Winter term 2014/15 Professor Dr. Stephan Held Jannik Silvanus Research Institute for Discrete Mathematics University of Bonn

Combinatorial Optimization

Exercise Sheet 4

Exercise 4.1: Let G = (V, E) be a graph. A set $\mathcal{H} = \{S_1, \ldots, S_k, v_1, \ldots, v_r\}$ has property A if

- $S_i \subseteq V$ and $|S_i|$ is odd for $1 \le i \le k$,
- $v_i \in V$ for $1 \leq i \leq r$, and
- for each $e \in E$ either $e \subseteq S_i$ for some $i \in \{1, \ldots, k\}$ or $v_i \in e$ for some $i \in \{1, \ldots, r\}$.

The weight of a set \mathcal{H} with property A is $w(\mathcal{H}) := r + \sum_{i=1}^{k} \frac{|S_i| - 1}{2}$. Prove

 $\nu(G) = \min\{w(\mathcal{H}) \mid \mathcal{H} \text{ is a set with property A}\}.$

(4 Points)

Exercise 4.2: Let G be a graph and M a matching in G that is not maximum.

- (i) Show that there are $\nu(G) |M|$ vertex-disjoint *M*-augmenting paths in *G*. *Hint:* Recall the proof of Berge's Theorem.
- (ii) Prove that there exists an *M*-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
- (iii) Let P be a shortest M-augmenting path in G and P' an $(M \triangle E(P))$ -augmenting path. Prove $|E(P')| \ge |E(P)| + 2|E(P \cap P')|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_1, P_2, \ldots be the sequence of augmenting paths chosen.

- (iv) Show that if $|E(P_i)| = |E(P_j)|$ for $i \neq j$, then P_i and P_j are vertex-disjoint.
- (v) Conclude that the sequence $|E(P_1)|, |E(P_2)|, \ldots$ contains at most $2\sqrt{\nu(G)} + 2$ different numbers.

From now on, let G be bipartite and set n := |V(G)| and m := |E(G)|.

- (vi) Prove that, given a matching M in G, the union of all shortest M-augmenting paths in G can be found in $\mathcal{O}(m+n)$ time. *Hint:* Use a variant of breath-first search.
- (vii) Consider a sequence of iterations of the algorithm where the length of the augmenting path remains constant. Show that the time needed for the whole sequence is no more than $\mathcal{O}(m+n)$. Hint: Use (vi) and apply a variant of depth-first search.
- (viii) Describe an algorithm with runtime $\mathcal{O}(\sqrt{n}(m+n))$ that solves the CARDINA-LITY MATCHING PROBLEM in bipartite graphs.

Note that the final steps are also possible for non-bipartite graphs, yet more complicated. (12 Points)

Deadline: Tuesday, November 4, 2014, before the lecture. **Information:** Submissions by groups of one or two students are allowed.