Winter term 2012/13 Juniorprofessor Dr. Stephan Held Jan Schneider Research Institute for Discrete Mathematics University of Bonn

Combinatorial Optimization

Exercise Sheet 10

Exercise 10.1:

Let $\mathcal{M} = (E, \mathcal{F})$ be a matroid, $B \subseteq E$, and $J \subset E$ a basis of B. We define $\mathcal{M}/B := (E \setminus B, \{J' \subseteq E \setminus B \mid J' \cup J \in \mathcal{F}\})$. Prove:

- 1. \mathcal{M}/B is a matroid that does not depend on the choice of J. (2 Points)
- 2. The rank function of \mathcal{M}/B is given by $r'(A) = r(A \cup B) r(B)$ for all $A \subseteq E \setminus B$. (2 Points)
- 3. Let $\emptyset = T_0 \subseteq T_1 \subseteq \ldots \subseteq T_{l+1} = E$. The bases of T_l in \mathcal{M} that intersect T_i in a basis of T_i for each $i \in \{1, \ldots, l\}$ are the bases of T_l in the matroid $\mathcal{N} := \mathcal{N}_0 \oplus \mathcal{N}_1 \oplus \ldots \oplus \mathcal{N}_l$, where $\mathcal{N}_i := (\mathcal{M}/T_i) \setminus \overline{T}_{i+1}$. (4 Points)

Exercise 10.2:

Let $\mathcal{M} = (E, \mathcal{F})$ be a matroid.

1. Let $X \subseteq E$. Prove: Let Y_1 be a base of $\mathcal{M} \setminus X$ and Y_2 be a base of $\mathcal{M}/(E \setminus X)$, then $Y_1 \cup Y_2$ is a base of \mathcal{M} . (2 Points)

Now let N and K be nonempty subsets of E. A game $\langle \mathcal{M}; N, K \rangle$ is played as follows: Angelika and Bodo (who plays first) alternatingly tag different elements of N. A tagged element cannot be tagged again later in the game. Angelika wins if she tags a set of elements that span K. Bodo wins if all elements of N are tagged and Angelika did not win.

2. Prove: If N contains two disjoint subsets A_0 and B_0 which span each other and which both span K, then Angelika can win against any strategy Bodo might have. Hint: Assume Bodo picks $a_0 \in A_0$, then there is a $b_0 \in B_0$ such that $(A_0 \setminus \{a_0\}) \cup \{b_0\}$ is a base of $\mathcal{M}_0 := \mathcal{M} \setminus \sigma(A_0 \cup B_0)$... Also, Exercise 10.1 might be helpful. (4 Points)

Note: The other direction is also true, but harder to prove. You may use this fact for the next exercise.

Continued on page 2.

Now Angelika and Bodo play the even funnier game $\langle G; u, v \rangle$. Here G is a graph and u and v are vertices of G. Angelika and Bodo alternatingly tag edges. Angelika wins if her edges contain a u-v-path and Bodo wins if Angelika didn't win when all edges are tagged. Again Bodo plays first.

3. Prove: Angelika has a winning strategy if and only if there are $V' \subseteq V(G)$, $E_1 \subseteq E(G)$, and $E_2 \subseteq E(G)$ with $\{u, v\} \subseteq V'$ and $E_1 \cap E_2 = \emptyset$ such that (V', E_1) and (V', E_2) are trees. (2 Points)

Deadline: Tuesday, December 18, 2012, before the lecture.