Winter term 2012/13 Juniorprofessor Dr. Stephan Held Jan Schneider Research Institute for Discrete Mathematics University of Bonn

Combinatorial Optimization

Exercise Sheet 12

Exercise 12.1:

Let *E* be a finite set and $f : 2^E \to \mathbb{R}$. Prove that *f* is submodular if and only if $f(X \cup \{y, z\}) - f(X \cup \{y\}) \leq f(X \cup \{z\}) - f(X)$ for all $X \subseteq E$ and $y, z \in U$ with $y \neq z$.

(4 Points)

Exercise 12.2:

Let G be a directed graph, $s, t \in V(G)$, $u : E(G) \to \mathbb{R}_+$, and $A := \delta^+(S)$. Prove that $P := \{x \in \mathbb{R}^A_+ | \text{ there is an } s\text{-}t\text{-flow } f \text{ in } (G, u) \text{ with } f(e) = x_e \text{ for all } e \in A \}$ is a polymatroid.

(4 Points)

Exercise 12.3:

Prove that the set of vertices of the base polyhedron of a submodular function $f : 2^E \to \mathbb{R}$ with $f(\emptyset) = 0$ is precisely the set of vectors b^{\prec} for all total orders \prec of E, where $b^{\prec}(e) := f(\{v \in E \mid v \leq e\}) - f(\{v \in E \mid v \prec e\}))$ for all $e \in E$. (4 Points)

Exercise 12.4:

Prove that the POLYMATROID GREEDY ALGORITHM, when applied to a vector $c \in \mathbb{R}^E_+$ and a submodular but not necessarily monotone function $f : 2^E \to \mathbb{R}$ with $f(\emptyset) \geq 0$, solves

$$\max\left\{cx \mid \sum_{e \in A} x_e \le f(A) \text{ for all } A \subseteq E\right\}.$$
(4 Points)

Deadline: Tuesday, January 15, 2013, before the lecture.