Linear and Integer Optimization

Exercise Sheet 3

Exercise 3.1: Let $A_{1}, \ldots, A_{m} \subseteq \mathbb{R}^{n}$ be convex sets. Show that if any $n+1$ of the sets have a non-empty intersection, then

$$
\bigcap_{i=1}^{m} A_{i} \neq \emptyset .
$$

Can you omit one of the requirements: convexity, any $n+1$ sets have a non-empty intersection, or the finiteness of the family A_{1}, \ldots, A_{m} ?

Exercise 3.2: Prove the following transposition theorem:

$$
\begin{gathered}
(\exists x: A x \leq c, A x \neq c) \\
\dot{\vee} \\
\left(\exists y:\left(A^{T} y=0, c^{T} y=-1, y \geq 0\right) \vee\left(A^{T} y=0, c^{T} y \leq 0, y>0\right)\right) .
\end{gathered}
$$

(4 Points)

Exercise 3.3:

a) Prove the generalized Farkas Lemma (Lemma 4.1) from the lecture.
b) Let (P) be a linear program of the form $\min \left\{c^{\top} x: A x \leq b\right\}$. Show that the dual of the dual is equivalent to (P).

Exercise 3.4: Consider the following linear program $\min \left\{c^{\top} x: A x=b\right\}$. Show that it either does not have a solution, it is unbounded, or all feasible solutions are optimal. Does this statement hold if we additionally require $x \geq 0$?

Submission deadline: Tuesday, 6.11.2013, before the lecture.

Programming Exercise on the back!

Programming Exercise 1

Implement the Fourier-Motzkin Elimination to decide if an $\mathrm{LP} \max \left\{c^{\top} x: A x \leq b\right\}$ has a feasible solution. If it has a solution print a solution vector to the standard output as a single line. If it does not have a solution, print the string "empty" followed by a certificate vector according to Corollary 3.3 (in one line).
The program has to be implemented in C/C++ using the GNU compilers gcc or g++. The program should be run from the command line and read in a text file, whose name is given as an argument. The text file specifies the LP in the following format.

- The first line contains the number m of rows and n of columns of A.
- The second line contains n floating point numbers specifying c.
- The third line contains m floating point numbers specifying b.
- The next m lines contain the rows of A. Each line contains the n floating point numbers in the respective row.

On the web site to the exercises you find test instances and an example program in C for reading the input. You may use the example as a base for your implementation.
(10 Points)

Submission of the programming exercise until Tuesday, 20.11.2013, before the lecture via e-mail to your tutor and to held@or.uni-bonn.de!

