Linear and Integer Optimization

Exercise Sheet 1

Exercise 1.1:

A paper mill produces paper rolls of 3 m width. The customers order rolls with smaller widths and the mill has to cut the ordered rolls out of the 3 m wide rolls. For example, a 3 m wide roll may be cut into two 93 cm wide and a 108 cm wide roll, leaving an offcut of 6 cm .
The current order consists of

- 90 rolls of width 130 cm ,
- 610 rolls of width 108 cm ,
- 395 rolls of width 42 cm , and
- 211 rolls of width 93 cm .

Formulate a linear program that minimizes the number of produced 3 m rolls and allows a correct cutting of the ordered rolls.

Exercise 1.2:

Let $A=\left(\begin{array}{ccccccc}-1 & -1 & 1 & 0 & 1 & 1 & -2 \\ 1 & 2 & 1 & 1 & -2 & 0 & -10\end{array}\right)^{\top}$ and $b=\left(\begin{array}{ccccccc}1 & 4 & 8 & 4 & 2 & 5 & -11\end{array}\right)^{\top}$. Solve the LP $\max \left\{c^{\top} x: A x \leq b\right\}$ (graphically) and specify the set of optimum solutions for following cost vectors:

1. $c=\left(\begin{array}{ll}0 & -3\end{array}\right)^{\top}$
2. $c=\left(\begin{array}{ll}1 & 2\end{array}\right)^{\top}$
3. $c=\left(\begin{array}{ll}1 & -2\end{array}\right)^{\top}$

Let $P:=P(A, b)=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$. How many null-, one-, und two-dimensional faces does P have?

Give an example of a face for each of the three dimensions in the form $F=\{x \in$ $\left.P: A^{\prime} x=b^{\prime}\right\}$. Here $A^{\prime} x \leq b^{\prime}$ is a subsystem of $A x \leq b$.

Exercise 1.3: Specify necessary and sufficient conditions for the numbers $\alpha, \beta, \gamma \in \mathbb{K}$ so that the LP $\max \{x+y: \alpha x+\beta y \leq \gamma ; x, y \geq 0\}$

- has an optimum solution;
- has a feasible solution;
- is unbounded.

Exercise 1.4: The dimension of a non-empty set $X \subseteq \mathbb{K}^{n}$ is the number $\operatorname{dim} X:=n-\max \{\operatorname{rank}(A): A$ is an $n \times n$ matrix with $A x=A y \forall x, y \in X\}$.
X is called full-dimensional if $\operatorname{dim} X=n$.
Prove: A polyhedron is full-dimensional if and only if there is a point in its interior.

Submission deadline: Tuesday, 22.10.2013, before the lecture (in groups of 2 students).

