Linear and Integer Optimization

Exercise Sheet 11

Exercise 11.1:

Let $G=(V, E)$ be a digraph with $|V|=n$ and $|E|=m$. The feasible solutions to the directed traveling salesman problem are defined by the following constraints:

$$
\begin{aligned}
\sum_{v:(v, w) \in E} x_{(v, w)}=1, & \forall w \in V \\
\sum_{(v, w) \in E: v \in S, w \notin S} x_{(v, w)}=1, & \forall v \in V \\
x_{(v, w)} \geq 1, & \forall S \subset V, S \neq \emptyset, V \\
x_{(v, w)} \in\{0,1\} & \forall(v, w) \in E
\end{aligned}
$$

Let \mathcal{F} be the set of feasible solutions.

1. Now choose one vertex $v_{0} \in V$ arbitrarily and consider the set \mathcal{F}^{\prime} of solutions to the following (polynomially many) constraints:

$$
\begin{array}{cl}
\sum_{v:(v, w) \in E} x_{(v, w)}=1, & \forall w \in V \\
\sum_{w:(v, w) \in E} x_{(v, w)}=1, & \forall v \in V \\
y_{v}-y_{w}+n x_{(v, w)} \leq n-1, & \forall(v, w) \in E, v, w \neq v_{0} \\
x_{(v, w)} \in\{0,1\}, & \forall(v, w) \in E \\
y_{v} \in \mathbb{R}, & \forall v \in V
\end{array}
$$

Prove: $\mathcal{F}^{\prime}=\mathcal{F}$.
(4 Points)
2. Let $L P_{\mathcal{F}}$ and $L P_{\mathcal{F}^{\prime}}$ be the linear relaxations of \mathcal{F} respectively \mathcal{F}^{\prime}, i.e. relaxing $x_{(v, w)} \in\{0,1\}$. Show that $L P_{\mathcal{F}} \subseteq L P_{\mathcal{F}^{\prime}}$ and give an example for which $L P_{\mathcal{F}} \neq$ $L P_{\mathcal{F}^{\prime}}$.
(4 Points)
3. Prove or disprove: $L P_{\mathcal{F}}=\operatorname{conv}(\mathcal{F})$.

Exercise 11.2: Let A be an integral $m \times n$-matrix, and let b and c be vectors, and y an optimum solution of $\max \{c x: A x \leq b, x$ integral $\}$. Prove that there exists an optimum solution z of $\max \{c x: A x \leq b\}$ with $\|y-z\|_{\infty} \leq n \Xi(A)$.

Exercise 11.3: Prove that there is a polynomial-time algorithm which, given an integral matrix A and an integral vector b, finds an integral vector x with $A x=b$ or decides that none exists.

Submission deadline: Tuesday, 14.1.2014, before the lecture.

