Winter term 2012/13 Juniorprofessor Dr. Stephan Held Jan Schneider Research Institute for Discrete Mathematics University of Bonn

Combinatorial Optimization

Exercise Sheet 2

Exercise 2.1:

Prove: An undirected graph G is 2-edge-connected if and only if $|E(G)| \ge 2$ and G has an ear-decomposition. (2 Points)

Exercise 2.2:

Prove: Every 3-regular simple graph with at most two bridges has a perfect matching. (3 Points)

Exercise 2.3:

Let G = (V, E) be a bipartite graph with bipartition $V = \{a_1, \ldots, a_k\} \dot{\cup} \{b_1, \ldots, b_k\}$. For any vector $x = (x_e)_{e \in E}$ we define a matrix $M_G(x) = (m_{ij}^x)_{1 \le i,j \le k}$ by

$$m_{ij}^{x} = \begin{cases} x_e & \text{if } e = \{a_i, b_j\} \in E\\ 0 & \text{otherwise.} \end{cases}$$

Its determinant det $M_G(x)$ is a polynomial in x. We further define the permanent of a $k \times k$ matrix M as

$$\operatorname{per}(M) := \sum_{\pi \in S_k} \prod_{i=1}^k m_{i\pi(i)},$$

where S_k is the set of permutations of $\{1, \ldots, k\}$. Prove:

- 1. G has a perfect matching if and only if det $M_G(x)$ is not identically 0. (3 Points)
- 2. If G is simple, it has exactly $per(M_G(1,\ldots,1))$ perfect matchings. (4 Points)

Exercise 2.4:

Let G = (V, E) be a bipartite graph with bipartition $V = A \dot{\cup} B$. Prove that there exists a forest F = (V, E') with $E' \subseteq E$ and $|\delta_F(v)| = 2$ for all $v \in A$ if and only if $|\Gamma_G(X)| \ge |X| + 1$ holds for every non-empty $X \subseteq A$. (4 Points)

Deadline: Tuesday, October 23, 2012, before the lecture.