Linear and Integer Optimization

Exercise Sheet 8

Exercise 8.1: Let

$$
A:=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
s & -1
\end{array}\right) \text { and } b:=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) .
$$

Use the Ellipsoid method to find for $x_{0}=0, R=2$ and sufficiently large N a feasible solution in $P=\left\{x \in \mathbb{R}^{2}: A x \leq b\right\}$ for $s=-1$ and $s=-2$.

Exercise 8.2: Show that the algorithm given in Theorem 7.20 solves the problem Linear Programming for an instance $\max \left\{c^{\top} x: A x \leq b\right\}$, with $A \in \mathbb{Q}^{m \times n}, b \in$ \mathbb{Q}^{m}, and $c \in \mathbb{Q}^{n}$, in $O\left((n+m)^{9}(\operatorname{size}(A)+\operatorname{size}(b)+\operatorname{size}(c))^{2}\right)$ time.

Exercise 8.3: Let $E(A, x) \subset \mathbb{R}^{n}$ be an ellipsoid, $a \in \mathbb{R}^{n}$ and $E^{\prime}=\{z \in E(A, x)$: $\left.a^{\top} z \geq a^{\top} x\right\}$. Show that the ellipsoid $E\left(A^{\prime}, x^{\prime}\right)$ with $A^{\prime}=\frac{n^{2}}{n^{2}-1}\left(A-\frac{2}{n+1} b b^{\top}\right), x^{\prime}=$ $x+\frac{1}{n+1} b$ and $b=\frac{1}{\sqrt{a^{\top} A a}} A a$ contains the half-ellipsoid E^{\prime}.
Hint: You may prove and then use the Sherman-Morrison-Woodbury formula:
$\left(A-u v^{\top}\right)^{-1}=A^{-1}+\frac{A^{-1} u v^{\top} A^{-1}}{1-v A^{\top} A^{-1} u}$ if $v^{\top} A^{-1} u \neq 1$.
(5 Points)

Exercise 8.4:

Let G be a simple graph. Show that the following problem can be solved in time polynomial in $|V(G)|$.

$$
\begin{array}{rlrl}
\min & \sum_{e=\{v, w\} \in E(G)} x_{v w} & & \\
\text { s.d. } & \sum_{w \in S} x_{v w} & \geq\left\lceil\frac{1}{4}|S|^{2}+\frac{1}{2}|S|\right\rceil & \\
& & (v \in V(G), S \subseteq V(G) \backslash\{v\}) \\
x_{u w} & \leq x_{u v}+x_{v w} & & (u, v, w \in V(G)) \\
x_{v w} & \geq 0 & & (v \in V(G)) \\
x_{v v} & =0 & & (v \in V(G))
\end{array}
$$

(This is an LP-relaxation of the Optimal Linear Arrangement Problem: Find an ordering $\left\{v_{1}, \ldots, v_{|V(G)|}\right\}=V(G)$ of the vertices such that $\sum_{\left\{v_{i}, v_{j}\right\} \in E(G)}|i-j|$ is minimum.)
(5 Points)
Submission deadline: Tuesday, 10.12.2013, before the lecture.

