Winter term 2014/15 Professor Dr. Stephan Held Jannik Silvanus Research Institute for Discrete Mathematics University of Bonn

Combinatorial Optimization

Exercise Sheet 12

Exercise 12.1:

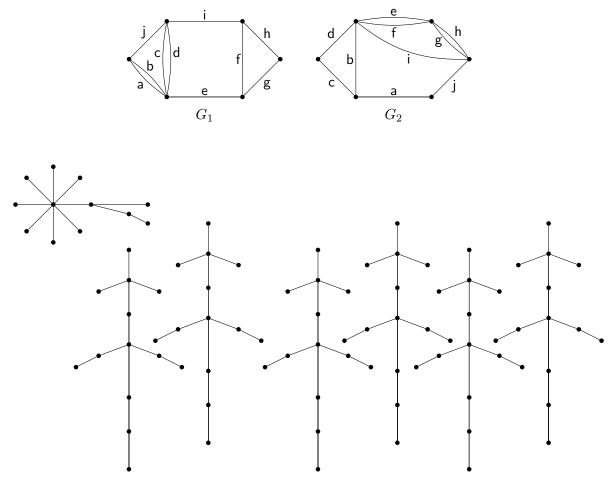
Prove that the POLYMATROID GREEDY ALGORITHM, when applied to a vector $c \in \mathbb{R}^{E}_{>0}$ and a submodular but not necessarily monotone function $f : 2^{E} \to \mathbb{R}$ with $f(\emptyset) \geq 0$, solves

$$\max\left\{c^T x \mid \sum_{e \in A} x_e \le f(A) \text{ for all } A \subseteq E\right\}.$$

4 Points

Exercise 12.2:

Prove:


- (i) Let (E, \mathcal{F}) be a matroid, $A \in \mathcal{F}$ arbitrary, and $\mathcal{F}_A := \{X \Delta A \mid X \in \mathcal{F}\}$. Then (E, \mathcal{F}_A) is a greedoid. 2 Points
- (ii) Let *E* be a finite set and $\mathcal{P} \subseteq 2^E$ a family of subsets with $\emptyset \notin \mathcal{P}$ such that $A, B \in \mathcal{P}, |A| = |B|$, and $|A\Delta B| = 2$ implies $A \cap B \in \mathcal{P}$. Then $(E, 2^E \setminus \mathcal{P})$ is a greedoid. 2 Points

Exercise 12.3: Let (E, \mathcal{F}) be a greedoid and $c' : E \to \mathbb{R}_+$. We define the bottleneck function $c(F) := \min_{e \in F} c'(e)$ for every $F \subseteq E$. Show that the GREEDY ALGORITHM FOR GREEDOIDS, when applied to (E, \mathcal{F}) and c, finds a base of \mathcal{F} with c(F) maximum. 4 Points

Exercise 12.4:

We call a graph *christmas tree* if it has no cycles and its edge set can be partitioned into sets $E_0 \cup \ldots \cup E_k$ such that $(V(E_0), E_0)$ is a path and, for $1 \le i \le k$, $(V(E_i), E_i)$ is a path with $|E_i| \le 2$ and one endpoint in $V(E_0)$. A graph whose connected components are christmas trees is called festive. Prove or disprove:

- (i) If G = (V, E) is a graph and $\mathcal{F} := \{F \subseteq E \mid (V, F) \text{ is a festive graph}\}$, then (E, \mathcal{F}) is a matroid. 2 Point
- (ii) There exists a set J which is the edge set of a spanning christmas tree in both G_1 and G_2 . 2 Points

A festive graph.

Deadline: Tuesday, January 13, 2015, before the lecture. **Information:** Submissions by groups of one or two students are allowed.