Linear and Integer Optimization

Exercise Sheet 4

Exercise 4.1: Let C be a convex cone and $-C$ the cone $\{x:-x \in C\}$. We call $L=(C \cap-C)$ the lineality space of C.
a) Prove that $\bar{C}:=C \cap L^{\perp}$, where $L^{\perp}=\left\{u: u^{\top} x=0 \forall x \in L\right\}$, is a pointed cone and that C is the direct sum of its lineality space L and the pointed cone \bar{C}, i.e.

$$
C=\left(C \cap L^{\perp}\right) \oplus L .
$$

(2 Points)
b) Show that each polyhedron P has a decomposition $P=(Q+C) \oplus L$, where Q is a polytope, C a pointed cone and L a linear subspace.

Exercise 4.2: Proof the Birkhoff-von Neumann Theorem: the extreme points of the set of doubly stochastic matrices

$$
M=\left\{A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in K_{\geq 0}^{n \times n} \mid \sum_{i=1}^{n} a_{i, j_{0}}=\sum_{j=1}^{n} a_{i 0, j}=1 \text { for all } 1 \leq i_{0}, j_{0}, \leq n\right\}
$$

are precisely the permutation matrices, i.e. the elements of $M \cap\{0,1\}^{n \times n}$. (5 Points)

Exercise 4.3: Let $H=(V, E)$ be a hypergraph, i.e. V is a finite set of vertices and $E \subseteq 2^{V}$. Furthermore, let $F \subseteq V$ and $x, y: F \rightarrow \mathbb{R}$. Provide an LP formulation for the following problem and dualize the LP:
Determine (an extension) $x, y: V \backslash F \rightarrow \mathbb{R}$ such that

$$
\sum_{e \in E}\left(\max _{v \in e} x(v)-\min _{v \in e} x(v)+\max _{v \in e} y(v)-\min _{v \in e} y(v)\right)
$$

is minimized.
Remark: This is a relaxation of the placement problem in chip design. The vertices correspond to connected modules that must be placed minimizing the length of all
interconnects (hyperedges). Vertices in F are preplaced. The problem becomes much harder when requiring disjointness of the modules.

Exercise 4.4: Let G be a directed graph with edge weigths $c: E(G) \rightarrow \mathbb{R}_{+}$. Let $E_{1}, E_{2} \subseteq E(G)$ and $s, t \in V(G)$ with $s \neq t$. Consider the following LP:

$$
\begin{array}{lll}
\min & \sum_{e \in E(G)} c(e) y_{e} & \\
\text { s.t. } & y_{e} \leq 0 & \forall e \in E_{1}, \\
& y_{e} \geq 0 & \forall e \in E_{2}, \\
& y_{e} \geq z_{w}-z_{v} & \forall e=(v, w) \in E(G), \\
& z_{t}-z_{s}=1 . &
\end{array}
$$

Show:

1. The LP has a solution if and only if every s - t-path in G contains an edge from $E(G) \backslash E_{1}$.
(2 Points)
2. If the LP has an optimum solution (\tilde{y}, \tilde{z}), then there is a set X with $X \cap\{s, t\}=$ $\{s\}$ and an optimum solution (y, z) such that $y_{e}=1$ for all $e \in \delta^{+}(X), y_{e}=-1$ for all $e \in \delta^{-}(X) \backslash E_{2}$, and $y_{e}=0$ for all remaining edges.
Hint: Consider the set $\left\{v \in V(G): \tilde{z}_{v} \leq \tilde{z}_{s}\right\}$ and apply the complementary slackness constraints.

Submission deadline: Tuesday, 12.11.2013, before the lecture.

