Linear and Integer Optimization

Exercise Sheet 5

Exercise 5.1: Solve the following LP using the simplex algorithm with Bland's rule. For each iteration, report the steps BTRAN, PRICING, FTRAN, RATIO-Test and UPDATE.

$$
\begin{array}{rrl}
\max & -x_{1}+4 x_{2} & \\
s . d . & x_{1}-x_{2} & \leq 2 \\
-x_{1}+x_{2} & \leq 1 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

Exercise 5.2: Consider an LP $\max \left\{c^{\top} x: A x=b, x \geq 0\right\}$. Let B be an optimum basis with basic solution x^{\star} and reduced costs $z_{N} \leq 0$, e.g. at termination of the simplex algorithm in the PRICING step. Let $I \subseteq N$ be the set of non-basic variables with reduced costs $z_{j}=0(j \in I)$. Prove:

1. $I=\emptyset \Rightarrow x^{\star}$ is a unique optimum solution.
2. x^{\star} is the unique optimum solution if and only if the following LP has the optimum solution value 0 :

$$
\begin{array}{ll}
\max & \sum_{i \in I} x_{i} \\
\text { s.d. } & A x=b, \\
& x_{i}=0, \quad i \in N \backslash I, \\
& x_{i} \geq 0, \quad i \in B \cup I .
\end{array}
$$

Exercise 5.3: (Job Assignment Problem)
In the job assignment problem, n jobs with execution times of $t_{1}, \ldots, t_{n} \in \mathbb{R}_{+}$need to be processed by m workers. However not every worker can perform every job. For each job $i \in\{1, \ldots, n\}$ a set $S_{i} \subseteq\{1, \ldots, m\}$ specifies the workers that can perform job i. Several workers can process a job in parallel to speed up the processing time, but each worker can only work at a single job at the same time.

1. Formulate an LP minimizing the total execution time for processing all jobs.
2. Determine the dual LP.
3. Develop a simple polynomial time algorithm for $n=2$ and $t_{1}, t_{2}>0$ that finds a primal and dual optimal solution and prove its correctness.

Exercise 5.4: (Dual Simplex Algorithm)
Let $\max \left\{c^{\boldsymbol{\top}} x: A x=b, x \geq 0\right\}$ be an LP, that is not unbounded and where A has full row rank.
Consider the following algorithm that has as an input the LP and a dual feasible basis B, i.e. $z_{N}=c_{N}-A_{N}^{\top} A_{B}^{-\top} c_{B} \leq 0$.

BTRAN:
Solve $A_{B} x_{B}=b$

PRICING:

If $x_{B} \geq 0$,Stop. Else choose an $i \in\{1, \ldots, m\}$ mit $x_{B_{i}}<0$.

FTRAN:

Solve $A_{B}^{\top} w=e_{i}$ and compute $\alpha_{N}=A_{N}^{\top} w$.

RATIO-Test:

If $\alpha_{N} \geq 0$, Stop. Else choose a

$$
j=\arg \min \left\{\frac{z_{k}}{\alpha_{k}}: \alpha_{k}<0, k \in N\right\}, \text { and set } \gamma=\frac{z_{j}}{\alpha_{j}} .
$$

Update:

$$
\begin{aligned}
z_{N} \leftarrow z_{N}-\gamma \alpha_{N}, & z_{B_{i}} \leftarrow-\gamma, \\
N \leftarrow N \backslash\{j\} \cup\left\{B_{i}\right\}, & \left.B_{i} \leftarrow j \quad \text { (now } B \leftarrow B \backslash\left\{B_{i}\right\} \cup\{j\}\right) .
\end{aligned}
$$

Goto BTRAN.

Prove

1. If the algorithm stops in the PRICING step, then B is an optimum basis and x_{B} with $x_{N}=0$ is an optimum basic solution.
2. If the algorithm stops in the RATIO-Test, then $P^{=}(A, b)=\emptyset$.
3. The UPDATE-step transforms a dual feasible basis B into a new basis that is dual feasible again.
(3 Points)

Submission deadline: Tuesday, 19.11.2013, before the lecture.

