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Exercise 14.1:
Let U be a finite set and f : 2U → R. Define extensions f+, f− : [0, 1]U → R by

f+(x) := max{
∑
A⊆U

λAf(A) :
∑
A⊆U

λA1A = x,
∑
A⊆U

λA = 1, λA ≥ 0}

and

f−(x) := min{
∑
A⊆U

λAf(A) :
∑
A⊆U

λA1A = x,
∑
A⊆U

λA = 1, λA ≥ 0}.

The function f+ is called concave closure of f , the function f− is called convex
closure of f .

(1) Prove that f+ is concave and f− is convex. (1 Point)

(2) Prove that the Lovász extension f ′ as defined in Exercise 13.3 and the convex
closure f− are identical if and only if f is submodular. (3 Points)

Exercise 14.2:
Let U be a finite set and f : 2U → R be a submodular function. Let R be a random
subset of U , where each element is chosen independently with probability 1

2 . Prove:

(1) Exp(f(R)) ≥ 1
2(f(∅) + f(U)).

(2) For each A ⊆ U we have Exp(f(R)) ≥ 1
4(f(∅) + f(A) + f(U \ A) + f(U)).

Hint: Apply (1) twice.

(3) If f is nonnegative, then Exp(f(R)) ≥ 1
4 maxA⊆U f(A).

Note: Part (3) implies a randomized 4-factor approximation algorithm for nonnega-
tive submodular function maximization. (4 Points)



Exercise 14.3:
Let U be a finite set. A function f : 2U → R ∪ {∞} is called crossing submodular if
f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for any two sets X, Y ⊆ U with X ∩ Y 6= ∅
and X ∪Y 6= U . The Submodular Flow Problem is as follows. Given a digraph
G, functions l : E(G) → R ∪ {−∞}, u : E(G) → R ∪ {∞}, c : E(G) → R and a
crossing submodular function b : 2V (G) → R ∪ {∞}, a feasible submodular flow is a
function f : E(G)→ R with l(e) ≤ f(e) ≤ u(e) for all e ∈ E(G) and∑

e∈δ−(X)
f(e)−

∑
e∈δ+(X)

f(e) ≤ b(X)

for all X ⊆ V (G). The task is to decide whether a feasible flow exists, and if yes,
find one whose cost ∑

e∈E(G) c(e)f(e) is minimum.
Show that this problem generalizes the Minimum Cost Flow Problem and the
problem of optimizing a linear function over the intersection of two polymatroids.

(4 Points)

Exercise 14.4:
Given an instance (G, c, r) of the Survivable Network Design Problem, where
G is an undirected graph, c : E(G)→ R≥0 is a cost function on the edges and r{x,y} ∈
Z≥0 is a connectivity requirement for each pair {x, y} ⊆ V (G), define f : 2V (G) → Z≥0
by f(∅) := f(V (G)) := 0 and f(S) := maxx∈S,y∈V (G)\S r{x,y} for ∅ 6= S ⊂ V (G).
Then the Survivable Network Design Problem can be formulated as

min{
∑

e∈E(G)
c(e)xe :

∑
e∈δ(S)

xe ≥ f(S) ∀S ⊆ V (G), x ∈ {0, 1}E(G)}.

Show that the relaxation

min{
∑

e∈E(G)
c(e)xe :

∑
e∈δ(S)

xe ≥ f(S) ∀S ⊆ V (G), x ∈ [0, 1]E(G)}

can be reformulated as a linear program of polynomial size. (4 Points)

Deadline: Tuesday, January 27, 2015, before the lecture.
Information: Submissions by groups of one or two students are allowed. This is
the last exercise sheet.


