Linear and Integer Optimization

Exercise Sheet 12

Exercise 12.1: Prove that the system

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\binom{ 1}{1}
$$

is not TDI. Furthermore, give a TDI-system representing the same polyhedron (including a proof that it is TDI).

Exercise 12.2: Let $a \neq 0$ be an integral vector and β a rational number. Prove that the inequality $a^{\top} x \leq \beta$ is TDI if and only if the components of a are relatively prime.

Exercise 12.3: Let $A \in\{0,1\}^{m \times n}$ be a matrix where in each column the 1 's are arranged consecutively, i.e. for each column $j \in\{1, \ldots, n\}$ there are $i_{1}^{j}, i_{2}^{j} \in\{1, \ldots, m\}$ s.t.:

$$
a_{i j}= \begin{cases}1, & i_{1}^{j} \leq i \leq i_{2}^{j} \\ 0, & \text { else }\end{cases}
$$

for $j \in\{1, \ldots, n\}$ and $i \in\{1, \ldots, m\}$ (if $i_{1}^{j}>i_{2}^{j}$, the column consists of zeros only). Show that A is totally unimodular.
(5 Points)

Exercise 12.4:

Show that $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ is not totally unimodular, but $\{x: A x=b\}$ is integral for all integral vectors b.

Submission deadline: Tuesday, 21.1.2014, before the lecture.

