
A Linear Time Approximation Algorithm for

Weighted Matchings in Graphs?

Doratha E. Drake and Stefan Hougardy

Institut für Informatik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
{drake,hougardy}@informatik.hu-berlin.de

Abstract. Approximation algorithms have so far mainly been studied for problems that are
not known to have polynomial time algorithms for solving them exactly. Here we propose
an approximation algorithm for the weighted matching problem in graphs which can be
solved in polynomial time. The weighted matching problem is to find a matching in an
edge weighted graph that has maximum weight. The first polynomial time algorithm for
this problem was given by Edmonds in 1965. The fastest known algorithm for the weighted
matching problem has a running time of O(nm+n2 log n). Many real world problems require
graphs of such large size that this running time is too costly. Therefore there is considerable
need for faster approximation algorithms for the weighted matching problem. We present a
linear time approximation algorithm for the weighted matching problem with a performance
ratio arbitrarily close to 2

3
. This improves the previously best performance ratio of 1

2
. Our

algorithm is not only of theoretical interest but because it is easy to implement and the
constants involved are quite small it is also useful in practice.

Keywords: Maximum Weight Matching, Approximation Algorithm, Graph Algorithm

1 Introduction

A matching M in a graph G = (V,E) is a subset of the edges of G such that no two
edges in M are incident to the same vertex. In a graph G = (V,E) with edge weights
given by a function w : E → R

+ the weight of a matching M is defined as w(M) :=
∑

e∈M w(e). The weighted matching problem is to find a matching in G that has maximum
weight. The first polynomial time algorithm for the weighted matching problem was given
by Edmonds [7] in 1965. A straightforward implementation of this algorithm requires a
running time of O(n2m), where n and m denote the number of vertices and edges in the
graph. Lawler [15] and Gabow [9] improved the running time to O(n3). Galil, Micali, and
Gabow [12] presented an implementation of Edmond’s algorithm with a running time of
O(nm log n). This was improved by Gabow, Galil, and Spencer [11] to a running time
of O(nm log log log n + n2 log n). The fastest known algorithm to date for solving the
weighted matching problem in general graphs is due to Gabow [10] and has a running
time of O(nm + n2 log n).

? supported by DFG research grant 296/6-3, supported in part by DFG Research Center Mathematics for

key technologies, a preliminary version appeared in APPROX03 [6]

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

In some special cases faster algorithms for the weighted matching problem are known.
Under the assumption that all edge weights are integers in the range [1 . . . N] Gabow and
Tarjan [13] presented an algorithm with running time O(

√

n · α(m,n) log n · m log(Nn)),
where α is the inverse of Ackermann’s function [24]. In the case that all edge weights are
the same, the fastest known algorithm has a running time of O(

√
nm) and is due to Micali

and Vazirani [21, 25]. For planar graphs Lipton and Tarjan [17] have shown that with the
help of the Planar Separator Theorem [16] the weighted matching problem can be solved
in O(n3/2 log n).

Together with the research on improving the worst case running time of Edmond’s
algorithm for the weighted matching problem there has been a parallel line of research
concerned with the implementations of these algorithms. Implementations of Edmond’s
algorithm that turn out to be efficient in practice usually not only require the use of
sophisticated data structures but also need additional new ideas to lower the running time
in practice. During the last 35 years many different implementations of Edmond’s weighted
matching algorithm have been presented. See [3] for a good survey on these. Currently
the fastest implementations of Edmond’s algorithm are due to Cook and Rohe [3] and to
Mehlhorn and Schäfer [20].

Many real world problems require graphs of such large size that the running time of
the fastest available weighted matching algorithm is too costly. Examples of such problems
are the refinement of FEM nets [18], the partitioning problem in VLSI-Design [19], and
the gossiping problem in telecommunications [2]. There also exist applications were the
weighted matching problem has to be solved extremely often on only moderately large
graphs. An example of such an application is the virtual screening of protein databases
containing the three dimensional structure of the proteins [8]. The graphs appearing in
such applications have only about 10,000 edges, but the weighted matching problem has
to be solved more than 100,000,000 times for a complete database scan.

Therefore, there is considerable need for approximation algorithms for the weighted
matching problem that are very fast, and that nevertheless produce very good results
even if these results are not optimal. The quality of an approximation algorithm for the
weighted matching problem is measured by its so-called performance ratio. An approxi-
mation algorithm has a performance ratio of c, if for all graphs it finds a matching with a
weight of at least c times the weight of an optimal solution.

Approximation algorithms for the weighted matching problem have been used in prac-
tice already for a long time. Their good running times are one of the main motivations for
using them. Another reason why these algorithms are used in practice is that they usually
require only a few lines of code for their implementation contrary to several thousand lines
of code that a good implementation of Edmond’s algorithm may require [3].

The two approximation algorithms that are most often used in practice are variants
of the maximal matching algorithm and the greedy algorithm. A maximal matching in a
graph is a matching that is not properly contained in any other matching. Such a matching

2

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

can easily be computed by starting with an empty matching and extending it in each step
by an arbitrary edge in such a way that it remains a matching. Several variants of this
simple algorithm are used in practice [14]. The advantage of maximal matching algorithms
is that they have linear running time. The major disadvantage of these algorithms is that
they have a performance ratio of 0, i.e., the solutions returned by these algorithms can be
arbitrarily bad. The greedy algorithm works similarly to the maximal matching algorithm
but chooses in each step not an arbitrary but the heaviest edge currently available. It is
easy to see that the greedy algorithm has a performance ratio of 1

2 [1]. The running time
of this algorithm is O(m log n) as it requires sorting the edges of the graph by decreasing
weight.

Preis [22] was the first who was able to combine the advantages of the greedy algorithm
and the maximal matching algorithm in one algorithm. In 1999 he presented a linear time
approximation algorithm for the weighted matching problem with a performance ratio
of 1

2 . The idea of his algorithm is to replace the heaviest edge that is needed in the greedy
algorithm by a so called locally heaviest edge. It is easy to see that the performance ratio
of Preis’ algorithm is 1

2 . But it is difficult to prove that finding a locally heaviest edge in
each step can be done in such a way that the total running time remains linear.

By using a completely different approach Drake and Hougardy [4] obtained another lin-
ear time approximation algorithm for the weighted matching problem with a performance
ratio of 1

2 . The main idea of their algorithm is to grow in a greedy way two matchings si-
multaneously and return the heavier of both as the result. Their algorithm and its analysis
are simpler than that of Preis.

In [5] the idea of local improvements is used as a postprocessing step to enhance the
performance of approximation algorithms for the weighted matching problem in practice.
This postprocessing step requires only linear running time and it is shown for a large set
of test instances that it significantly improves the quality of the solutions. However, this
postprocessing step does not improve the performance ratio of 1

2 .

In this paper we prove the existence of linear time approximation algorithms for the
weighted matching problem that have performance ratios arbitrarily close to 2

3 .

Main Theorem. For each ε > 0 there exists a linear time approximation algorithm for

the weighted matching problem with a performance ratio of 2
3 − ε.

As we will show in Section 7 the dependence on ε of the running time of these algorithms
is quite moderate. Moreover our new algorithm is easy to implement and therefore is of
relevance in practice.

The main idea of our algorithm is to start with a maximal matching M and to increase
its weight by local changes. These local changes which we call short augmentations add
in each step at most two new edges to M while up to four edges of M will be removed.
A graph can possess up to Ω(n4) short augmentations. To achieve linear running time
only some part of these can be looked at. For each edge of the maximal matching M our

3

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

algorithm only looks at all short augmentations that involve the endpoints of this edge.
The maximality of M ensures that the short augmentations considered by the algorithm
are in some sense spread evenly over the graph.

As the short augmentations are partly overlapping it can happen that after perform-
ing one short augmentation several others are no longer available. For the performance
ratio it is therefore important to be able to reject short augmentations that achieve only
minor improvements in the weight of the matching. This is achieved by taking only short
augmentations into consideration that gain at least some constant factor β. Such aug-
mentations will be called β-augmentations. In linear time it seems not to be possible to
find the best β-augmentation. However we will show that in linear time a constant factor
approximation of the best β-augmentation can be found.

To prove the performance ratio of our algorithm we use an amortized analysis. The
idea is that the gain that is achieved by an augmentation is not realized immediately but
part of it is stored for later use. This way we are able to prove that the algorithm increases
the weight of the given matching by some constant factor. By repeating the algorithm a
constant number of times and choosing β sufficiently small the resulting matching will
have a weight that comes arbitrarily close to 2

3 .

This paper is organized as follows. In Section 2 we give basic definitions and define in
Section 3 short augmentations which are the key concept for our algorithm. In Section 4
we present a linear time algorithm that improves the weight of a given matching by a
constant factor. The existence of such an algorithm allows us to prove the Main Theorem.
We analyze this algorithm in Section 5. A subroutine that finds a constant factor approx-
imation of a best β-augmentation is presented in Section 6. Finally, we prove in Section 7
that the running time of our algorithm depends linearly on 1/ε. We conclude in Section 8
with some remarks on the performance of our algorithm in practice.

2 Preliminaries

For an edge e = {x, y} we call x and y the end vertices of the edge e. Two different
edges are adjacent if they have a vertex in common. Let G = (V,E) be a weighted graph
with a weight function w : E → R

+. The weight of a matching M ⊆ E is defined as
w(M) :=

∑

e∈M w(e). A matching M ⊆ E is called maximal if no proper superset of M in
E is a matching. By Mopt we denote a maximum weight matching in G, i.e., a matching
that satisfies w(Mopt) ≥ w(M) for all other matchings M ⊆ E.

A path or cycle is called M -alternating if it uses alternately edges from M and E \M .
The length of a path or cycle is the number of edges it contains. Alternating cycles must
have even length. For a set F of edges we denote by M(F) all edges in M that are incident
with an end vertex of an edge in F . Note that if F contains edges of M then these edges
are also contained in M(F).

4

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

3 Short Augmentations

Let M be a matching in a graph G = (V,E). If the weight of M is not largest possible
then one can replace some set of edges of M by some other set of edges of E such that the
new set thus obtained is again a matching and has strictly larger weight than M . We call
a process which removes the set M(S) and adds a set S ⊂ E to M an augmentation. The
set S is called the augmenting set for this augmentation. For technical reasons we allow
to add edges to M that are already contained in M . The gain of an augmentation with
augmenting set S is defined as w(S)−w(M(S)) which is the increase of weight it achieves.
A short augmentation is an augmentation such that all edges in the augmenting set are
adjacent to some edge e ∈ E. Such an edge e is called a center of this short augmentation.
In Figure 1 examples of short augmentations are shown. The examples shown on the left
are all possibilities where the center e belongs to M . On the right some examples of short
augmentations are shown where the center e does not belong to M . A short augmentation
may have more than one center. If this is the case then we assume in the following that
one of these edges is chosen to be the center.

PSfrag replacements

e e

e e

e e

e e

e e

e e

PSfrag replacements

e

e

e

e

ee

Fig. 1. Examples of short augmentations. A center of each augmentation is labelled e. Edges belonging to
the matching are shown in bold. Hollow vertices are vertices not contained in any matching edge.

4 The Algorithm

The main idea of our algorithm is to start with a maximal matching M and to increase
the weight of M by performing short augmentations which have as their centers edges
of M . A short augmentation might increase the weight of M by a small amount while
destroying several other potential short augmentations which could have yielded a much
larger increase in weight. An example of such a situation is shown in Figure 2a). The
matching M contains the edges of weight 1 and ε. The short augmentation having the
edge of weight 1 as its center simply replaces this edge by the neighboring edge of weight
1 + ε. After performing this short augmentation there is no short augmentation that has

5

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

the edge of weight ε as its center. Thus, the total weight of the matching has increased by
only ε which may be arbitrarily small.

PSfrag replacements

1

2

0

1 + ε 1 + ε εβ · ε

PSfrag replacements

1

2

0

1 + ε

ε β · ε

a) b)

Fig. 2. Examples motivating the use of β-augmentations. Edges belonging to the matching are shown in
bold.

To avoid such situations we perform only β-augmentations. For a constant β > 1 a
β-augmentation is a short augmentation such that the augmenting set S has the property
that w(S) ≥ β · w(M(S)).

The example in Figure 2b) shows that it is not enough to perform any β-augmentation.
Instead a β-augmentation having the largest possible gain should be selected. A β-augmen-
tation with center e that has the largest possible gain from among all β-augmentations with
center e will be called the best β-augmentation with center e. To achieve linear running
time our algorithm will not select best β-augmentations but good β-augmentations. A β-
augmentation with center e is called good if it achieves at least a (β − 1)/(β − 1

2) fraction
of the gain that a best β-augmentation with center e can achieve. In Section 6 we will
show that good β-augmentations can be found sufficiently fast.

Algorithm improve matching (
�

= (�����) ��� : ���
	 +, M)

1 make M maximal
2 M ′ := M

3 for e ∈ M do begin
4 if there exists a β-augmentation in M ′ with center e

5 then augment M ′ by a good β-augmentation with center e

6 end
7 return M ′

Fig. 3. Algorithm improve matching for increasing the weight of a matching.

Our algorithm for finding a matching of weight arbitrarily close to 2
3 ·w(Mopt) iteratively

applies the algorithm improve matching which is shown in Figure 3. After making the input
matching M maximal no further changes will be made to M by the algorithm. Instead M
is copied to M ′ and all augmentations done in the following are performed with respect
to M ′. The algorithm visits each edge e ∈ M exactly once and determines if there is

6

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

any β-augmenting set centered at this edge in M ′. If this is the case then the algorithm
performs a good β-augmentation centered at e in M ′.

Theorem 1. If the algorithm improve matching takes a matching M as input then it

returns in linear time a matching M ′ such that

w(M ′) ≥ w(M) +
β − 1

2β

(

2

3β
· w(Mopt) − w(M)

)

.

Before proving this theorem in Section 5 we will show here how Theorem 1 implies the
Main Theorem.

Proof of the Main Theorem: Let M0 be a matching of weight at least 1
2 ·w(Mopt). Such a

matching can be found in linear time [22, 4]. Now apply the algorithm improve matching to
the matching Mi to obtain a matching Mi+1 for i = 0, . . . , k−1. Then we have w(Mi+1) ≥
wi+1 · w(Mopt) where wi+1 is defined by the following recurrence

wi+1 = wi +
β − 1

2β

(

2

3β
− wi

)

, and w0 =
1

2
.

By solving this linear recurrence equation (see for example [23]) we get

w(Mk) ≥
(

2

3β
+

(

1

2
− 2

3β

)(

1

2
+

1

2β

)k
)

· w(Mopt) .

This shows that for any fixed β and sufficiently large k (depending only on β) there exists
a linear time algorithm which finds a matching of weight arbitrarily close to 2

3β ·w(Mopt).
As β can be chosen arbitrarily close to 1 this proves that a matching of weight at least
(

2
3 − ε

)

· w(Mopt) can be found in linear time. ut
In Section 7 we will more carefully analyse how the number of iterations required to

achieve a matching of weight at least
(

2
3 − ε

)

· w(Mopt) depends on ε.

5 Analysis of the Algorithm

In this section we prove Theorem 1. In line 1 the algorithm improve matching adds edges
from E to M until M is maximal. Because this is easy to do we assume from now on that
the input matching M is maximal.

Next we will define a set C ⊆ M of centers of short augmentations that we use for
the analysis. Consider the symmetric difference M4Mopt. It consists of M -alternating
paths and of even length M -alternating cycles. From each cycle in M4Mopt of length
larger than four put all edges of this cycle that belong to M into C. For each cycle of

7

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

length four put exactly one of the two edges in the cycle that belong to M into C. For
the M -alternating paths number the edges of Mopt in the order in which they appear in
these paths. Now partition the edges of Mopt in the M -alternating paths into three sets by
taking the edge numbers modulo 3. Removing any of these three sets from M4Mopt will
split the M -alternating paths into short augmentations with centers in M . Removing the
lightest of these three sets shows that 2/3 of the weight of edges of Mopt that are contained
in M -alternating paths can be achieved by a node disjoint set of short augmentations each
of which has a center in M . For each such short augmentation we put a center in C.

For an edge e ∈ C denote by Se the augmenting set consisting of the at most two edges
of Mopt adjacent with e. The gain of such an augmentation is w(Se)−w(M(Se)). For the
cycles of length at least six in M4Mopt each edge of Mopt belongs to exactly two sets Se

and each edge in M belongs to exactly three sets M(Se) with e ∈ C. For the cycles of
length four and paths in M4Mopt each edge of M belongs to exactly one set M(Se) and
the edges in Mopt belong to exactly one set Se with e ∈ C. The idea of our analysis is to
show that when our algorithm visits an edge e ∈ C it finds a short augmentation resulting
in an amortized gain which is at least a constant fraction of 1

βw(Se) − w(M(Se)).

The algorithm improve matching selects good β-augmentations for each e ∈ M with
respect to the matching M ′ which will be changed during the algorithm. For the analysis
we compare for each e ∈ C the gain that the algorithm finds at e in M ′ with the value
w(Se)−w(M(Se)), i.e. the gain that could have been achieved if edge e was the first edge
considered by the algorithm. Denote by ALGe the augmenting set that the algorithm
improve matching chooses as a good β-augmentation in M ′ with center e. The gain that
is achieved by this augmentation is w(ALGe) − w(M ′(ALGe)).

The basis for the amortized analysis is the following observation. As the algorithm
only performs β-augmentations we know that w(ALGe) ≥ β · w(M ′(ALGe)). Therefore
we have

w(ALGe) − w(M ′(ALGe)) ≥ w(ALGe) −
1

β
· w(ALGe) =

β − 1

β
· w(ALGe) .

This means if there is a new edge f in M ′, which we define to be an edge f ∈ M ′ such
that f 6∈ M , then the weight of the matching has already increased at some time in the
past by at least β−1

β · w(f) all of which can be attributed to this one edge independently
of any other such new edges.

For the amortized analysis we keep track of two non-negative values, w(M ′) and M ′’s
savings where w(M ′) is the sum of w(M ′) and M ′’s savings. Deposits to savings and
withdrawals from savings are made with respect to certain new edges in amounts that are
proportional to the weights of these new edges.

We define a function γ : C → {1, 2} by γ(e) = 2 if e belongs to a cycle of length at
least six in M4Mopt. For all other e ∈ C the value of γ(e) is equal to 1. The idea of the
function γ is to count how many augmenting sets Se contain an edge of Mopt. When the

8

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

algorithm visits e ∈ M in the current matching M ′ we apply the following rules for the
amortized analysis.

Rules for the amortization

1. If e 6∈ C put all of the gain of the augmentation found at e in savings. This is at least
β−1

β times the weight of the edges added to M ′ in this step.

2. If e ∈ C then put 1 − 1
2γ(e) of the gain of the augmentation found at e in savings and

increase w(M ′) by the remainder. This results in savings being increased by at least
(

1 − 1
2γ(e)

)

· β−1
β times the sum of the weights of any new edges added to M ′ in this

step.
3. If e ∈ C and if w(M ′(Se)) > w(M(Se)) then withdraw β−1

2γ(e)β (w(M ′(Se))−w(M(Se)))

from savings and add it to w(M ′).

Rules 1 and 2 increase M ′’s savings and guarantee that savings will never be overdrawn
when Rule 3 is invoked. To see this first note that Rule 3 withdraws upon the new edges
M ′(Se)\M(Se) an amount of β−1

2γ(e)β (w(M ′(Se))−w(M(Se))) ≤ β−1
2γ(e)β (w(M ′(Se)\M(Se))).

For simplifying the analysis we assume that when Rule 2 is applied for e ∈ C one puts 1−
1

2γ(e) of the gain of the augmentation found at e and additionally β−1
2γ(e)β w(ALGe) in savings

and increases w(M ′) by the remainder. In the same step one removes β−1
2γ(e)β w(ALGe) from

savings and adds it to w(M ′). This way we know that for a new edge f ∈ M ′(Se) \M(Se)
savings increase by at least β−1

β w(f) because of the edge f being added to M ′. Now
consider one end vertex x of f . There are two cases to be considered. If x belongs to a
cycle of length at least six in M4Mopt then there exist exactly two sets Se containing

x. Each of these can withdraw at most 1
4

β−1
β w(f) from M ′s savings. If x belongs to a

cycle of length four or an alternating path in M4Mopt then there exists exactly one set

Se containing x. This can withdraw at most 1
2

β−1
β w(f) from M ′s savings. Thus in both

cases at most 1
2

β−1
β w(f) will be withdrawn from M ′s savings. As the same holds for the

other end vertex of f this shows that M ′s savings will never be overdrawn.

Lemma 1. Amortized Rules 1,2, and 3 guarantee that for every e ∈ C the algorithm

improve matching achieves an amortized gain of β−1
2γ(e)β (1

β · w(Se) − w(M(Se))).

Proof. For proving the Lemma 1 we only have to consider e ∈ C with 1
βw(Se)−w(M(Se)) >

0. As the algorithm performs only good β-augmentations, it finds at least a δ := (β −
1)/(β − 1

2) fraction of the largest possible gain of a β-augmentation with center e in M ′.
There are three possibilities for the set Se when the algorithm visits e ∈ C.

The first possibility for Se is that w(M ′(Se)) ≤ w(M(Se)) and therefore Se is β-
augmenting in M ′ since w(Se) ≥ β ·w(M(Se)) ≥ β ·w(M ′(Se)). Because e ∈ C one applies
Rule 2 and puts 1 − 1

2γ(e) of the gain of the augmentation at e in savings and increases

w(M ′) by

9

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

1

2γ(e)
· (w(ALGe) − w(M ′(ALGe))) ≥

δ

2γ(e)
· (w(Se) − w(M ′(Se)))

≥ δ

2γ(e)
· (w(Se) − w(M(Se)))

≥ δ

2γ(e)
· (1

β
· w(Se) − w(M(Se))).

The second possibility is that w(M ′(Se)) > w(M(Se)) and w(Se) ≥ β · w(M ′(Se)),
i.e., the set Se is still β-augmenting. According to Rule 3 we withdraw for the new edges
M ′(Se) \ M(Se) an amount of β−1

2γ(e)β · (w(M ′(Se)) − w(M(Se))) from M ′’s savings. This

together with the augmentation that the algorithm will find at e, 1
2γ(e) of which is used to

increase w(M ′) according to Rule 2, means that w(M ′) increases by at least

1

2γ(e)
(w(ALGe) − w(M ′(ALGe))) +

β − 1

2γ(e)β
· (w(M ′(Se)) − w(M(Se)))

≥ δ

2γ(e)
(w(Se) − w(M ′(Se))) +

β − 1

2γ(e)β
(w(M ′(Se)) − w(M(Se)))

≥ min

(

δ

2γ(e)
,

β − 1

2γ(e)β

)

(w(Se) − w(M ′(Se)) + w(M ′(Se)) − w(M(Se)))

≥ min

(

δ

2γ(e)
,

β − 1

2γ(e)β

)

(
1

β
w(Se) − w(M(Se))).

The third and final possibility for e ∈ C is that Se is no longer β-augmenting when the
algorithm visits it, i.e., w(M ′(Se)) > 1

β ·w(Se). Therefore, the set of edges M ′(Se)\M(Se)

has a weight of at least 1
β · w(Se) − w(M(Se)). According to Rule 3 the value w(M ′)

increases in this step by at least

β − 1

2γ(e)β
(
1

β
w(Se) − w(M(Se))).

The minimum amount that w(M ′) increases by at each e ∈ C over all three cases is
β−1

2γ(e)β (1
βw(Se) − w(M(Se))) as δ was defined as (β − 1)/(β − 1

2). ut
Lemma 1 now easily allows us to prove Theorem 1.

Proof of Theorem 1. For an augmenting set Se that is not β-augmenting we have 1
β ·

w(Se) − w(M(Se)) < 0. Lemma 1 shows that the total gain achieved by the algorithm
improve matching is at least

∑

e∈C

β − 1

2γ(e)β

(

1

β
· w(Se) − w(M(Se))

)

.

10

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

Consider the symmetric difference of M4Mopt. Denote by M̃ and M̃opt all edges in M
and Mopt respectively that lie in a cycle of length at least six in M4Mopt. By C̃ denote
the set C ∩ M̃ . Therefore we get

∑

e∈C

β − 1

2γ(e)β

(

1

β
· w(Se) − w(M(Se))

)

=
∑

e∈C\C̃

β − 1

2β

(

1

β
· w(Se) − w(M(Se))

)

+
∑

e∈C̃

β − 1

4β

(

1

β
· w(Se) − w(M(Se))

)

≥ β − 1

2β

(

2

3β
w(Mopt \ M̃opt) − w(M̃)

)

+
β − 1

4β

(

2

β
w(M̃opt) − 3 · w(M \ M̃)

)

≥ β − 1

2β

(

2

3β
w(Mopt) − w(M)

)

.

For the linear running time we have to show that good β-augmentations can be found
sufficiently fast. This will be done in the next section. ut

6 Finding a good β-augmentation

Let G = (V,E) be a graph, M ⊆ E be a matching and e ∈ E. Consider a β-augmentation
with center e. The win of an edge a ∈ E \ M that is adjacent with e is defined as
wine(a) := w(a) − w(M(a) \ {e}), i.e., the win of a is simply the weight of a minus
the weight of all edges different from e in M that are adjacent with a. The idea of our
algorithm for finding good β-augmentations is as follows. If the best β-augmenting set
contains only one edge then it is easy to see that one can compute this set in the required
time. If the best β-augmenting set centered at e contains two edges then we first compute
the win of all edges adjacent to e and look for a pair of such edges each incident to a
different end vertex of e such that these two edges yield a good β-augmentation. Our
algorithm for finding good β-augmentations only considers augmenting sets S such that
S ∩ M(S) = ∅. However, it implicitly also considers sets S where this is not true because
if S is β-augmenting in M then so is S \ M(S) and the gain of this set is just as large.

Lemma 2. If e is the center of a β-augmentation then a good β-augmentation with center

e can be found in time proportional to the sum of the degrees of the end vertices of e.

Proof. First note that all β-augmentations centered at e in which the augmenting set
contains at most one edge can be enumerated and the largest one chosen in the required
time. Also β-augmentations in which the augmenting set contains two edges a and b such
that {a, b, e}∪M(a) contains a cycle can be enumerated in this time. There are two types
of these (see rows 2 and 3 in Fig. 4). The first is that M(a) contains an edge adjacent to
e. In this case the edge a is unique and one simply has to enumerate all possibilities for b.

11

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

PSfrag replacements ee

e e

ee

PSfrag replacements ee

e e

ee

Fig. 4. All types of short augmentations that have two edges in the augmenting set. A center of each
augmentation is labelled e. Edges belonging to the matching are shown in bold. Dashed lines indicate
edges that are optionally in the matching. Hollow vertices are vertices not contained in any matching edge.

Thus a and the best candidate for b can be found in time proportional to the sum of the
degrees of the end vertices of e. The second case is that M(a)∩M(b) contains an edge not
incident with an end vertex of e. To enumerate all such sets we scan all edges a incident
to one end vertex of e and mark all the end vertices of M(a) that are is not incident to
a. Then scan all neighbors of the other end vertex of e to see whether any of these are
marked.

Algorithm max allowable (
�

= (�����) ��� : ���
	 + ���
��� = ���������������������)

1 Fx := {f ∈ F |x ∈ f}, Fy := {f ∈ F |y ∈ f}
2 choose f1, f2 ∈ Fx s.t. surpluse(f1) ≥ surpluse(f2) ≥ surpluse(f) ∀f ∈ Fx \ {f1, f2}
3 choose f3, f4 ∈ Fy s.t. surpluse(f3) ≥ surpluse(f4) ≥ surpluse(f) ∀f ∈ Fy \ {f3, f4}
4 if e ∈ M then z := w(e) else z := 0
5 X1 := {f ∈ Fx|f, f1 non adjacent and surpluse(f) + surpluse(f1) ≥ β · z}
6 X2 := {f ∈ Fx|f, f2 non adjacent and surpluse(f) + surpluse(f2) ≥ β · z}
7 X3 := {f ∈ Fy|f, f3 non adjacent and surpluse(f) + surpluse(f3) ≥ β · z}
8 X4 := {f ∈ Fy|f, f4 non adjacent and surpluse(f) + surpluse(f4) ≥ β · z}
9 return β-augmentation realizing maxf∈X1∪X2∪X3∪X4

{wine(f)}

Fig. 5. Algorithm max allowable.

It therefore remains to consider β-augmentations whose augmenting set contains two
edges a and b such that {a, b, e} ∪ M(a) does not contain a cycle. Define the surplus of
an edge a ∈ E \ M adjacent with e as surpluse(a) := w(a) − β · w(M(a) \ {e}). We
claim that the algorithm good β augmentation which is shown in Figure 6 finds a good
β-augmentation. This algorithm uses as a subroutine a procedure called max allowable
which returns from all β-augmentations where the augmenting set is contained in F the
one containing an edge with the largest win. This algorithm is shown in Figure 5. It

12

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

simply scans all edges incident with one end vertex of e and checks whether there exists a
β-augmentation centered at e that contains this edge. To this end the two largest surpluses
achievable on the other side of e are memorized. The reason that we need to consider the
two largest is that one of these may be not disjoint from the other side. Clearly the running
time of the algorithm is linear in the sum of the degrees of the end vertices of e.

Let e be the center of a β-augmentation and denote by gainopt the gain of the best
β-augmentation with center e. If this β-augmentation contains at most one edge not in
M or contains a cycle then it will be found in lines 1 and 2 of the algorithm. Therefore
we may assume that the best β-augmentation with center e contains exactly two edges
adjacent with e that do not belong to M .

Algorithm good β augmentation (
�

= (�����) ��� : ���
	 + �����������)

1 A1 := best β-augmentation with center e that contains at most one edge not in M

2 A2 := best β-augmentation with center e that contains a cycle
3 F := {f ∈ E \ M |f is adjacent with e and wine(f) ≥ 1

2
· w(e)}

4 A3 := max allowable (F, e)
5 F := {f ∈ E \ M |f is adjacent with e}
6 A4 := max allowable (F, e)
7 return max (A1, A2, A3, A4)

Fig. 6. An algorithm for finding good β-augmentations.

Assume first that both these edges have a win of at least 1
2 · w(e). Then in line 4 of

the algorithm good β augmentation a β-augmentation will be returned. Let a and b the
two edges in this β-augmentation that do not belong to M . Then wine(a) ≥ 1

2 · w(e) and
wine(b) ≥ 1

2 · w(e) holds. Without loss of generality assume wine(a) ≥ wine(b). Then we
have

gainopt ≤ 2 · wine(a) − w(e) ≤ 2 · wine(a) + 2 · wine(b) − 2 · w(e) = 2 · gainalg .

The same argument also shows that in the case e 6∈ M we have gainopt ≤ 2 · gainalg .

Now assume that at least one edge has a win smaller than 1
2 ·w(e). Any β-augmentation

with center e has a gain of at least (β−1)w(e). Therefore we have gainalg ≥ (β−1)w(e). As
by assumption the best β-augmentation with center e contains an edge with win smaller
than 1

2 · w(e) we have gainopt ≤ gainalg + 1
2 · w(e). Now we have

gainopt ≤ gainalg +
1

2
· w(e) ≤ gainalg +

1

2
· gainalg

β − 1
=

β − 1
2

β − 1
· gainalg .

The running time is obviously linear in the sum of the degrees of the end vertices of e. ut

13

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

7 Running Time

In Section 4 we proved that the sequence of matchings M0,M1, . . . obtained by the algo-
rithm improve matching satisfies w(Mi) ≥ wi ·w(Mopt) where wi is defined by the following
recurrence

wi+1 = wi +
β − 1

2β

(

2

3β
− wi

)

, and w0 =
1

2
.

From this one can easily compute the number of steps required for given ε and β. However,
a better bound for the number of required iterations can be computed if the value of β is
not constant over all iterations. By allowing β to depend on i one gets the recurrence

wi+1 = wi +
βi − 1

2βi

(

2

3βi
− wi

)

, and w0 =
1

2
.

The best choice for βi can easily be calculated by maximizing the expression

wi +
βi − 1

2βi

(

2

3βi
− wi

)

.

This gives βi = 4
2+3wi

. From this one gets the recurrence

wi =
1

48
(4 + 9wi−1(4 + wi−1)) , and w0 =

1

2
. (1)

Now a simple induction shows that wi ≥ 2
3 − 16

3i . This is certainly true for w1. For wi+1

we get

wi+1 ≥ 1

48

(

4 + 9

(

2

3
− 16

3i

)(

4 +

(

2

3
− 16

3i

)))

=
2

3
+

16

3i2
− 16

3i
≥ 2

3
− 16

3(i + 1)
.

This shows that the number of iterations required to achieve a performance ratio of 2
3 −ε is

at most 16
3ε = O(1

ε). Table 1 contains the precise number of iterations needed for a desired
performance ratio as can be calculated from the recurrence (1).

iterations 14 18 23 29 37 48 62 82 112 167 286

ratio 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65

Table 1. The number of iterations needed to achieve a desired performance ratio.

14

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

8 Conclusion

We have presented a linear time approximation algorithm for the weighted matching prob-
lem in graphs with an approximation ratio of 2/3 − ε for arbitrarily small ε > 0. The
constants in Theorem 1 can be improved slightly which results in slightly better constants
in the running time. However, as this would make our analysis more complicated we did
not do it. The analysis in Section 7 shows that the predicted running time of our algorithm
is quite low. We have implemented our algorithm to test its behaviour on real world in-
stances. We have chosen the same test set of instances for the weighted matching problem
as was chosen in [5]. It turns out that in practice the best choice for β is to simply set its
value to 1. With this setting our new algorithm outperforms the other algorithms studied
in [5] with respect to the approximation ratio while having similar running time.

Acknowledgement

We are grateful to Valentin Ziegler for pointing out that Lemma 1 in [6] is incorrect.

References

1. D. Avis, A Survey of Heuristics for the Weighted Matching Problem, Networks, Vol. 13 (1983), 475–493.
2. R. Beier, J.F. Sibeyn, A Powerful Heuristic for Telephone Gossiping, Proc. 7th Colloquium on Struc-

tural Information and Communication Complexity, Carleton Scientific (2000), 17–35.
3. W. Cook, A. Rohe, Computing minimum-weight perfect matchings, INFORMS Journal on Computing

11 (1999), 138–148.
4. D.E. Drake, S. Hougardy, A Simple Approximation Algorithm for the Weighted Matching Problem,

Information Processing Letters 85 (2003), 211–213.
5. D.E. Drake, S. Hougardy, Linear Time Local Improvements for Weighted Matchings in Graphs,

In: Workshop on Efficient Algorithms (WEA) 2003, K.Jansen, M.Margraf, M.Mastrolli, J.D.P.Rolim
(eds.), LNCS 2647, Springer 2003, 107–119.

6. D.E. Drake, S. Hougardy, Improved linear time approximation algorithms for weighted matchings, In:
Approximation, Randomization, and Combinatorial Optimization, (Approx/Random) 2003, S.Arora,
K.Jansen, J.D.P.Rolim, A.Sahai (eds.), LNCS 2764, Springer 2003, 14–23.

7. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards 69B
(1965), 125–130.

8. C. Frömmel, C. Gille, A. Goede, C. Gröpl, S. Hougardy, T. Nierhoff, R. Preißner, M. Thimm, Ac-
celerating screening of 3D protein data with a graph theoretical approach, Bioinformatics 19 (2003),
2442–2447

9. H.N. Gabow, An efficient implementation of Edmond’s algorithm for maximum matching on graphs,
Journal of the ACM 23 (1976), 221–234.

10. H.N. Gabow, Data Structures for Weighted Matching and Nearest Common Ancestors with Linking,
SODA 1990, 434–443.

11. H.N. Gabow, Z. Galil, T.H. Spencer, Efficient implementation of graph algorithms using contraction,
J. ACM 36 (1989), 815–853.

12. Z. Galil, S. Micali, H. Gabow, An O(EV log V) algorithm for finding a maximal weighted matching
in general graphs, SIAM Journal on Computing 15 (1986), 120–130.

15

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

13. H.N. Gabow, R.E. Tarjan, Faster Scaling Algorithms for General Graph-Matching Problems, J. ACM
38:4 (1991), 815–853.

14. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs,
SIAM J. Sci. Comput. 20:1 (1998), 359–392.

15. E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New
York, 1976.

16. R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979),
177–189.

17. R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem, SIAM Journal on Computing 9
(1980), 615–627.

18. R.H. Möhring, M. Müller-Hannemann, Complexity and Modeling Aspects of Mesh Refinement into
Quadrilaterals, Algorithmica 26 (2000), 148–171.

19. B. Monien, R. Preis, R. Diekmann, Quality Matching and Local Improvement for Multilevel Graph-
Partitioning, Parallel Computing 26(12), 2000, 1609–1634.

20. K. Mehlhorn, G. Schäfer, Implementation of O(nmlogn) Weighted Matchings in General Graphs: The
Power of Data Structures, In: S. Näher, D. Wagner (eds.), 4th International Workshop on Algorithm
Engineering (WAE) 2000, Saarbrücken, Germany, September 5–8, LNCS 1982, Springer 2001, 23–38.

21. S. Micali and V.V. Vazirani, An O(
√

V E) Algorithm for Finding Maximum Matching in General
Graphs, Proc. 21st Annual IEEE Symposium on Foundations of Computer Science (1980) 17–27.

22. R. Preis, Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in General
Graphs, Symposium on Theoretical Aspects of Computer Science (STACS) 1999, C. Meinel, S. Tison
(eds.), LNCS 1563, Springer 1999, 259–269.

23. P.W. Purdom, C.A. Brown, The Analysis of Algorithms, Holt, Rinehart and Winston, New York, 1985.
24. R.E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in

Applied Mathematics, Vol. 44, SIAM 1983.
25. V.V. Vazirani, A Theory of Alternating Paths and Blossoms for Proving Correctness of the O(

√
V E)

Maximum Matching Algorithm, Combinatorica 14:1 (1994), 71–109.

16

This paper appeared in: ACM Transactions on Algorithms, 1:1 (2005), 107-122

