
Winter term 2012/13 Research Institute for Discrete Mathematics
Juniorprofessor Dr. Stephan Held University of Bonn
Jan Schneider

Combinatorial Optimization

Exercise Sheet 4

Exercise 4.1:
Prove: A graph G has a perfect matching if and only if for each X ⊆ V (G), the
graph G−X has at most |X| factor-critical components.

(1 Point, 2 extra points if you do not use the Gallai-Edmonds Theorem)

Exercise 4.2:
Let G = (V,E) with |V | = 2k and |δ(v)| ≥ k for all v ∈ V . Show that G has a
perfect matching.

(3 Points)

Exercise 4.3:
Let G be a k-connected graph with 2ν(G) < |V (G)| − 1.

1. Prove ν(G) ≥ k. (2 Points)

2. Prove τ(G) ≤ 2ν(G)− k. (2 Points)

Exercise 4.4:
Let G be a bipartite graph with n := |V (G)| and m := |E(G)|.

1. Prove that, given a matching M in G, the union of all shortest M -augmenting
paths in G can be found in O(m+ n) time.
Hint: Use a variant of breadth-first search. (2 Points)

2. Consider a sequence of iterations of the algorithm where the length of the
augmenting path remains constant. Show that the time needed for the whole
sequence is no more than O(m+ n).
Hint: Use (1.) and apply a variant of depth-first search. (2 Points)

3. Describe an algorithm with runtime O(
√
n(m+ n)) that solves the Cardina-

lity Matching Problem in bipartite graphs. (2 Points)

Deadline: Tuesday, November 6, 2012, before the lecture.

Note the programming exercise on page 2!

Programming Exercise 1:

Implement Edmonds’ Cardinality Matching Algorithm.

Program Specification: Your program must accept a filename as a command-line
parameter (i.e. it must be called with myprogram input.dmx). The command-line
parameter contains the filename of the file that encodes the graph.

Input: The input file is a DIMACs file that encodes an undirected graph. That
means, one line has the format

p edge n m
where n is the number of vertices of the graph and m is the number of edges. After
this line, m lines have the format

e i j
where i and j are the indices of the vertices connected by this edge. The vertices are
indexed from 1 to n. Lines starting with a c are comments and should be ignored. For
a more complete definition of the DIMACS format, see http://www.or.uni-bonn.
de/lectures/ss12/praktikum/ccformat.pdf. For testing purposes, you can use
the files at http://www.or.uni-bonn.de/lectures/ss12/praktikum/index.html.
You may base your file parser on the code available at http://www.or.uni-bonn.
de/lectures/ws11/lgo_uebung_ws11.html.

Output: Your program must write the matching, encoded in the DIMACS format,
to the standard output.

Programming Languages: Your program must be written in C or C++ and compile
with a GNU compiler on a current Linux machine.

Criteria: The following criteria are relevant for the number of points you will be
awarded: Correctness, speed, code documentation, number of compiler warnings,
overall elegance.

Submission: Send your program to schneid@or.uni-bonn.de.
(20 Points)

Deadline: Tuesday, November 27, 2012, before the lecture.

http://www.or.uni-bonn.de/lectures/ss12/praktikum/ccformat.pdf
http://www.or.uni-bonn.de/lectures/ss12/praktikum/ccformat.pdf
http://www.or.uni-bonn.de/lectures/ss12/praktikum/index.html
http://www.or.uni-bonn.de/lectures/ws11/lgo_uebung_ws11.html
http://www.or.uni-bonn.de/lectures/ws11/lgo_uebung_ws11.html

