Linear and Integer Optimization

Exercise Sheet 9

Exercise 9.1: Show that for each $K \in \mathbb{N}$ there is a bounded integer program with two variables such that the branch- $\&$-bound algorithm visits more than K vertices in the branch- $\&$-bound tree.
(5 Points).

Exercise 9.2: Consider the following ILP (integer linear program)

$$
\begin{array}{cc}
\max -\sqrt{2} x+y & \\
-\sqrt{2} x+y & \leq 0 \\
x & \geq 1 \\
y & \geq 0 \\
x, y & \in \mathbb{Z}
\end{array}
$$

Show:

1. The ILP has feasible solutions.
2. The objective is bounded from above by 0 .
3. There is no optimum solution.
4. Let S be the set of solutions of the ILP, then $\operatorname{conv}(S)$ is not a polyhedron.

Exercise 9.3: (Mixed integer programming hull)
Let $P=\left\{x \in \mathbb{R}^{k+l}: A x \leq b\right\}$ be a rational polyhedron. Show that $\operatorname{conv}\left(P \cap\left(\mathbb{Z}^{k} \times \mathbb{R}^{l}\right)\right)$ is a rational polyhedron.

Exercise 9.4:

The Maximum-Stable-Set-Problem is defined as follows. Given a graph G, we are looking for a vertex set $S \subseteq V(G)$ of maximum cardinality $|S|$ such that $\{v, w\} \notin E(G)$ for all $v, w \in S$. A vertex set S with $E(G[S])=\emptyset$ is called stable set. This problem can be modeled by the following ILP:

$$
\begin{array}{rlr}
\max & \sum_{v \in V(G)} x_{v} & \\
\text { s.d. } & x_{v}+x_{w} \leq 1 & \forall\{v, w\} \in E(G) \\
& x_{v} \in\{0,1\} & \forall v \in V(G) \tag{3}
\end{array}
$$

Show:

1. There is a class of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ with $\left|V\left(G_{n}\right)\right|=n$ such that the integrality gap has size $\Omega\left(\left|V\left(G_{n}\right)\right|\right)$, where (3) is replaced by

$$
0 \leq x_{v} \leq 1 \quad \forall v \in V(G)
$$

in the linear relaxation.
2. Following inequalities are valid for the Maximum-Stable-Set-Problem:

$$
\begin{gathered}
\sum_{v \in V(C)} x_{v} \leq 1 \quad \text { for a clique } C \subseteq G \\
\sum_{v \in V(H)} x_{v} \leq\left\lceil\frac{|V(H)|-1}{2}\right\rceil \quad \text { for a circuit } H \subseteq G,
\end{gathered}
$$

where a clique C is a complete subgraph of G, i.e. $G[C] \simeq K_{|C|}$. Give examples for both types of inequalities, where the optima of the linear relaxations are reduced (strictly).

Submission deadline: Tuesday, 17.12.2013, before the lecture.

