Winter term 2014/15 Professor Dr. Stephan Held Jannik Silvanus

Combinatorial Optimization

Exercise Sheet 13

Exercise 13.1:

Let *E* be a finite set and $f : 2^E \to \mathbb{R}$. Prove that *f* is submodular if and only if $f(T \cup \{e\}) - f(T) \leq f(S \cup \{e\}) - f(S)$ for all $S \subset T \subset T \cup \{e\} \subseteq E$. (4 Points)

Exercise 13.2:

Prove that the set of vertices of the base polyhedron of a submodular function $f: 2^E \to \mathbb{R}$ with $f(\emptyset) = 0$ is precisely the set of vectors b^{\prec} for all total orders \prec of E, where $b^{\prec}(e) := f(\{v \in E \mid v \leq e\}) - f(\{v \in E \mid v \prec e\}))$ for all $e \in E$. (4 Points)

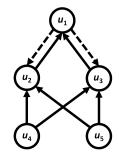
Exercise 13.3:

Let S be a finite set and $f : 2^S \to \mathbb{R}$. Define $f' : \mathbb{R}_{\geq 0}^S \to \mathbb{R}$ as follows. For any $x \in \mathbb{R}_{\geq 0}^S$, there are unique $k \in \mathbb{Z}_{\geq 0}, \lambda_1, \ldots, \lambda_k > 0$ and $\emptyset \subset T_1 \subset T_2 \subset \ldots \subset T_k \subseteq S$ such that $x = \sum_{i=1}^k \lambda_i \chi^{T_i}$, where χ^{T_i} is the incidence vector of T_i . Then $f'(x) := \sum_{i=1}^k \lambda_i f(T_i)$. Prove that f is submodular if and only if f' is convex. (4 Points)

Exercise 13.4:

Prove that for each $\epsilon > 0$, there is a finite set E_{ϵ} and a submodular function $f_{\epsilon} : 2^{E_{\epsilon}} \to \mathbb{R}_{\geq 0}$ such that the Deterministic Double Greedy Algorithm for USM (Algorithm 12 from the lecture) provides only a $(\frac{1}{3} + \epsilon)$ -approximation on $(E_{\epsilon}, f_{\epsilon})$.

Hint: Consider the cut function of the weighted graph on the right. The weight of dashed edges is $1 - \epsilon$, the weight of all other edges is 1. (4 Points)



Deadline: Tuesday, January 20, 2015, before the lecture. **Information:** Submissions by groups of one or two students are allowed.