h2, s2) and x2 > x1
are allowed to share if
• h1 = h2,
• NR(F1, c1) = NL(F2, c2), and

F1 F2 F3 F4

Fig. 5. Illustration of placement legality rule. FETs F1 and F2 have the same
VT level, same height and same contact net facing each other. Thus they are
allowed to share their diffusion regions. FETs F3 and F4 have different height
and must therefore be separated by two empty PC tracks.

• V T (F1) = V T (F2),

where NL(F, c) denotes the leftmost net of FET F in configu-
ration c. Similarly NR(F, c) denotes the rightmost net of FET
F in configuration c. V T (F ) denotes the VT level of F . In
this case the configuration is legal if x2 ≥ x1 + f1. Otherwise
it is legal if x2 ≥ x1 + f1 + 2.

For sharing FETs the diffusion regions overlap and the
contact is used simultaneously by both FETs. If sharing is not
allowed, the FETs must be separated by at least two empty
PC tracks. Fig. 5 gives an illustration of this rule. Placements
that obey this rule are called legal.

Routability. A legal placement might still not be manufac-
turable. There are many more complicated rules. For example,
all gates are manufactured with self aligned double patterning
(SADP). In the first step, a regular pattern of unidirectional
poly shapes is generated. In the second step, these shapes are
cut off by a trim mask, leaving the desired gates. Not all legal
placements admit a legal layer decomposition. Furthermore,
the placement is useless if it is not routable on the metal layers.
Therefore a full routability check needs to decide whether a
placement is usable or not.

The placement legality rules will be obeyed by our place-
ment algorithm by construction. Routability rules are checked
by using the routing algorithm as described in Section III as
a black box oracle. Only routable placements are returned by
our algorithm.

C. Objective Function

We only consider placements which are routable under
consideration of all LVS and DRC rules. We simply call these
placements routable. There may be many routable placements
for a given instance, some of which are more preferable than
others. For a routable placement, we define its objective value
as the tuple consisting of

1) cell width Wcell,
2) weighted netlength estimation,

which is minimized lexicographically. More precisely, the
algorithm returns a placement which respects all design rules
and additionally globally minimizes the cell width Wcell. If
there are several such placements the algorithm chooses a
placement among them with the minimum weighted netlength
estimate.
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D. Placement Algorithm

Our algorithm is capable to realize multi-row cells. These
cells occupy multiple circuit rows and have several pairs of
stacks placed upon each other. For the moment, we focus
on single-row instances with two stacks, more details on our
multi-row implementation will be given in Section II-K.

The placement algorithm is based on a branch and bound
approach. It consists of two parts, the first (Algorithm PLACE-
CELL) iterates over the cell width in increasing order and calls
Algorithm PLACEFIXEDCELLWIDTH for each fixed width.
Algorithm PLACEFIXEDCELLWIDTH solves the placement
problem and returns an optimum placement or that no routable
placement exists with the given cell width. It proceeds by
placing the FETs iteratively from left to right for both stacks
simultaneously. After some FETs have already been placed,
the next FET is chosen from the remaining FETs and placed to
the right of the already placed FETs on this stack. For this FET
all possible configurations (position, number of fingers, height,
swap status) are tried. The resulting search tree is illustrated
in Fig. 6. For some FET configurations, the resulting partial
placement is illegal and discarded directly. The remaining
placements are legal but might not be routable. Therefore,
routability is checked for each of these placements by a call of
the routing algorithm (Section III). Since we iterate over the
cell width in increasing order, we know that the first found
routable placement has minimum cell width. Netlength, the
secondary objective, is optimized by comparing all routable
placements with minimum width.

The algorithm presented above is very simple and can
quickly be implemented. However, the resulting search tree
becomes infeasibly large, even for small cells. In order to
achieve practical running time, we develop several speed up
techniques, presented in Sections II-E to II-J.

Algorithm 1 PLACECELL

Input:
F . FETs to be placed

Output:
Routable placement with minimum width

1: for Wcell := 1, 2, . . . do
2: SETCELLWIDTH(Wcell)
3: P := PLACEFIXEDCELLWIDTH(F , ∅)
4: if P 6= null then
5: return P
6: end if
7: end for

E. Cell Width Pruning

The idea of pruning in any branch and bound algorithm is
to remove infeasible or non-optimal nodes of the search tree
without visiting them. For a given node, we want to detect
situations in which all of its ancestors are either not routable or
not optimal. In cell width pruning this means that given some
partial placement with configurations for FETs F1, . . . , Fk, we
prove that for any configuration of the remaining FETs the
resulting placement is illegal. Note that at this point we are

empty placement

FET 1 FET 2 FET 3

1 finger 2 fingers

height 3 height 4

unswapped swapped

x = 0 x = 1 x = 2

FET 2 FET 3

...

full placement

Fig. 6. Placement search tree. FETs are placed from left to right in all possible
permutations and all configurations.

Algorithm 2 PLACEFIXEDCELLWIDTH

Input:
F . all FETs
Fp . placed FETs with applied configuration

Output:
Routable placement with given width
or null if no such placement exists.

1: if Fp = F then . all FETs placed
2: P := CURRENTPLACEMENT(Fp)
3: if ISROUTABLE(P ) then
4: return P
5: else
6: return null
7: end if
8: end if
9: Pbest := null . null indicates no placement

10: for F ∈ F \ Fp do
11: for c ∈ LegalConfigurations(F ) do
12: ApplyConfiguration(F, c)
13: P := PLACEFIXEDCELLWIDTH(F ,Fp ∪ {F})
14: Pbest ← BEST(Pbest, P )

. minimum w.r.t. objective value (see Section II-C)
15: end for
16: end for
17: return Pbest . might be null
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Fig. 7. Partial placement with three placed FETs. The remaining FETs can
only be placed in the green area to the right of the placed FETs.

inside the cell width loop. Therefore, the cell width is already
fixed, forcing all FETs to some limited area. Furthermore,
since FETs are placed from left to right the only available
space is to the right of all already placed FETs, see Fig. 7.
We want to decide whether the remaining space suffices to
place all remaining FETs. We run this step independently
on both stacks since the FET sharing rules do not impose
any constraints for FETs from different stacks. Since the FET
sharing rules only apply to FETs which are direct neighbors,
only the rightmost placed FET and the width of the remaining
area are relevant. Note that our goal here is merely to prune
subtrees which would violate the FET sharing rules. This by
itself does not guarantee that the remaining placements will
be routable which will be checked at a different point of the
algorithm.

Our cell width pruning is based on Euler chains which
have already been used in previous work on automated cell
design [20]. As we will see, the Euler chains method requires
restrictions on the search space of all possible configurations
of yet to place FETs. We iterate over all possible restrictions
and apply the method for each one of them. If there is no legal
placement for any possible restriction, we know that there is
no legal placement at all. If, on the other hand, we find a legal
placement obeying some restrictions we keep the node in our
search tree. These restrictions are defined as follows.

Definition 4. A restriction r for a FET F is defined as a tuple
(f, h, s), where
• f denotes the number of fingers,
• h the height, and
• s the swap status.

A FET configuration c = (x, f, h, s) obeys the restriction
r = (f ′, h′, s′), if
• f = f ′,
• h = h′, and
• f is even ⇒ s = s′.

Definition 5. A placement C = (c1, . . . , cn) obeys the
restriction R = (r1, . . . , rn) if ci obeys ri for all i.
The set of all legal placements obeying R is defined as
C(R) := {C : C legal, obeying R}.

Note that for an odd number of fingers, the swap status is
not controlled by a restriction.

Algorithm CELLWIDTHPRUNING is presented below. The
function RESTRICTIONS(F) returns the set of all possible re-
strictions R, s.t. a placement C obeying R exists. The function
MINWIDTH(F , CL, R) determines the minimum width of a

placement of F obeying the restriction R with leftmost placed
FET CL. MINWIDTH uses a graph model and Euler walks.
We will show how to implement MINWIDTH(F , CL, R) for
CL = null. CL = null means that no FET has been placed on
this stack yet. This algorithm can then easily be extended for
CL 6= null.

Algorithm 3 CELLWIDTHPRUNING

Input:
F . FETs to be placed
CL . null or fixed leftmost FET
Wmax . Maximum allowed placement width

Output:
Does a placement with width at most Wmax exist?

1: for R ∈ RESTRICTIONS(F) do
2: if MINWIDTH(F , CL, R) ≤Wmax then
3: return true
4: end if
5: end for
6: return false

In the following, we will develop the MINWIDTH algorithm
and prove its correctness. We start with a formal definition of
the width of a placement.

Definition 6. The width of a placement C = (c1, . . . , cn) is
defined as

W (C) := max
i

(x(ci) + f(ci))−min
i
x(ci). (1)

This allows us to formulate our central lemma.

Lemma 1. Let R be a placement restriction. Then,

min
C∈C(R)

W (C) = min
C∈C(R)

(
n∑
i=1

f(ci) + 2Nno-share(C)

)
, (2)

where Nno-share(C) is the number of neighboring FETs in C
which are not allowed to share.

Proof. “≥”: For a given legal configuration C, assume w.l.o.g.
that the indices are sorted s.t. x(ci) < x(cj) for i < j. Let

G(ci, ci+1) := x(ci+1)− x(ci)− f(ci) (3)

be the gap between configurations ci and ci+1. Then, we have

W (C) = x(cn) + f(cn)− x(c1) (4)

=
n−1∑
i=1

(x(ci+1)− x(ci)) + f(cn) (5)

=
n−1∑
i=1

(G(ci, ci+1) + f(ci)) + f(cn) (6)

=
n∑
i=1

f(ci) +
n−1∑
i=1

G(ci, ci+1). (7)

If Fi and Fi+1 are allowed to share we have G(ci, ci+1) ≥ 0,
otherwise G(ci, ci+1) ≥ 2. This implies

W (C) ≥
n∑
i=1

f(ci) + 2Nno-share(C). (8)
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From Eq. (8) we immediately get

min
C∈C(R)

W (C) ≥ min
C∈C(R)

(
n∑
i=1

f(ci) + 2Nno-share(C)

)
. (9)

“≤”: Equality in Eq. (8) is obtained if all neighboring
FETs Fi, Fi+1 have G(ci, ci+1) = 0 if they can share
and G(ci, ci+1) = 2 otherwise. Such a placement can
always be obtained from an existing placement C with
W (C) >

∑n
i=1 f(ci) + 2Nno-share(C) by moving FETs closer

to each other.
Let C be a placement which minimizes

n∑
i=1

f(ci) + 2Nno-share(C). (10)

Then we can construct a placement C ′ from C for which
W (C ′) =

∑n
i=1 f(ci) + 2Nno-share(C). This yields

min
C∈C(R)

(
n∑
i=1

f(ci) + 2Nno-share(C)

)
=W (C ′) (11)

≥ min
C∈C(R)

W (C), (12)

which concludes the proof.

The left hand side of Eq. (2) is MINWIDTH(F , CL, R)
for CL = null. Moreover, in Eq. (2), the sum

∑n
i=1 f(ci)

does not depend on C but is equal for all C obeying R.
Therefore, in order to determine minC∈C(R)W (C) we only
need to determine minC∈C(R) 2Nno-share(C). This is where we
use Euler chains.

We sort the FETs which are to be placed into different
groups. FETs within the same group can potentially share if
placed next to each other. FETs from different groups are never
allowed to share. This reduces the problem to independent
groups.

FETs are only allowed to share if they have the same VT
level and height. Therefore, we sort the FETs into groups
with equal VT level and height. There needs to be a gap
between two FETs of different groups. The number of gaps
is minimized if all FETs within one group are placed directly
next to each other. This leaves Ngroup − 1 gaps between the
groups, where Ngroup is the number of groups.

Within each group, two FETs can share if the overlapping
region belongs to the same net, see Fig. 5. For FETs with
an even number of fingers the outward facing nets are equal
on both sides. If the FET is unswapped it is the source net
on both sides, and the drain net if it is swapped. For fixed
swap status for all FETs with an even number of fingers, it is
known for all FETs which nets belong to the outward contacts.
Since we only minimize over placements obeying restriction
R, we know which pairs of FETs are allowed to overlap. The
remaining part of the placement configuration space which is
not restricted is the order of FETs and the swap status of FETs
with an odd number of fingers. In the following, we present
a linear time algorithm based on Eulerian walk partitioning
to find optimum FET orderings and swap states. A similar
approach has already been used in [1] with additional analog-
specific performance constraints. They assume that all devices

A B C

D

E

(a) FET graph with 5 nodes corresponding to nets (A, B, C, D,
E) and 5 edges, corresponding to FETs with an odd number
of fingers and 1 loop corresponding to a FET with an even
number of fingers.

A B C D E C B X B

(b) Placement with minimum number of gaps. This corresponds
to the walks A, B, C, D, and E, C, B, B. Note that the net X
does not appear as a node in the graph since it is the inner net
of a FET with an even number of fingers.

Fig. 8. FET graph and placement corresponding to a minimum partition into
walks.

have exactly one finger but the same algorithm can be used
when the FETs obey restriction R.

We use a graph model to determine the minimum number
of gaps that need to be left within one group. For each group,
we construct a graph G = (V,E), where V is the set of nets.
For each FET with an odd number of fingers, we add an edge
e = {v, w} connecting the nodes corresponding to the source
and drain net of the FET. For each FET with an even number
of fingers, we add a loop e = {v, v}, where v is the net which
belongs to the leftmost and rightmost contact of the FET. See
the illustration in Fig. 8. The idea of this graph is that two
FETs can share if their corresponding edges in the graph have
a common vertex. Furthermore, a set of FETs can be placed
next to each other without any gap if and only if there exists a
walk in G consisting of the edges corresponding to the FETs.
We call such a placement without gaps a chain.

Theorem 1. Let F be a set of FETs with equal VT level,
equal height, a fixed number of fingers, and fixed swap status
for FETs with an even number of fingers. Let k be the number
of walks of a minimum partition of the edges of G(F ) into
walks. For any placement C, let C|F be the sub placement of
C consisting of the FETs F . Then

min
C∈C(R)

Nno-share(C|F ) = k − 1. (13)

Proof. “≤”: Let P1, . . . , Pk be a partition of the edges of G
into walks. Then for each walk, we can place the FETs next
to each other in a chain. Since there are k walks, this gives k
chains with k − 1 gaps in between.

“≥”: Let C be a placement minimizing Nno-share(C|F ). By
construction of the graph G, any chain corresponds to a walk
in G. Therefore, this placements yields a partition of G into
Nno-share(C|F ) + 1 walks.
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The size k of a minimum partition of a connected graph G
into walks can be determined by the degrees of the vertices.
Euler’s well-known result states that for a connected graph
a single walk suffices if no more than 2 vertices have odd
degree. The following extension is also well-known:

Theorem 2. Let G be a connected graph, Nodd the number
of vertices with odd degree, and

k := max

(
Nodd

2
, 1

)
. (14)

Then k is the size of a minimum partition of the edges of G
into walks.

To obtain the size of a minimum partition into walks for a
potentially not connected graph, one has to sum the number
of walks for each connected component.

Using Theorem 1 and Theorem 2 we are able to compute
the minimum number of gaps in a placement restricted by R in
linear time. Since we want to know if the placement width is
below some given threshold Wmax, we only have to deal with
placements C for which

∑
i f(ci) ≤ Wmax. In practice, this

means that we start with the minimum number of fingers of
each FET and incrementally distribute additional fingers to the
FETs. Instead of iterating over all swap states of the FETs with
an even number of fingers, one can solve a certain VERTEX
COVER problem, where the set of chosen vertices corresponds
to the set of swapped FETs. While this does not improve the
worst case running time, simple heuristics for VERTEX COVER
reduce the running time in practice. Both techniques speed up
calculating the pruning step significantly and lead to very fast
running times in practice which are negligible to other parts
of the algorithm, e.g. routability checks.

F. Routability Check

Legal placements are useless if they are not manufacturable
or routable. Therefore, we directly check routability already
during placement. This approach guarantees that the placement
algorithm will return a routable solution. This is different
from common approaches that only approximately model
routability, e.g. by using a netlength-based objective function.
Furthermore, our approach allows the user to define custom
constraints, like blocking certain tracks or fixing the position of
routing pins. These constraints ensure a seamless embedding
of the cell into the hierarchical context. We let our routing
engine decide about the routability of a placement. Since the
routing engine is able to deal with custom constraints, the
placement will automatically adapt to them as well.

In its simplest version, the routability check is run at the
leaves of the search tree and discards all nodes which fail.
Again, the simple approach is too slow in practice and several
speedup techniques are used.

G. Partial Placement Routability Check

Most legal placements are not manufacturable or not
routable. It is therefore essential to detect partial placements
which cannot be completed to a routable placement as early
as possible. The key difficulty here is the non-monotonicity

N1

N2

N3

N3

N4

(a) Illegal placement with 5
FETs.

N1

N2

N3

N3

N4

N4

(b) Legal placement with 6
FETs, which is an extension of
the illegal placement on the left.

Fig. 9. Adding a FET to an illegal partial placement can make it legal. Gate
nets N1 and N2 are different and need to be separated by a trim shape (red).
(a) Gate net N4 has no FET placed opposite and therefore also needs to be
separated from the other stack by a trim shape. These trim shapes are too
close to each other and make the placement illegal. (b) Adding a FET with
gate net N4 removes the need for the second trim shape and legalizes the
situation.

of partial placements w.r.t. to routability. Counter-intuitively,
a partial placement can be unroutable but the same partial
placement with an additional placed FET is routable. The same
is true for the FET distance rules. Fig. 9 shows an example
where the addition of a FET to an illegal partial placement
yields a legal placement.

Therefore it is not possible to use a partial placement as
input to our routing engine as if it was a full placement to
determine routability of its ancestors. The problem is solved
by assigning one of three states to every position in the partial
placement. The states are
• FET placed with configuration c
• empty (no FET will be placed here in the future)
• unknown (potentially empty, but some FET might be

placed here in the future)
The routing formulation only adds constraints for cases

where the presence or absence of a FET is known. If the
presence of a FET is unknown, no constraints are added. For
the example in Fig. 9-(a), no constraints are added which
would enforce the existence of the right trim shape.

H. FEOL, FET Access, and Full Routing

Due to the large complexity of the routing problem, routing
oracle calls are very expensive. In many cases (partial) place-
ments are illegal even when only a restricted set of rules is
considered. We distinguish between three sets of rules, called
phases:

1) FEOL (front end of line). Contains only rules below
M0. This includes floating gates, RX coloring, fin trim
shapes, and PC trim shapes among others.

2) FET-access. Contains rules up to M0. Some connections
of FETs can be routed below M0 mainly by sharing with
other FETs. For all other connections, we know that all
their terminals must be connected to M0. In this phase,
we enforce that all terminals of these nets are connected
to M0. Placements which are illegal w.r.t. FET-access
constraints usually have a highly congested region with

This paper appeared in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 39 (2020), 2872-2885 



9

many terminals of different nets. All M0 trim shape rules
and full via coloring are contained in this group. Also
contains all FEOL rules.

3) Full. The entire routing. Also honoring net connec-
tions to user-specified pin tracks or respecting forbidden
tracks. Full routability can only be checked for full
placements, i.e. leaves of the search tree.

If a placement is illegal w.r.t. FEOL rules, we know that
it is also illegal w.r.t. to FET-access or full, since the FEOL
rules are a subset of the rules of the other phases. Similarly
a placement illegal w.r.t. FET-access is also illegal w.r.t. full
routing. The phases are run one after the other. We stop as
soon as one phase proves that the placement is illegal or all
phases are legal. Due to the large difference in complexity of
the phases, their average running time also differs by orders
of magnitude. An FEOL oracle call lasts about 0.1 seconds,
FET-access running time is in the order of seconds and full
routing can take minutes to hours on large instances. Since
many (partial) placements are already illegal w.r.t. FEOL rules,
the phase-based approach is much faster compared to directly
checking full routability.

The second major advantage is that FEOL and FET-access
routability can also be checked for partial placements which
is not possible for full routability. This is essential to prune
partial placement nodes of the search tree which violate some
DRC constraint without extending them to all possible full
placements.

I. FEOL Routing Oracle Cache
In contrast to the previously presented techniques, routing

oracle caching does not affect the search tree. The running time
of the routing oracle dominates the total placement running
time. Many partial placements look similar from a routability
perspective and calling the oracle twice for similar instances
can be avoided. This is especially the case for FEOL routing
of partial placements. In FEOL routing only the lower layers
are considered which means that some details of the partial
placement do not matter for FEOL routability. Two instances
are equivalent routing instances for example if they can be
transformed into each other by a permutation of nets. They still
originate from different placements, but their routing problems
are either both routable or both unroutable. In these cases, a
single routing oracle call suffices. To detect these situations,
we transform partial placements into a data structure called
routability data which contains all information needed by the
FEOL routing oracle but hides other information contained
in the placement, for example net names. If two partial
placements are transformed into the same routability data we
know, by construction, that the FEOL routability oracle will
give the same answer for both. This is exploited by storing all
queries to the routing oracle in a cache.

In practice, we observe that on average 9 out of 10 queries to
the FEOL routing oracle, can be answered by a cache lookup.
This results in a factor 10 speedup.

J. Netlength Pruning
Once a routable placement has been found, the algorithm

continues to search for placements with better objective value.

Since the cell width is fixed at this point, the determining
criterion is netlength. We use the bounding box netlength
model which can also be applied to partial placements. Addi-
tionally, we calculate lower bounds for the netlength of partial
placements, also considering the FETs which still have to be
placed. In this way, we are able to prune parts of the search
tree which cannot contain routable solutions which are better
than the one we have already found.

K. Multi-Row Cells

Very large cells are typically not implemented on one but
several neighboring circuit rows. Such multi-row cells can also
be placed with our algorithm. To place a cell on several circuit
rows, we first compute an assignment of FETs to the rows
using a mixed integer programming approach. Assignments
are evaluated by their number of row-crossing connections and
an estimation for the total cell width. Using Algorithm PLACE-
CELL (Section II-D), the rows are placed one after the other
with each new placement respecting constraints enforced by
already placed rows.

As the assignment problem of FETs to rows does not model
the resulting total cell width exactly, we cannot guarantee
global optimality for the placement of multi-row cells. How-
ever, each individual row has minimum possible width, subject
to the routing constraints implied by the previously placed
rows.

III. ROUTING

As described in Section II, the routing engine is not only
used to compute a routing after the cell has been placed,
but instead also called many times during the placement
algorithm to ensure that the computed placement is routable.
In the following, we explain the details of the full router that
runs after the placement algorithm. Required modifications for
usage as routing oracle during the placement phase are given
in Section III-G.

In order to solve the routing problem on a placed cell, we
use a mixed integer programming (MIP) approach. Next to the
input already given for the placement problem (Section II), the
cell routing problem expects the location of each FET from
the placement.

Our goal is to find a valid routing that minimizes the wire
length and number of vias in order to optimize the power,
timing, and yield properties of the cell. Note that this does
not impose an algorithmic limitation, as our routing engine
allows us to optimize arbitrary linear objective functions.

In the remainder of this section, we first describe the grid
graph in which we search a disjoint minimum-cost Steiner tree
packing. Then, we give the description of our core MIP model
for the Steiner tree packing problem, and explain how design
rules, in particular trim shape rules and via coloring rules,
are incorporated into that model. Finally, we discuss required
modifications and a post processing routine that optimizes the
routing with respect to DFM (design for manufacturability).
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A. Grid Graph Construction

Since each wiring layer only allows either vertical or
horizontal wires, we represent the cell routing space by a three-
dimensional grid graph G = (V,E) with edge costs. For each
layer, we are given a set of routing tracks specifying feasible
positions for wires which are not necessarily equidistant.

By intersecting routing tracks on adjacent layers, we obtain
the vertex set V . The edge set E consists both of line segments
connecting adjacent intersections on the same layer as well as
vias between stacked vertices on adjacent layers. Each edge
e ∈ E represents the center line of a possible wire shape. Trim
shapes allow using edges partially, cf. Section III-E.

Edge costs are obtained by multiplying their geometric
length by a layer-, track-, and net-dependent value. This allows
to trade off wire length against the number of vias and to leave
more space for inter-cell routing by increasing certain edge
costs. For example, on M1, only every second track is usable
for inter-cell routing due to the power via pattern, and M2 is
widely used for inter-cell routing.

B. Mixed Integer Programming Formulation

First, we describe the core MIP we use to model the
Steiner tree packing problem in graphs. Then, in Sections III-D
to III-F, we explain how design rules are incorporated into the
model.

For each net k ∈ N and each edge e ∈ E, we add a
binary variable xke specifying whether edge e is used by net
k. Furthermore, for each edge e ∈ E, we introduce a binary
variable xe that determines whether edge e is used by some
net, and add the constraint xe =

∑
k∈N x

k
e . Since xe is

upper bounded by 1, this constraint already guarantees edge
disjointness of integral solutions.

In the following, for some vertex set X ⊂ V , we refer by
δ(X) to the set of edges between X and V \X , and, in the
directed case, by δ+(X) to the set of edges leaving X and by
δ−(X) to the set of edges entering X .

We ensure connectivity by adding for each net k ∈ N
a formulation of the Steiner tree problem in graphs to the
model. Note that using a formulation with a strong relaxation
is essential for small running times. In [5], the undirected cut
relaxation is used for that purpose: For each net k ∈ N , we
denote by Tk ⊆ V the set of its terminals. We say that a cut
δ(X) separates Tk if both Tk ∩X and Tk \X are nonempty.
Then, for each cut separating the terminal set, the undirected
cut relaxation requires at least one edge of the cut to be
contained in the Steiner tree, i.e.

∑
e∈δ(X) x

k
e ≥ 1. However,

the undirected cut relaxation has an integrality gap of 2 [4],
which is already asymptotically attained in the special case
that G is a circuit, even if all vertices are terminals, as the
fractional solution xk ≡ 1

2 demonstrates.
One can strengthen this relaxation by using a bidirected

auxiliary graph (V,A) with A = {(i, j) : {i, j} ∈ E} which
contains two opposing edges (i, j) and (j, i) for each original
edge {i, j} ∈ E. Choose an arbitrary root terminal rk ∈ Tk
and add usage variables ~xkij for all directed edges (i, j) ∈ A.
Then, for each cut δ+(X) ⊂ A with rk ∈ X and Tk \ X
nonempty, require that at least one edge leaving X is used,

i.e.
∑

(i,j)∈δ+(X) ~x
k
ij ≥ 1. Finally, lower bound the usage of

each original edge {i, j} ∈ E by the sum of the usages of
both directed edges (i, j) and (j, i). This relaxation is called
bidirected cut relaxation. The integrality gap of the bidirected
cut relaxation is unknown, the largest known lower bound
is 6/5 [21], and no upper bound stronger than 2, which is
implied by the integrality gap of the undirected cut relaxation,
is known.

By introducing additional flow variables, one can eliminate
the exponential number of cut constraints, resulting in the
multicommodity flow relaxation, first introduced in [23]. This
relaxation is equivalent to the bidirected cut relaxation [16] and
was already used in [7] to solve Steiner tree packing problems.
We will also use the multicommodity flow relaxation:

For each net k, we denote the set of sink terminals Tk\{rk}
by Sk. Then, the multicommodity flow relaxation introduces
a commodity for each sink s ∈ Sk and requires a flow of one
unit of the commodity from rk to s to be supported by ~xk.
More precisely, for each net k ∈ N , sink s ∈ Sk and directed
edge (i, j) ∈ A, a flow variable fksij that is upper bounded
by ~xkij is introduced, representing the flow of the commodity
s of net k along the directed edge (i, j). Then, we add flow
conservation constraints at vertices in V \ {s, rk} and enforce
that rk sends one unit of flow and that s receives one unit of
flow of commodity s.

Finally, to ensure vertex disjointness, for each net k ∈ N
and vertex v ∈ V , we add a binary vertex usage variable xkv ,
which upper bounds usage variables of incident edges, and
add the constraint that each vertex may be used by at most
one net.

The complete model is given in Fig. 10, where we denote
by bks(v) :=

∑
(i,j)∈δ+(v) f

ks
ij −

∑
(i,j)∈δ−(v) f

ks
ij the flow

balance of commodity s of net k at a vertex v ∈ V .

min
∑
e∈E

cexe

s.t. xe =
∑
k∈N

xke ∀ e ∈ E

xe ∈ {0, 1} ∀ e ∈ E
xke ∈ {0, 1} ∀ e ∈ E, k ∈ N

bks(v) =

 1 if v = rk
−1 if v = s
0 otherwise

∀ v ∈ V, k ∈ N , s ∈ Sk
0 ≤ fksij ≤ ~xkij ∀ (i, j) ∈ A, k ∈ N , s ∈ Sk
~xkij + ~xkji ≤ xk{i,j} ∀ {i, j} ∈ E, k ∈ N

xkv ∈ {0, 1} ∀ v ∈ V, k ∈ N
xke ≤ xkv ∀ v ∈ e ∈ E, k ∈ N∑

k∈N
xkv ≤ 1 ∀ v ∈ V

Fig. 10. Core mixed integer program modeling a Steiner tree packing problem.

In this basic formulation, no additional constraints, espe-
cially with respect to distances between shapes, are taken into
consideration.
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C. Conditional Constraints

In order to implement complex design rules, we need to
model logical implications to conditionally enable constraints.
More specifically, consider a linear inequality of the form∑
i∈I aixi ≤ b, and let xcond be a binary variable. We want to

model

(xcond = 0) =⇒

(∑
i∈I

aixi ≤ b

)
. (15)

To this end, we use the following standard approach: Let U be
a constant that is an upper bound on

∑
i∈I aixi−b, which can

be derived from the variable bounds. For this, we require that
all involved variables xi have finite variable bounds, which is
the case in our application. Then, the constraint∑

i∈I
aixi − Uxcond ≤ b (16)

satisfies our needs: If xcond = 0, then the constraint equals the
original constraint, and if xcond = 1, then

∑
i∈I aixi −U ≤ b

is always satisfied by the choice of U .
Of course, a similar approach works in order to condition

on xcond = 1. By replacing constraints with equality by
two inequalities, the same approach can be applied to these
constraints as well. Finally, in case we need to condition on
multiple such binary conditions, we can recursively apply the
procedure above.

D. Mapping DRC Constraints

For the wiring within a cell, design rules used to fall
into the two basic categories of same-net rules and diff-net
rules. Same-net rules are in place to avoid specific geometric
configurations of wiring shapes of a single net, while diff-
net rules require a certain minimum distance between wires
that belong to different nets. However, in 7nm technology, all
wires on layers used for cell-internal routing are generated as
the complement of trim shapes, which are not associated with
any particular net, and constraints on wire shapes are entirely
expressed in terms of constraints on trim shapes. Hence, the
routing model contains additional variables and constraints that
model the trim shape configuration, and the only additional
constraints on non-via edge usage variables are consistency
constraints with the trim shape model. A detailed description
of the trim mask and its manufacturing process is given in [2]
and [12].

All features are manufactured using multiple masks in order
to increase packing density: Shapes on different masks are
allowed to have a smaller distance than shapes on the same
mask. Hence, a valid routing does not only consist of a disjoint
Steiner tree packing, but also requires features on such layers
to be assigned to masks such that certain design rules are met.
We call this assignment coloring. In the 7nm node, this only
affects vias, since wire and trim shapes use a fixed predefined
coloring scheme.

E. Trim Shape Model

Recall that on each routing layer, the routing grid graph
consists of parallel routing tracks. Except on the layer TS,

≥ d0

≥ d1

A1

A2 B

C

Fig. 11. A trim shape configuration with relevant trim spacing distances,
resulting wires and the assignment of trim shapes to grid graph edges. Each
trim shape is assigned to an edge containing its center.

each routing track is associated with a fixed color, representing
the mask that is used to manufacture trim shapes on this track.
Since trim shapes on tracks of different color are independent,
we do not consider colors in the remainder of this section. The
full model is then obtained by applying the following, for each
layer and color, to all tracks of that color.

Now, fix a layer and without loss of generality assume that
routing tracks on that layer are horizontal. Figure 11 shows a
configuration with four trim shapes A1, A2, B and C. Note
that two trim shapes A1 and A2 will result in a single trim
shape A during manufacturing. Trim shapes on the same track
must satisfy a certain minimum horizontal distance, indicated
by d0, while trim shapes on neighboring tracks must either
align to the same coordinate (as in case of A) or again satisfy
a minimum horizontal distance, indicated by d1. Note that
the minimum same track trim shape spacing rule via d0 also
encodes a minimum area constraint on the wire in between.
Since trim shapes have a fixed width Wtrim, any trim shape
configuration is uniquely represented by the set of their center
coordinates, indicated by crosses.

Then, we can assign each trim shape to an edge that
contains the trim shape’s center. This assignment is illustrated
in Figure 11, where edges that have a trim shape assigned to
them are highlighted. Since d0 is sufficiently large, at most
one trim shape can be assigned to any edge.

Hence, we can model a trim shape configuration as follows:
For each edge e, we add a binary variable tactivee which
specifies whether there is a trim shape with its center on e, and
an integral variable tpose that specifies the exact x-coordinate
of the trim shape’s center in case there is one, where

xmin(e) ≤ tpose ≤ xmax(e). (17)

The distance constraints on trim shapes are then modeled
as follows. Let e and f be two edges on the same track
with xmax(e) ≤ xmin(f). There are three possible cases:
If xmax(f)−xmin(e)−Wtrim < d0, i.e., there is no feasible
trim shape configuration with both a trim shape on e and on
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f , then we add the constraint

tactivee + tactivef ≤ 1, (18)

modeling that at most one of the two trim shapes may be
active. Otherwise, if xmin(f) − xmax(e) −Wtrim < d0, i.e.
there are both feasible and infeasible trim shape configurations
with trim shapes on e and f , we add the constraint(

tactivee = 1 ∧ tactivef = 1
)

(19)

=⇒
(
tposf − tpose −Wtrim ≥ d0

)
, (20)

which guarantees that trim shapes on e and f are sufficiently
far away from each other if present.

Distance constraints on pairs of edges e, f on neighboring
tracks are modeled similarly if the x-intervals e and f are
disjoint. Otherwise, the only valid configuration with a trim
shape on both e and f requires these to be aligned, which we
model as(

tactivee = 1 ∧ tactivef = 1
)

=⇒
(
tposf = tpose

)
. (21)

Finally, we need to ensure consistency of the edge usage
model and the trim shape model. Used edges may not contain
a trim shape, so for each edge e, we add the constraint

tactivee + xe ≤ 1. (22)

Furthermore, let e be an edge and k ∈ N be a net. If e is
used by net k, then adjacent edges must also be used by net k
unless cut off by a trim shape. Hence, if f is an edge adjacent
to e, add the constraint(

xke = 1
)

=⇒
(
tactivef + xkf ≥ 1

)
. (23)

F. Vias

On via layers, we need to assign colors to used edges. For
each via e ∈ E, let Me be the set of possible colors for e.
Then, for each via edge e ∈ E, net k ∈ N and color m ∈Me,
we add a binary variable mxke and enforce

xke =
∑
m∈Me

mxke . (24)

Moreover, for each such edge e and color m, we add a binary
variable mxe =

∑
k∈N

mxke , representing whether edge e is
used with color m by any net.

Then, if two close via edges e, f are not allowed to be used
by the same color m, add the constraint

mxe +
mxf ≤ 1. (25)

Similarly, if two via edges e, f are even too close to be used
by different colors, require

xe + xf ≤ 1. (26)

Minimum required spacings between vias and trim shapes
are implemented analogously to trim-trim-spacings.

G. Routing Oracle During Placement
As discussed in Sections II-G and II-H, the routing engine

is queried during the placement algorithm to prune partial
placements that cannot be completed to routable placements.
These queries are not performed using the full routing model,
but instead either use the FEOL (front end of line) or FET-
access phase. These phases only respect design rules below
M0 or up to M0, respectively.

Instead of forcing net connectivity using flow variables,
for each FET contact, it is determined whether a connection
to M0 is required, and in that case, constraints enforcing
such a connection are added. This results in a much simpler
model which we can afford to solve many times during
placement, and, albeit its limited set of constraints, detects
many unroutable placements.

When routing partial placements, we determine the un-
placed area where future FETs might be placed. Then, we
only add constraints for placed FETs, and skip all constraints
that depend on the presence of a FET in the unplaced area.

H. Post Processing
Design for manufacturability (DFM) rules are soft con-

straints that are not strictly required and aim at increasing
yield by avoiding configurations with a higher failure risk.
DFM rules include increased trim-via and trim-trim spacings,
preferred coordinates for trim shape locations and preferred
via colors at specific locations.

After computing a full routing, we perform a post process-
ing which aims at satisfying as many DFM rules as possible
while not increasing wire length and via count significantly.

For each DFM rule and each location, we add a binary
variable that determines whether the rule is satisfied at that
location. Then, we add a constraint modeling the DFM rule,
conditioned on that variable, and add the binary variable to the
objective function, rewarding all satisfied DFM rules. Finally,
we restrict all flow variables (cf. Section III-B) in the model
to their current value, which fixes the structure of the routing
solution, and reoptimize.

IV. EXPERIMENTAL RESULTS

We have implemented all algorithms described in this paper
and tested them on real-world 7nm instances. We did all
experiments single-threaded on a 2.20GHz Intel Xeon E5-
2699 v4 machine using CPLEX 12.7.1 as MIP-solver.

A. Results for a Standard Cell Library
As a first test set, we chose a standard cell library containing

120 cells. See Table I for details on this library. The number
of FETs for these cells is between 2 (for the inverters) and 8.

The cells in this standard library have been designed man-
ually and much time has been spent to get a best possible
layout. All layouts found by BonnCell were at least as good
as the known layouts. For 10 of the 120 cells, BonnCell was
able to find better (with respect to area) layouts. In some cases,
the BonnCell result improved the library results by more than
22%. Figure 12 shows an example of such a cell. The average
running time needed per cell was less than 2 minutes. Table I
shows the detailed results of BonnCell on these cells.
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TABLE I
BONNCELL RESULTS ON CELLS FROM A STANDARD LIBRARY. WITHIN

EACH ROW OF THE TABLE FOR EACH CELL TYPE (COLUMN 2) WE SHOW
THE NUMBER OF VARIANTS OF THIS CELL IN THE LIBRARY (COLUMN 1),
THE NUMBER OF FETS AND NETS IN THE CELL (COLUMNS 3 AND 4) AND
THE AVERAGE RUNNING TIME IN SECONDS NEEDED BY BONNCELL FOR
ALL CELLS WITHIN A ROW FOR THE PLACEMENT STEP (COLUMN 5) AND

THE ROUTING STEP (COLUMN 6).

cells cell type FETs nets avg. time avg. time
placement [s] routing [s]

11 AOI21 6 9 48 51
11 AOI22 8 11 61 62
17 INV 2 5 8 9
16 NAND2 4 7 46 53
11 NAND3 6 9 19 24

5 NAND4 8 11 37 59
16 NOR2 4 7 40 50

8 NOR3 6 9 37 38
5 NOR4 8 11 33 50

10 OAI21 6 9 30 32
10 OAI22 8 11 143 40

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

(a) Layout from the standard library.
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1
1
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2

(b) BonnCell’s layout.

Fig. 12. Layouts of an OAI22 standard library cell. BonnCell’s layout reduces
the cell’s area by more than 22% and total net length on metal layers by more
than 33%.

B. Results for Latches

Latches are much larger and more complex cells. Man-
ually finding good layouts for these cells is even for very
experienced designers a challenging task. Moreover, it may
take a designer several days to find a good layout. We used
a testbed of 22 latches ranging in size between 10 and 44
FETs. For 7 of these 22 latches, BonnCell found a provably
area optimal solution. For the other latches, BonnCell ran into
a timeout and the solution found is therefore not guaranteed
to be area optimal. Nevertheless, BonnCell found in all but
one case a solution that was either better in area compared
to the designer’s solution or needed less M2 tracks. The one
case in which BonnCell was only able to find an equally good
solution is a latch where the designer’s solution needs no M2
and is area optimal and therefore cannot be improved. Table II

shows the details of BonnCell’s results on this latch testbed.
An example layout for a latch that BonnCell built using 5%
less area than the designer’s solution is shown in Fig. 13.
Using the approach described in Section II-K BonnCell can
also build multi-row layouts of cells. As an example we show
in Fig. 14 a 2-row layout for the same latch.

TABLE II
BONNCELL RESULTS ON LATCHES. WITHIN EACH ROW OF THE TABLE WE
SHOW THE LATCH NAME (COLUMN 1), THE NUMBER OF FETS AND NETS

IN THE LATCH (COLUMNS 2 AND 3), THE WIDTH OF THE SOLUTION FOUND
BY BONNCELL IN TRACKS (COLUMN 4) AND BONNCELL’S TOTAL

RUNNING TIME FOR PLACEMENT AND ROUTING IN SECONDS (COLUMNS 5
AND 6) AND IN COLUMN 7 WHETHER IT IMPROVED THE BEST DESIGNER’S

LAYOUT (YES) OR WAS EQUALLY GOOD (EQUAL).

latch FETs nets tracks running time [s] improved
place route area or M2

DFFFQ X1 38 27 32 7227 2730 yes
DFFQDICE X1 43 29 38 3243 2756 yes

DFFQ X1 28 21 20 3018 1333 yes
ELATN X1 12 11 12 1218 54 yes
ELATS X1 10 11 10 544 504 yes

ELAT X1 12 11 12 1171 49 yes
ELAT X3 12 11 16 2706 34 yes
ELAT X8 12 11 30 3236 102 yes

ESLATN X1 32 25 36 3237 3492 yes
ESLATS X1 26 25 32 3625 592 yes

ESLAT X1 32 25 36 3623 2140 yes
ESLAT X3 32 25 36 3656 594 yes

L1LATF X1 26 21 22 3966 189 equal
N1LAT X1 38 27 38 3238 4725 yes
N1LAT X3 38 27 44 3239 1247 yes

SDFFQN X1 36 28 28 3636 5444 yes
SDFFQS X1 32 27 24 28837 2793 yes

SDFFQ X1 36 28 28 3644 4016 yes
SDFFQ X3 36 28 42 3650 701 yes

SDFFSRPQ X1 44 34 36 3239 1695 yes
INV ELAT X1 14 12 16 3606 51 yes
INV ELAT X3 14 12 20 603 51 yes

V. CONCLUSION

We have presented BonnCell, a new flow for the automatic
cell layout that is able to deal with the challenges arising in
7nm technology. The main features are the global optimization
of several design objectives and the full integration of the
routing algorithm into the placement algorithm. This allows
guaranteeing DRC clean layouts that globally optimize the cell
area with given secondary design objectives, e.g. wire length,
M2-limitations, pin access and so on.

All solutions found by BonnCell were at least as good
as the best designer’s solution. Moreover, BonnCell finds
these solutions much faster than a designer. On a multi-core
machine, the whole library reported in Table I which contains
120 different cells can be processed within five minutes.
As BonnCell’s layouts are DRC clean by construction no
additional post processing is necessary. This allows generating
several different layouts for all cells of a library to see the
overall impact that these different layouts have on later stages
in the layout of the whole chip, e.g. routability, timing, area,
power, pin access and so on. It is also possible to add
more complex cells to the library, e.g. gates with inverted
inputs/outputs or wider AOIs and OAIs which may help to
improve the overall timing or power consumption of the chip.
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(a) Manual layout by an experienced designer.
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(b) BonnCell’s layout.

Fig. 13. Layouts of the latch SDFFQ X3. BonnCell’s layout needs 5% less area than the best designer’s solution while using the same number of M2 tracks.
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Fig. 14. BonnCell’s 2-row layout of the latch SDFFQ X3.

REFERENCES

[1] B. Basaran and R. A. Rutenbar. An O(n) algorithm for transistor
stacking with performance constraints. In Proc. DAC’96, pages 221–
226, 1996.

[2] J. H. Chen, T. A. Spooner, J. E. Stephens, M. O’Toole, N. LiCausi,
B. Kim, S. Narasimha, and C. Child. Segment removal strategy in SAQP
for advanced BEOL application. In Interconnect Technology Conference
(IITC), pages 1–3. IEEE, 2017.

[3] P. Cremer, S. Hougardy, J. Schneider, and J. Silvanus. Automatic cell
layout in the 7nm era. In ISPD ’17, pages 99–106, 2017.

[4] M. X. Goemans and D. P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1995.

[5] M. Grötschel, A. Martin, and R. Weismantel. The Steiner tree packing
problem in VLSI design. Math. Program., 78:265–281, 1997.

[6] A. Gupta and J. P. Hayes. Optimal 2-D cell layout with integrated
transistor folding. In ICCAD’98, pages 128–135. IEEE, 1998.
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